Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Barchers, “Closed-loop stable control of twodeformable mirrors for compensation of amplitudeand phase fluctuations,” J. Opt. Soc. Am. A 19, 926–945 (2002).
    [CrossRef]
  2. G. A. Tyler, the Optical Sciences Company, 1341 South Sunkist Street, Anaheim, California 92806 (personal communication, 2002).
  3. D. L. Link, Science Applications International Corporation, 140 Intracoastal Point Drive, Suite 213, Jupiter, Florida 33477 (personal communication, 2002).
  4. J. B. Shellan, the Optical Sciences Company, 1341 South Sunkist Street, Anaheim, California 92806 (personal communication, 2003).

2002

Barchers, J. D.

Link, D. L.

D. L. Link, Science Applications International Corporation, 140 Intracoastal Point Drive, Suite 213, Jupiter, Florida 33477 (personal communication, 2002).

Shellan, J. B.

J. B. Shellan, the Optical Sciences Company, 1341 South Sunkist Street, Anaheim, California 92806 (personal communication, 2003).

Tyler, G. A.

G. A. Tyler, the Optical Sciences Company, 1341 South Sunkist Street, Anaheim, California 92806 (personal communication, 2002).

J. Opt. Soc. Am. A

Other

G. A. Tyler, the Optical Sciences Company, 1341 South Sunkist Street, Anaheim, California 92806 (personal communication, 2002).

D. L. Link, Science Applications International Corporation, 140 Intracoastal Point Drive, Suite 213, Jupiter, Florida 33477 (personal communication, 2002).

J. B. Shellan, the Optical Sciences Company, 1341 South Sunkist Street, Anaheim, California 92806 (personal communication, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 3
Fig. 3

Preferred implementation for closed-loop control of two deformable mirrors for scintillation compensation with appropriate phase conjugation. The sum of the phases between the incoming and outgoing beams is measured at the plane of each deformable mirror by interfering the incoming beam with a reference that is generated by spatial filtering of the corrected incoming beam.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D(κ, L, k0, μ, α, z¯)
=cos(πκ2λz1)cos(πκ2λzN)sin(πκ2λz1)sin(πκ2λzN)cos(πκ2λ|L-z1|)cos(πκ2λ|L-zN|)sin(πκ2λ|L-z1|)sin(πκ2λ|L-zN|).

Metrics