Abstract

The emission of light from whispering-gallery modes excited in microscopic spheres is examined. An evanescent wave is produced by total internal reflection of an optical beam at a planar glass–air interface. This evanescent wave is used to excite whispering-gallery modes in single microscopic spheres placed behind the glass–air interface. The intensity of light emitted into the air half-space from such spheres is measured as a function of scattering angle for both p- and s-polarized input beams. These data are compared with a simple theory for the emission from a point source above a planar glass substrate.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, “Beitrage zur optik truber medien speziell kolloidaler metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
    [CrossRef]
  2. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).
  3. H. C. Van De Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  4. C. Liu, T. Weigel, G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
    [CrossRef]
  5. R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
    [CrossRef]
  6. A. V. Zvyagin, K. Goto, “Mie scattering of evanescent waves by a dielectric sphere: comparison of multipole expansion and group-theory methods,” J. Opt. Soc. Am. A 15, 3003–3008 (1998).
    [CrossRef]
  7. C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
    [CrossRef]
  8. D. C. Prieve, J. Y. Walz, “Scattering of an evanescent surface-wave by a microscopic dielectric sphere,” Appl. Opt. 32, 1629–1641 (1993).
    [CrossRef] [PubMed]
  9. D. C. Prieve, F. Lanni, F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” J. Chem. Soc., Faraday Trans. 1 83, 297–307 (1987).
  10. D. C. Prieve, N. A. Frej, “Total internal-reflection microscopy—a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
    [CrossRef]
  11. M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
    [CrossRef]
  12. I. Braslavsky, R. Amit, B. M. J. Ali, O. Gileadi, A. Oppenheim, J. Stavans, “Objective-type dark-field illumination for scattering from microbeads,” Appl. Opt. 40, 5650–5657 (2001).
    [CrossRef]
  13. G. A. Schumacher, T. G. M. Vandeven, “Evanescent wave scattering studies on latex-glass interactions,” Langmuir 7, 2028–2033 (1991).
    [CrossRef]
  14. Z. M. Xia, T. G. M. Vandeven, “Adhesion kinetics of phosphatidylcholine liposomes by evanescent wave light-scattering,” Langmuir 8, 2938–2946 (1992).
    [CrossRef]
  15. M. Polverari, T. G. M. Vandeven, “Electrostatic and steric interactions in particle deposition studied by evanescent-wave light-scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
    [CrossRef]
  16. W. J. Albery, G. R. Kneebone, A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
    [CrossRef]
  17. W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
    [CrossRef]
  18. B. Mizaikoff, “Mid infra-red evanescent wave sensors—a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
    [CrossRef]
  19. C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fibre optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
    [CrossRef]
  20. L. T. Gao, C. J. Seliskar, L. Milstein, “Spectroscopic sensing with a highly transparent, ion-exchangeable polymer blend,” Appl. Spectrosc. 51, 1745–1752 (1997).
    [CrossRef]
  21. G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
    [CrossRef]
  22. S. McCabe, B. D. MacCraith, “Novel mid infra-red LED as a source for optical-fiber gas-sensing,” Electron. Lett. 29, 1719–1721 (1993).
    [CrossRef]
  23. R. J. Chang, A. J. Chamillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  24. S. Schiller, R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991).
    [CrossRef] [PubMed]
  25. L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
    [CrossRef]
  26. M. L. Gorodetsky, V. S. Ilchenko, “High-Q optical whispering-gallery microresonantors—precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
    [CrossRef]
  27. M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [CrossRef] [PubMed]
  28. H. Ishikawa, H. Tamaru, K. Miyano, “Observation of a modulation effect caused by a microsphere resonator strongly coupled to a dielectric substrate,” Opt. Lett. 24, 643–645 (1999).
    [CrossRef]
  29. H. Ishikawa, H. Tamaru, K. Miyano, “Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field,” J. Opt. Soc. Am. A 17, 802–813 (2000).
    [CrossRef]
  30. E. Hecht, Optics (Addison-Wesley, London, 1987), p. 107.
  31. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
    [CrossRef] [PubMed]
  32. K. W. An, “Cylindrical and spherical microcavity lasers based on evanescent-wave-coupled gain,” J. Chin. Chem. Soc. (Taipei) 48, 461–468 (2001).
  33. M. V. Artemyev, U. Woggon, “Quantum dots in photonic dots,” Appl. Phys. Lett. 76, 1353–1355 (2000).
    [CrossRef]
  34. R. Jia, D. S. Jiang, P. H. Tan, B. Q. Sun, “Quantum dots in glass spherical microcavity,” Appl. Phys. Lett. 79, 153–155 (2001).
    [CrossRef]
  35. E. A. Perkins, D. J. Squirrell, “Development of instrumentation to allow the detection of microorganismsusing light scattering in combination with surface plasmon resonance,” Biosens. Bioelectron. 14, 853–859 (2000).
    [CrossRef] [PubMed]
  36. G. Videen, “Light-scattering from a sphere behind a surface,” J. Opt. Soc. Am. A 10, 110–117 (1993).
    [CrossRef]
  37. High Frequency Structure Simulator computer-modeling software supplied by Ansoft Corporate Headquarters, Four Station Square, Suite 200, Pittsburgh, Pa. 15219-1119.
  38. A. Shinya, M. Fukui, “Finite-difference time-domain analysis of the interaction of Gaussian evanescent light with a single dielectric sphere or ordered dielectric spheres,” Opt. Rev. 6, 215–223 (1999).
    [CrossRef]
  39. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  40. Y. Eremin, N. Orlov, “Modeling of light scattering by non-spherical particles based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 60, 451–462 (1998).
    [CrossRef]
  41. M. J. Jory, E. A. Perkins, J. R. Sambles, “Light scattering by microscopic spheres behind a glass–air interface,” J. Opt. Soc. Am. A 20, 1589–1594 (2003).
    [CrossRef]
  42. Corning 7509 fusion-drawn glass supplied by Gooch and Housego Ltd., The Old Magistrates Court, Ilminster, Somerset, TA19 OAS, UK. http://www.goochandhousego.com .
  43. E. Hecht, Optics (Addison-Wesley, London, 1987), p. 94.

2003 (1)

2001 (3)

R. Jia, D. S. Jiang, P. H. Tan, B. Q. Sun, “Quantum dots in glass spherical microcavity,” Appl. Phys. Lett. 79, 153–155 (2001).
[CrossRef]

K. W. An, “Cylindrical and spherical microcavity lasers based on evanescent-wave-coupled gain,” J. Chin. Chem. Soc. (Taipei) 48, 461–468 (2001).

I. Braslavsky, R. Amit, B. M. J. Ali, O. Gileadi, A. Oppenheim, J. Stavans, “Objective-type dark-field illumination for scattering from microbeads,” Appl. Opt. 40, 5650–5657 (2001).
[CrossRef]

2000 (5)

C. Liu, T. Weigel, G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
[CrossRef]

M. V. Artemyev, U. Woggon, “Quantum dots in photonic dots,” Appl. Phys. Lett. 76, 1353–1355 (2000).
[CrossRef]

H. Ishikawa, H. Tamaru, K. Miyano, “Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field,” J. Opt. Soc. Am. A 17, 802–813 (2000).
[CrossRef]

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

E. A. Perkins, D. J. Squirrell, “Development of instrumentation to allow the detection of microorganismsusing light scattering in combination with surface plasmon resonance,” Biosens. Bioelectron. 14, 853–859 (2000).
[CrossRef] [PubMed]

1999 (4)

A. Shinya, M. Fukui, “Finite-difference time-domain analysis of the interaction of Gaussian evanescent light with a single dielectric sphere or ordered dielectric spheres,” Opt. Rev. 6, 215–223 (1999).
[CrossRef]

H. Ishikawa, H. Tamaru, K. Miyano, “Observation of a modulation effect caused by a microsphere resonator strongly coupled to a dielectric substrate,” Opt. Lett. 24, 643–645 (1999).
[CrossRef]

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

B. Mizaikoff, “Mid infra-red evanescent wave sensors—a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
[CrossRef]

1998 (3)

C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fibre optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
[CrossRef]

A. V. Zvyagin, K. Goto, “Mie scattering of evanescent waves by a dielectric sphere: comparison of multipole expansion and group-theory methods,” J. Opt. Soc. Am. A 15, 3003–3008 (1998).
[CrossRef]

Y. Eremin, N. Orlov, “Modeling of light scattering by non-spherical particles based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 60, 451–462 (1998).
[CrossRef]

1997 (1)

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

1995 (3)

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

M. Polverari, T. G. M. Vandeven, “Electrostatic and steric interactions in particle deposition studied by evanescent-wave light-scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
[CrossRef]

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

1994 (1)

M. L. Gorodetsky, V. S. Ilchenko, “High-Q optical whispering-gallery microresonantors—precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
[CrossRef]

1993 (4)

G. Videen, “Light-scattering from a sphere behind a surface,” J. Opt. Soc. Am. A 10, 110–117 (1993).
[CrossRef]

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

D. C. Prieve, J. Y. Walz, “Scattering of an evanescent surface-wave by a microscopic dielectric sphere,” Appl. Opt. 32, 1629–1641 (1993).
[CrossRef] [PubMed]

S. McCabe, B. D. MacCraith, “Novel mid infra-red LED as a source for optical-fiber gas-sensing,” Electron. Lett. 29, 1719–1721 (1993).
[CrossRef]

1992 (1)

Z. M. Xia, T. G. M. Vandeven, “Adhesion kinetics of phosphatidylcholine liposomes by evanescent wave light-scattering,” Langmuir 8, 2938–2946 (1992).
[CrossRef]

1991 (2)

S. Schiller, R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991).
[CrossRef] [PubMed]

G. A. Schumacher, T. G. M. Vandeven, “Evanescent wave scattering studies on latex-glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

1990 (2)

D. C. Prieve, N. A. Frej, “Total internal-reflection microscopy—a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

1989 (1)

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

1987 (1)

D. C. Prieve, F. Lanni, F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” J. Chem. Soc., Faraday Trans. 1 83, 297–307 (1987).

1985 (1)

W. J. Albery, G. R. Kneebone, A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
[CrossRef]

1908 (1)

G. Mie, “Beitrage zur optik truber medien speziell kolloidaler metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
[CrossRef]

Albery, W. J.

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

W. J. Albery, G. R. Kneebone, A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
[CrossRef]

Ali, B. M. J.

Amit, R.

An, K. W.

K. W. An, “Cylindrical and spherical microcavity lasers based on evanescent-wave-coupled gain,” J. Chin. Chem. Soc. (Taipei) 48, 461–468 (2001).

Artemyev, M. V.

M. V. Artemyev, U. Woggon, “Quantum dots in photonic dots,” Appl. Phys. Lett. 76, 1353–1355 (2000).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Braslavsky, I.

Brown, M. A.

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

Brune, M.

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

Byer, R. L.

Cai, M.

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Chamillo, A. J.

R. J. Chang, A. J. Chamillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).

Chang, R. J.

R. J. Chang, A. J. Chamillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).

Collot, L.

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

Eremin, Y.

Y. Eremin, N. Orlov, “Modeling of light scattering by non-spherical particles based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 60, 451–462 (1998).
[CrossRef]

Foulds, A. W.

W. J. Albery, G. R. Kneebone, A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
[CrossRef]

Fredlein, R. A.

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

Frej, N. A.

D. C. Prieve, N. A. Frej, “Total internal-reflection microscopy—a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

Fukui, M.

A. Shinya, M. Fukui, “Finite-difference time-domain analysis of the interaction of Gaussian evanescent light with a single dielectric sphere or ordered dielectric spheres,” Opt. Rev. 6, 215–223 (1999).
[CrossRef]

Gao, L. T.

Gileadi, O.

Gorodetsky, M. L.

M. L. Gorodetsky, V. S. Ilchenko, “High-Q optical whispering-gallery microresonantors—precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
[CrossRef]

Goto, K.

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison-Wesley, London, 1987), p. 107.

E. Hecht, Optics (Addison-Wesley, London, 1987), p. 94.

Ilchenko, V. S.

M. L. Gorodetsky, V. S. Ilchenko, “High-Q optical whispering-gallery microresonantors—precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
[CrossRef]

Ishikawa, H.

Jia, R.

R. Jia, D. S. Jiang, P. H. Tan, B. Q. Sun, “Quantum dots in glass spherical microcavity,” Appl. Phys. Lett. 79, 153–155 (2001).
[CrossRef]

Jiang, D. S.

R. Jia, D. S. Jiang, P. H. Tan, B. Q. Sun, “Quantum dots in glass spherical microcavity,” Appl. Phys. Lett. 79, 153–155 (2001).
[CrossRef]

Jory, M. J.

Kaiser, T.

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

Kneebone, G. R.

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

W. J. Albery, G. R. Kneebone, A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
[CrossRef]

Landl, M.

C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fibre optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
[CrossRef]

Lange, S.

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

Lanni, F.

D. C. Prieve, F. Lanni, F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” J. Chem. Soc., Faraday Trans. 1 83, 297–307 (1987).

Lefevre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

Liu, C.

C. Liu, T. Weigel, G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
[CrossRef]

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

Luo, F.

D. C. Prieve, F. Lanni, F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” J. Chem. Soc., Faraday Trans. 1 83, 297–307 (1987).

MacCraith, B. D.

C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fibre optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
[CrossRef]

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

S. McCabe, B. D. MacCraith, “Novel mid infra-red LED as a source for optical-fiber gas-sensing,” Electron. Lett. 29, 1719–1721 (1993).
[CrossRef]

Malins, C.

C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fibre optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
[CrossRef]

McCabe, S.

S. McCabe, B. D. MacCraith, “Novel mid infra-red LED as a source for optical-fiber gas-sensing,” Electron. Lett. 29, 1719–1721 (1993).
[CrossRef]

McDonagh, C. M.

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

McEvoy, A. K.

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

McGilp, J. F.

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

Mie, G.

G. Mie, “Beitrage zur optik truber medien speziell kolloidaler metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
[CrossRef]

Milstein, L.

Miyano, K.

Mizaikoff, B.

B. Mizaikoff, “Mid infra-red evanescent wave sensors—a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
[CrossRef]

O’Keeffe, G.

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

O’Shea, G. J.

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

Oppenheim, A.

Orlov, N.

Y. Eremin, N. Orlov, “Modeling of light scattering by non-spherical particles based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 60, 451–462 (1998).
[CrossRef]

Pack, A.

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

Painter, O.

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Perkins, E. A.

M. J. Jory, E. A. Perkins, J. R. Sambles, “Light scattering by microscopic spheres behind a glass–air interface,” J. Opt. Soc. Am. A 20, 1589–1594 (2003).
[CrossRef]

E. A. Perkins, D. J. Squirrell, “Development of instrumentation to allow the detection of microorganismsusing light scattering in combination with surface plasmon resonance,” Biosens. Bioelectron. 14, 853–859 (2000).
[CrossRef] [PubMed]

Polverari, M.

M. Polverari, T. G. M. Vandeven, “Electrostatic and steric interactions in particle deposition studied by evanescent-wave light-scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
[CrossRef]

Prieve, D. C.

D. C. Prieve, J. Y. Walz, “Scattering of an evanescent surface-wave by a microscopic dielectric sphere,” Appl. Opt. 32, 1629–1641 (1993).
[CrossRef] [PubMed]

D. C. Prieve, N. A. Frej, “Total internal-reflection microscopy—a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

D. C. Prieve, F. Lanni, F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” J. Chem. Soc., Faraday Trans. 1 83, 297–307 (1987).

Quinten, M.

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

Raimond, J. M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

Sambles, J. R.

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Schiller, S.

Schumacher, G. A.

G. A. Schumacher, T. G. M. Vandeven, “Evanescent wave scattering studies on latex-glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

Schweiger, G.

C. Liu, T. Weigel, G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
[CrossRef]

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

Seliskar, C. J.

Shinya, A.

A. Shinya, M. Fukui, “Finite-difference time-domain analysis of the interaction of Gaussian evanescent light with a single dielectric sphere or ordered dielectric spheres,” Opt. Rev. 6, 215–223 (1999).
[CrossRef]

Simon, P.

C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fibre optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
[CrossRef]

Smith, A. L.

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

Squirrell, D. J.

E. A. Perkins, D. J. Squirrell, “Development of instrumentation to allow the detection of microorganismsusing light scattering in combination with surface plasmon resonance,” Biosens. Bioelectron. 14, 853–859 (2000).
[CrossRef] [PubMed]

Staples, E. J.

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

Stavans, J.

Sun, B. Q.

R. Jia, D. S. Jiang, P. H. Tan, B. Q. Sun, “Quantum dots in glass spherical microcavity,” Appl. Phys. Lett. 79, 153–155 (2001).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

Tamaru, H.

Tan, P. H.

R. Jia, D. S. Jiang, P. H. Tan, B. Q. Sun, “Quantum dots in glass spherical microcavity,” Appl. Phys. Lett. 79, 153–155 (2001).
[CrossRef]

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Vahala, K. J.

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Van De Hulst, H. C.

H. C. Van De Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Vandeven, T. G. M.

M. Polverari, T. G. M. Vandeven, “Electrostatic and steric interactions in particle deposition studied by evanescent-wave light-scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
[CrossRef]

Z. M. Xia, T. G. M. Vandeven, “Adhesion kinetics of phosphatidylcholine liposomes by evanescent wave light-scattering,” Langmuir 8, 2938–2946 (1992).
[CrossRef]

G. A. Schumacher, T. G. M. Vandeven, “Evanescent wave scattering studies on latex-glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

Videen, G.

Walz, J. Y.

Wannemacher, R.

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

Weigel, T.

C. Liu, T. Weigel, G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
[CrossRef]

Woggon, U.

M. V. Artemyev, U. Woggon, “Quantum dots in photonic dots,” Appl. Phys. Lett. 76, 1353–1355 (2000).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Xia, Z. M.

Z. M. Xia, T. G. M. Vandeven, “Adhesion kinetics of phosphatidylcholine liposomes by evanescent wave light-scattering,” Langmuir 8, 2938–2946 (1992).
[CrossRef]

Zvyagin, A. V.

Ann. Phys. (Leipzig) (1)

G. Mie, “Beitrage zur optik truber medien speziell kolloidaler metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

M. V. Artemyev, U. Woggon, “Quantum dots in photonic dots,” Appl. Phys. Lett. 76, 1353–1355 (2000).
[CrossRef]

R. Jia, D. S. Jiang, P. H. Tan, B. Q. Sun, “Quantum dots in glass spherical microcavity,” Appl. Phys. Lett. 79, 153–155 (2001).
[CrossRef]

Appl. Spectrosc. (1)

Biosens. Bioelectron. (1)

E. A. Perkins, D. J. Squirrell, “Development of instrumentation to allow the detection of microorganismsusing light scattering in combination with surface plasmon resonance,” Biosens. Bioelectron. 14, 853–859 (2000).
[CrossRef] [PubMed]

Colloids Surf. (1)

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

Electron. Lett. (1)

S. McCabe, B. D. MacCraith, “Novel mid infra-red LED as a source for optical-fiber gas-sensing,” Electron. Lett. 29, 1719–1721 (1993).
[CrossRef]

Europhys. Lett. (1)

L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

J. Chem. Soc., Faraday Trans. 1 (1)

D. C. Prieve, F. Lanni, F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” J. Chem. Soc., Faraday Trans. 1 83, 297–307 (1987).

J. Chin. Chem. Soc. (Taipei) (1)

K. W. An, “Cylindrical and spherical microcavity lasers based on evanescent-wave-coupled gain,” J. Chin. Chem. Soc. (Taipei) 48, 461–468 (2001).

J. Colloid Interface Sci. (2)

M. Polverari, T. G. M. Vandeven, “Electrostatic and steric interactions in particle deposition studied by evanescent-wave light-scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
[CrossRef]

W. J. Albery, G. R. Kneebone, A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
[CrossRef]

J. Opt. Soc. Am. A (4)

J. Quant. Spectrosc. Radiat. Transf. (1)

Y. Eremin, N. Orlov, “Modeling of light scattering by non-spherical particles based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 60, 451–462 (1998).
[CrossRef]

Langmuir (4)

D. C. Prieve, N. A. Frej, “Total internal-reflection microscopy—a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

G. A. Schumacher, T. G. M. Vandeven, “Evanescent wave scattering studies on latex-glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

Z. M. Xia, T. G. M. Vandeven, “Adhesion kinetics of phosphatidylcholine liposomes by evanescent wave light-scattering,” Langmuir 8, 2938–2946 (1992).
[CrossRef]

Meas. Sci. Technol. (1)

B. Mizaikoff, “Mid infra-red evanescent wave sensors—a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
[CrossRef]

Opt. Commun. (3)

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

M. L. Gorodetsky, V. S. Ilchenko, “High-Q optical whispering-gallery microresonantors—precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
[CrossRef]

C. Liu, T. Weigel, G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
[CrossRef]

Opt. Lett. (2)

Opt. Rev. (1)

A. Shinya, M. Fukui, “Finite-difference time-domain analysis of the interaction of Gaussian evanescent light with a single dielectric sphere or ordered dielectric spheres,” Opt. Rev. 6, 215–223 (1999).
[CrossRef]

Phys. Rev. A (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Sens. Actuators B (2)

C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fibre optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
[CrossRef]

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

Other (8)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

H. C. Van De Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

E. Hecht, Optics (Addison-Wesley, London, 1987), p. 107.

R. J. Chang, A. J. Chamillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

High Frequency Structure Simulator computer-modeling software supplied by Ansoft Corporate Headquarters, Four Station Square, Suite 200, Pittsburgh, Pa. 15219-1119.

Corning 7509 fusion-drawn glass supplied by Gooch and Housego Ltd., The Old Magistrates Court, Ilminster, Somerset, TA19 OAS, UK. http://www.goochandhousego.com .

E. Hecht, Optics (Addison-Wesley, London, 1987), p. 94.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scattered intensity versus scattering angle (light-scattering profile) for a 5 μm-diameter glass sphere placed behind a glass–air interface and illuminated with light at an angle of incidence of 42.0° (just beyond the critical angle). Solid and dotted curves are the experimental data and simple model predictions, respectively. The curves with pluses indicate the experimentally measured response of the planar glass surface alone (i.e., with no sphere). (a), (b) p-polarized incident beam; (c), (d) s-polarized incident beam.

Fig. 2
Fig. 2

Light-scattering profile for the same system as in Fig. 1 but illuminated at an angle of incidence of 47.0° (beyond the critical angle). (a), (b) p-polarized incident beam; (c), (d) s-polarized incident beam.

Fig. 3
Fig. 3

Light-scattering profile for a 1.4 μm-diameter latex sphere placed behind a glass–air interface and illuminated with light at an angle of incidence of 48.5° (beyond the critical angle). Solid and dotted curves are the experimental data and predicted theory, respectively. (a) p-polarized incident beam; (b) s-polarized incident beam.

Fig. 4
Fig. 4

Light scattering profile for the same system as in Fig. 3 but illuminated at an angle of incidence of 53.0° (beyond the critical angle). (a) p-polarized incident beam; (b) s-polarized incident beam.

Fig. 5
Fig. 5

Model of a 1.4 μm-diameter latex sphere on a planar glass substrate. A  p-polarized optical beam strikes the glass–air interface z=0 from the left at an angle of 45° in the glass (beyond the critical angle). The gray scale represents the electric field magnitude (arbitrary units and scale) evaluated at an instant in time on the y=0 plane that passes through the center of the sphere. A whispering-gallery mode propagates in the plane of incidence in a counterclockwise direction around the sphere equator. Light emitted from the whispering-gallery mode radiates largely tangentially to the sphere surface.

Fig. 6
Fig. 6

Ray diagram showing the emission of light from a whispering-gallery mode excited in a sphere of diameter d that is placed behind a glass–air interface. The radiation in the far field is the result of a superposition of fields that are emitted at angle θ (ray AE) and those that are radiated at angle 180°-θ (ray BC) and then reflected at the air–glass interface (ray CD), for scattering angles -90°<θ<0°.

Fig. 7
Fig. 7

Optical path difference (OPD) divided by sphere diameter (OPD/d) versus scattering angle for a sphere of refractive index 1.52 (glass) (solid curve A) and refractive index 1.6 (latex) (solid circles curve B). Open circles, curve C, represent the response expected for a point-dipole source surrounded by air and positioned one sphere diameter d above the air–glass interface.

Tables (1)

Tables Icon

Table 1 Dipole Distances Used in the Simple Modeling to Obtain the Best Fits to Data for the 5 μm-Diameter Glass Sphere

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

OPD=nAB+BC+CD-AE.
CD-AE=FA-GC,
nAB=(π/2-θ)nd,
BC=FA=(FC/2)=d(1+sin θ)/2 cos θ,
GC=FC sin θ=2BC sin θ.
OPD=nAB+BC+(CD-AE).
OPD=d[n(π/2-θ)+cos θ].

Metrics