Abstract

The spatiochromatic receptive-field structure of neurons in the macaque visual system has been studied almost exclusively with stimuli based on the human foveal cone fundamentals of Smith and Pokorny [Vision Res. 15, 161 (1975)] and generated on cathode ray tube displays. In the current study the artifacts evoked by cone-isolating, spatially structured stimuli due to variations in the eye’s preretinal absorption characteristics and axial chromatic aberration are quantified. In addition, the luminance artifacts evoked by nominally isoluminant sinusoidal grating stimuli due to the same factors are quantified. The results indicate that the spatiochromatic stimuli commonly employed to map receptive fields of neurons at eccentricities >10 deg are especially prone to artifacts and that these artifacts are maximal for the high-contrast S-cone-isolating stimuli that are often used. On the basis of these simulations, a method is introduced that improves spatiochromatic receptive-field estimates by compensating for response contributions from the incompletely silenced cone mosaics during cone-isolating stimulation.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  2. A. Knowles, H. J. A. Dartnall, “The photobiology of vision,” in The Eye, H. Davson, ed. (Academic, London, 1977).
  3. L. T. Sharpe, A. Stockman, H. Jagle, J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 2000), pp. 3–51.
  4. U. Stabell, B. Stabell, “Variation in density of macular pigmentation and in short-wave cone sensitivity with eccentricity,” J. Opt. Soc. Am. 70, 706–711 (1980).
    [CrossRef] [PubMed]
  5. D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).
  6. D. M. Snodderly, J. D. Auran, F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674–685 (1984).
  7. A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
    [CrossRef]
  8. J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1988).
    [CrossRef]
  9. R. A. Bone, J. M. B. Sparrock, “Comparison of macular pigment densities in human eyes,” Vision Res. 11, 1057–1064 (1971).
    [CrossRef] [PubMed]
  10. D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
    [CrossRef] [PubMed]
  11. B. R. Hammond, B. R. Wooten, D. M. Snodderly, “Individual variations in the spatial profile of human macular pigment,” J. Opt. Soc. Am. A 14, 1187–1196 (1997).
    [CrossRef]
  12. A. Stockman, L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 2000), pp. 53–87.
  13. P. Simonet, C. W. Campbell, “The optical transverse chromatic aberration of the human eye,” Vision Res. 30, 187–206 (1990).
    [CrossRef]
  14. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howard, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
    [CrossRef] [PubMed]
  15. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  16. C. C. A. M. Gielen, J. A. M. Ginsbergen, A. J. H. Ven-drik, “Reconstruction of cone-system contributions to re-sponses of colour-opponent neurons in monkey lateral geniculate,” Biological Cybern. 44, 211–221 (1982).
    [CrossRef]
  17. R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature 356, 716–718 (1992).
    [CrossRef] [PubMed]
  18. N. P. Cottaris, S. D. Elfar, R. L. De Valois, “Spatio-temporal luminance and chromatic receptive field profiles of macaque striate cortex simple cells,” Soc. Neurosci. Abst. 22, 376.3 (1996).
  19. E. A. Benardete, E. Kaplan, “Dynamics of primate P retinal ganglion cells: responses to chromatic and achromatic stimuli,” J. Physiol. 519, 775–790 (1999).
    [CrossRef] [PubMed]
  20. B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).
    [PubMed]
  21. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  22. P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
    [PubMed]
  23. N. P. Cottaris, R. L. De Valois, “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature 395, 896–900 (1998).
    [CrossRef] [PubMed]
  24. D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997).
    [CrossRef]
  25. K. R. Gegenfurtner, D. C. Kiper, J. Levitt, “Functional properties of neurons in macaque area V3,” J. Neurophys. 77, 1906–1923 (1997).
  26. K. R. Gegenfurtner, D. C. Kiper, J. Beusmans, M. Carandini, Q. Zaidi, J. A. Movshon, “Chromatic properties of neurons in macaque MT,” Visual Neurosci. 11, 455–466 (1994).
    [CrossRef]
  27. E. N. Johnson, M. J. Hawken, R. M. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nature Neurosci. 4, 409–416 (2001).
    [CrossRef] [PubMed]
  28. S. Chatterjee, E. M. Callaway, “S cone contributions to the magnocellular visual pathway in macaque monkey,” Neuron 35, 1135–1146 (2002).
    [CrossRef] [PubMed]
  29. A. R. Wade, B. A. Wandell, “Chromatic light adaptation measured using functional magnetic resonance imaging,” J. Neurosci. 22, 8148–8157 (2002).
    [PubMed]
  30. D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29, 249–360 (1989).
    [CrossRef]
  31. O. Estevez, H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vision Res. 22, 681–691 (1982).
    [CrossRef]
  32. A. Eisner, D. I. A. MacLeod, “Flicker photometric study of chromatic adaptation: selective suppression of cone inputs by colored backgrounds,” J. Opt. Soc. Am. 71, 705–718 (1981).
    [CrossRef] [PubMed]
  33. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
    [CrossRef]
  34. R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
    [CrossRef] [PubMed]
  35. D. B. Judd, “Basic correlates of the visual stimulus,” in Handbook of Experimental Psychology, S. S. Stevens, ed. (Wiley, New York, 1951), pp. 811–867.
  36. J. J. Vos, “Colorimetric and photometric properties of a 2 degree fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
    [CrossRef]
  37. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef] [PubMed]
  38. A. Stockman, L. T. Sharpe, C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
    [CrossRef] [PubMed]
  39. R. A. Bone, J. T. Landrum, A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vision Res. 32, 105–110 (1992).
    [CrossRef] [PubMed]
  40. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
    [PubMed]
  41. D. H. Marimont, B. A. Wandell, “Matching color images: the impact of axial chromatic aberration,” J. Opt. Soc. Am. A 11, 3113–3122 (1994).
    [CrossRef]
  42. H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London Ser. A 231, 91–103 (1955).
    [CrossRef]
  43. L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular aberrations in humans,” Appl. Opt. 31, 3594–3600 (1992).
    [CrossRef] [PubMed]
  44. D. R. Williams, D. H. Brainard, M. J. McMahon, R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11, 3123–3135 (1994).
    [CrossRef]
  45. V. Virsu, B. B. Lee, “Light adaptation in cells of the macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophys. 50, 864–877 (1983).
  46. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
    [CrossRef] [PubMed]
  47. B. H. Crawford, “The scotopic visibility function,” Proc. Phys. Soc. London Sect. B 62, 321–344 (1949).
    [CrossRef]
  48. F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
    [CrossRef] [PubMed]
  49. A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
    [CrossRef]
  50. A. Stockman, L. T. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
    [CrossRef]
  51. J. P. Jones, L. A. Palmer, “The two-dimensional spatial structure of simple receptive fields in cats visual cortex,” J. Neurophysiol. 58, 1187–1211 (1987).
    [PubMed]
  52. E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
    [CrossRef] [PubMed]
  53. L. J. Croner, E. Kaplan, “Receptive fields of P and M ganglion cells across the primate retina,” Vision Res. 35, 7–24 (1995).
    [CrossRef] [PubMed]
  54. J. Kremers, H. P. N. School, H. Knau, T. T. M. Berendschot, T. Usui, L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
    [CrossRef]
  55. J. Albrecht, H. Jagle, D. C. Hood, L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vision 2, 543–558 (2002).
    [CrossRef]
  56. K. R. Dobkins, A. Thiele, T. D. Albright, “Comparison of red–green equiluminance points in humans and macaques: evidence for different L:M cone ratios between species,” J. Opt. Soc. Am. A 17, 545–556 (2000).
    [CrossRef]
  57. N. P. Cottaris, S. D. Elfar, R. L. De Valois, “Strong S-cone inputs to macaque V1 simple cells’ spatiotemporal receptive fields corrected for axial chromatic aberration,” Soc. Neurosci. Abstr. 26, 54.11 (2000).
  58. E. Seidemann, A. B. Poirson, B. A. Wandell, W. T. Newsome, “Color signals in area MT of the macaque monkey,” Neuron 24, 911–917 (1999).
    [CrossRef]

2002

S. Chatterjee, E. M. Callaway, “S cone contributions to the magnocellular visual pathway in macaque monkey,” Neuron 35, 1135–1146 (2002).
[CrossRef] [PubMed]

A. R. Wade, B. A. Wandell, “Chromatic light adaptation measured using functional magnetic resonance imaging,” J. Neurosci. 22, 8148–8157 (2002).
[PubMed]

J. Albrecht, H. Jagle, D. C. Hood, L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vision 2, 543–558 (2002).
[CrossRef]

2001

B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).
[PubMed]

E. N. Johnson, M. J. Hawken, R. M. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nature Neurosci. 4, 409–416 (2001).
[CrossRef] [PubMed]

2000

1999

E. Seidemann, A. B. Poirson, B. A. Wandell, W. T. Newsome, “Color signals in area MT of the macaque monkey,” Neuron 24, 911–917 (1999).
[CrossRef]

A. Stockman, L. T. Sharpe, C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
[CrossRef] [PubMed]

E. A. Benardete, E. Kaplan, “Dynamics of primate P retinal ganglion cells: responses to chromatic and achromatic stimuli,” J. Physiol. 519, 775–790 (1999).
[CrossRef] [PubMed]

1998

N. P. Cottaris, R. L. De Valois, “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature 395, 896–900 (1998).
[CrossRef] [PubMed]

1997

D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997).
[CrossRef]

K. R. Gegenfurtner, D. C. Kiper, J. Levitt, “Functional properties of neurons in macaque area V3,” J. Neurophys. 77, 1906–1923 (1997).

B. R. Hammond, B. R. Wooten, D. M. Snodderly, “Individual variations in the spatial profile of human macular pigment,” J. Opt. Soc. Am. A 14, 1187–1196 (1997).
[CrossRef]

1996

N. P. Cottaris, S. D. Elfar, R. L. De Valois, “Spatio-temporal luminance and chromatic receptive field profiles of macaque striate cortex simple cells,” Soc. Neurosci. Abst. 22, 376.3 (1996).

1995

L. J. Croner, E. Kaplan, “Receptive fields of P and M ganglion cells across the primate retina,” Vision Res. 35, 7–24 (1995).
[CrossRef] [PubMed]

1994

1993

1992

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular aberrations in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature 356, 716–718 (1992).
[CrossRef] [PubMed]

R. A. Bone, J. T. Landrum, A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vision Res. 32, 105–110 (1992).
[CrossRef] [PubMed]

1991

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

1990

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

P. Simonet, C. W. Campbell, “The optical transverse chromatic aberration of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howard, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

1989

D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29, 249–360 (1989).
[CrossRef]

1988

1987

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

J. P. Jones, L. A. Palmer, “The two-dimensional spatial structure of simple receptive fields in cats visual cortex,” J. Neurophysiol. 58, 1187–1211 (1987).
[PubMed]

1986

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[CrossRef] [PubMed]

1984

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).

D. M. Snodderly, J. D. Auran, F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674–685 (1984).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

1983

V. Virsu, B. B. Lee, “Light adaptation in cells of the macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophys. 50, 864–877 (1983).

1982

C. C. A. M. Gielen, J. A. M. Ginsbergen, A. J. H. Ven-drik, “Reconstruction of cone-system contributions to re-sponses of colour-opponent neurons in monkey lateral geniculate,” Biological Cybern. 44, 211–221 (1982).
[CrossRef]

O. Estevez, H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vision Res. 22, 681–691 (1982).
[CrossRef]

1981

1980

1979

1978

J. J. Vos, “Colorimetric and photometric properties of a 2 degree fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

1975

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1974

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

1971

R. A. Bone, J. M. B. Sparrock, “Comparison of macular pigment densities in human eyes,” Vision Res. 11, 1057–1064 (1971).
[CrossRef] [PubMed]

1959

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

1955

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London Ser. A 231, 91–103 (1955).
[CrossRef]

1949

B. H. Crawford, “The scotopic visibility function,” Proc. Phys. Soc. London Sect. B 62, 321–344 (1949).
[CrossRef]

Albrecht, J.

J. Albrecht, H. Jagle, D. C. Hood, L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vision 2, 543–558 (2002).
[CrossRef]

Albright, T. D.

Allen, K. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Auran, J. D.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).

D. M. Snodderly, J. D. Auran, F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674–685 (1984).

Baylor, D. A.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

Benardete, E. A.

E. A. Benardete, E. Kaplan, “Dynamics of primate P retinal ganglion cells: responses to chromatic and achromatic stimuli,” J. Physiol. 519, 775–790 (1999).
[CrossRef] [PubMed]

Berendschot, T. T. M.

Beusmans, J.

K. R. Gegenfurtner, D. C. Kiper, J. Beusmans, M. Carandini, Q. Zaidi, J. A. Movshon, “Chromatic properties of neurons in macaque MT,” Visual Neurosci. 11, 455–466 (1994).
[CrossRef]

Bone, R. A.

R. A. Bone, J. T. Landrum, A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vision Res. 32, 105–110 (1992).
[CrossRef] [PubMed]

R. A. Bone, J. M. B. Sparrock, “Comparison of macular pigment densities in human eyes,” Vision Res. 11, 1057–1064 (1971).
[CrossRef] [PubMed]

Boynton, R. M.

Bradley, A.

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular aberrations in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howard, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Brainard, D. H.

Brown, P. K.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).

Cains, A.

R. A. Bone, J. T. Landrum, A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vision Res. 32, 105–110 (1992).
[CrossRef] [PubMed]

Calderone, J. B.

Callaway, E. M.

S. Chatterjee, E. M. Callaway, “S cone contributions to the magnocellular visual pathway in macaque monkey,” Neuron 35, 1135–1146 (2002).
[CrossRef] [PubMed]

Campbell, C. W.

P. Simonet, C. W. Campbell, “The optical transverse chromatic aberration of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef]

Carandini, M.

K. R. Gegenfurtner, D. C. Kiper, J. Beusmans, M. Carandini, Q. Zaidi, J. A. Movshon, “Chromatic properties of neurons in macaque MT,” Visual Neurosci. 11, 455–466 (1994).
[CrossRef]

Chatterjee, S.

S. Chatterjee, E. M. Callaway, “S cone contributions to the magnocellular visual pathway in macaque monkey,” Neuron 35, 1135–1146 (2002).
[CrossRef] [PubMed]

Conway, B. R.

B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).
[PubMed]

Cottaris, N. P.

N. P. Cottaris, S. D. Elfar, R. L. De Valois, “Strong S-cone inputs to macaque V1 simple cells’ spatiotemporal receptive fields corrected for axial chromatic aberration,” Soc. Neurosci. Abstr. 26, 54.11 (2000).

N. P. Cottaris, R. L. De Valois, “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature 395, 896–900 (1998).
[CrossRef] [PubMed]

N. P. Cottaris, S. D. Elfar, R. L. De Valois, “Spatio-temporal luminance and chromatic receptive field profiles of macaque striate cortex simple cells,” Soc. Neurosci. Abst. 22, 376.3 (1996).

Crawford, B. H.

B. H. Crawford, “The scotopic visibility function,” Proc. Phys. Soc. London Sect. B 62, 321–344 (1949).
[CrossRef]

Croner, L. J.

L. J. Croner, E. Kaplan, “Receptive fields of P and M ganglion cells across the primate retina,” Vision Res. 35, 7–24 (1995).
[CrossRef] [PubMed]

Curcio, C. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Dartnall, H. J. A.

A. Knowles, H. J. A. Dartnall, “The photobiology of vision,” in The Eye, H. Davson, ed. (Academic, London, 1977).

De Valois, R. L.

N. P. Cottaris, S. D. Elfar, R. L. De Valois, “Strong S-cone inputs to macaque V1 simple cells’ spatiotemporal receptive fields corrected for axial chromatic aberration,” Soc. Neurosci. Abstr. 26, 54.11 (2000).

N. P. Cottaris, R. L. De Valois, “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature 395, 896–900 (1998).
[CrossRef] [PubMed]

N. P. Cottaris, S. D. Elfar, R. L. De Valois, “Spatio-temporal luminance and chromatic receptive field profiles of macaque striate cortex simple cells,” Soc. Neurosci. Abst. 22, 376.3 (1996).

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

Delori, F. C.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).

D. M. Snodderly, J. D. Auran, F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674–685 (1984).

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Dobkins, K. R.

Eisner, A.

Elfar, S. D.

N. P. Cottaris, S. D. Elfar, R. L. De Valois, “Strong S-cone inputs to macaque V1 simple cells’ spatiotemporal receptive fields corrected for axial chromatic aberration,” Soc. Neurosci. Abstr. 26, 54.11 (2000).

N. P. Cottaris, S. D. Elfar, R. L. De Valois, “Spatio-temporal luminance and chromatic receptive field profiles of macaque striate cortex simple cells,” Soc. Neurosci. Abst. 22, 376.3 (1996).

Estevez, O.

O. Estevez, H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vision Res. 22, 681–691 (1982).
[CrossRef]

Fach, C. C.

A. Stockman, L. T. Sharpe, C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
[CrossRef] [PubMed]

Fenstemaker, S. B.

D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997).
[CrossRef]

Flitcroft, D. I.

D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29, 249–360 (1989).
[CrossRef]

Gegenfurtner, K. R.

K. R. Gegenfurtner, D. C. Kiper, J. Levitt, “Functional properties of neurons in macaque area V3,” J. Neurophys. 77, 1906–1923 (1997).

D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997).
[CrossRef]

K. R. Gegenfurtner, D. C. Kiper, J. Beusmans, M. Carandini, Q. Zaidi, J. A. Movshon, “Chromatic properties of neurons in macaque MT,” Visual Neurosci. 11, 455–466 (1994).
[CrossRef]

Gielen, C. C. A. M.

C. C. A. M. Gielen, J. A. M. Ginsbergen, A. J. H. Ven-drik, “Reconstruction of cone-system contributions to re-sponses of colour-opponent neurons in monkey lateral geniculate,” Biological Cybern. 44, 211–221 (1982).
[CrossRef]

Ginsbergen, J. A. M.

C. C. A. M. Gielen, J. A. M. Ginsbergen, A. J. H. Ven-drik, “Reconstruction of cone-system contributions to re-sponses of colour-opponent neurons in monkey lateral geniculate,” Biological Cybern. 44, 211–221 (1982).
[CrossRef]

Hammond, B. R.

Hawken, M. J.

E. N. Johnson, M. J. Hawken, R. M. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nature Neurosci. 4, 409–416 (2001).
[CrossRef] [PubMed]

Hood, D. C.

J. Albrecht, H. Jagle, D. C. Hood, L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vision 2, 543–558 (2002).
[CrossRef]

Hopkins, H. H.

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London Ser. A 231, 91–103 (1955).
[CrossRef]

Howard, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howard, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Hull, E. M.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

Hurley, J. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Jacobs, G. H.

Jagle, H.

J. Albrecht, H. Jagle, D. C. Hood, L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vision 2, 543–558 (2002).
[CrossRef]

L. T. Sharpe, A. Stockman, H. Jagle, J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 2000), pp. 3–51.

Johnson, E. N.

E. N. Johnson, M. J. Hawken, R. M. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nature Neurosci. 4, 409–416 (2001).
[CrossRef] [PubMed]

Johnson, N. E.

Jones, J. P.

J. P. Jones, L. A. Palmer, “The two-dimensional spatial structure of simple receptive fields in cats visual cortex,” J. Neurophysiol. 58, 1187–1211 (1987).
[PubMed]

Judd, D. B.

D. B. Judd, “Basic correlates of the visual stimulus,” in Handbook of Experimental Psychology, S. S. Stevens, ed. (Wiley, New York, 1951), pp. 811–867.

Kaplan, E.

E. A. Benardete, E. Kaplan, “Dynamics of primate P retinal ganglion cells: responses to chromatic and achromatic stimuli,” J. Physiol. 519, 775–790 (1999).
[CrossRef] [PubMed]

L. J. Croner, E. Kaplan, “Receptive fields of P and M ganglion cells across the primate retina,” Vision Res. 35, 7–24 (1995).
[CrossRef] [PubMed]

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[CrossRef] [PubMed]

Kiper, D. C.

D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997).
[CrossRef]

K. R. Gegenfurtner, D. C. Kiper, J. Levitt, “Functional properties of neurons in macaque area V3,” J. Neurophys. 77, 1906–1923 (1997).

K. R. Gegenfurtner, D. C. Kiper, J. Beusmans, M. Carandini, Q. Zaidi, J. A. Movshon, “Chromatic properties of neurons in macaque MT,” Visual Neurosci. 11, 455–466 (1994).
[CrossRef]

Klock, I. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Knau, H.

Knowles, A.

A. Knowles, H. J. A. Dartnall, “The photobiology of vision,” in The Eye, H. Davson, ed. (Academic, London, 1977).

Krauskopf, J.

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Kremers, J.

Landrum, J. T.

R. A. Bone, J. T. Landrum, A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vision Res. 32, 105–110 (1992).
[CrossRef] [PubMed]

Lee, B. B.

V. Virsu, B. B. Lee, “Light adaptation in cells of the macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophys. 50, 864–877 (1983).

Lennie, P.

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Lerea, C. L.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Levitt, J.

K. R. Gegenfurtner, D. C. Kiper, J. Levitt, “Functional properties of neurons in macaque area V3,” J. Neurophys. 77, 1906–1923 (1997).

Lutze, M.

MacLeod, D. I. A.

Marimont, D. H.

McMahon, M. J.

Mead, W. R.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

Metha, A.

Milam, A. H.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Morgan, H. C.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

Movshon, J. A.

K. R. Gegenfurtner, D. C. Kiper, J. Beusmans, M. Carandini, Q. Zaidi, J. A. Movshon, “Chromatic properties of neurons in macaque MT,” Visual Neurosci. 11, 455–466 (1994).
[CrossRef]

Nathans, J.

L. T. Sharpe, A. Stockman, H. Jagle, J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 2000), pp. 3–51.

Navarro, R.

Neitz, J.

Neitz, M.

Newsome, W. T.

E. Seidemann, A. B. Poirson, B. A. Wandell, W. T. Newsome, “Color signals in area MT of the macaque monkey,” Neuron 24, 911–917 (1999).
[CrossRef]

Norren, D. V.

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

Nunn, B. J.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

Palmer, L. A.

J. P. Jones, L. A. Palmer, “The two-dimensional spatial structure of simple receptive fields in cats visual cortex,” J. Neurophysiol. 58, 1187–1211 (1987).
[PubMed]

Poirson, A. B.

E. Seidemann, A. B. Poirson, B. A. Wandell, W. T. Newsome, “Color signals in area MT of the macaque monkey,” Neuron 24, 911–917 (1999).
[CrossRef]

Pokorny, J.

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1988).
[CrossRef]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Polson, M. C.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

Reid, R. C.

R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature 356, 716–718 (1992).
[CrossRef] [PubMed]

Roorda, A.

Said, F. S.

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

Schnapf, J. L.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

School, H. P. N.

Sclar, G.

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

Seidemann, E.

E. Seidemann, A. B. Poirson, B. A. Wandell, W. T. Newsome, “Color signals in area MT of the macaque monkey,” Neuron 24, 911–917 (1999).
[CrossRef]

Shapley, R. M.

E. N. Johnson, M. J. Hawken, R. M. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nature Neurosci. 4, 409–416 (2001).
[CrossRef] [PubMed]

R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature 356, 716–718 (1992).
[CrossRef] [PubMed]

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[CrossRef] [PubMed]

Sharpe, L. T.

J. Albrecht, H. Jagle, D. C. Hood, L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vision 2, 543–558 (2002).
[CrossRef]

J. Kremers, H. P. N. School, H. Knau, T. T. M. Berendschot, T. Usui, L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

A. Stockman, L. T. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[CrossRef]

A. Stockman, L. T. Sharpe, C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, H. Jagle, J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 2000), pp. 3–51.

A. Stockman, L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 2000), pp. 53–87.

Simonet, P.

P. Simonet, C. W. Campbell, “The optical transverse chromatic aberration of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef]

Sloan, K. R.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Smith, V. C.

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1988).
[CrossRef]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Snodderly, D. M.

B. R. Hammond, B. R. Wooten, D. M. Snodderly, “Individual variations in the spatial profile of human macular pigment,” J. Opt. Soc. Am. A 14, 1187–1196 (1997).
[CrossRef]

D. M. Snodderly, J. D. Auran, F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674–685 (1984).

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).

Sparrock, J. M. B.

R. A. Bone, J. M. B. Sparrock, “Comparison of macular pigment densities in human eyes,” Vision Res. 11, 1057–1064 (1971).
[CrossRef] [PubMed]

Spekreijse, H.

O. Estevez, H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vision Res. 22, 681–691 (1982).
[CrossRef]

Stabell, B.

Stabell, U.

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howard, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Stockman, A.

A. Stockman, L. T. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[CrossRef]

A. Stockman, L. T. Sharpe, C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
[CrossRef] [PubMed]

A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[CrossRef]

A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[CrossRef]

A. Stockman, L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 2000), pp. 53–87.

L. T. Sharpe, A. Stockman, H. Jagle, J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 2000), pp. 3–51.

Thibos, L. N.

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular aberrations in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howard, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Thiele, A.

Usui, T.

Ven-drik, A. J. H.

C. C. A. M. Gielen, J. A. M. Ginsbergen, A. J. H. Ven-drik, “Reconstruction of cone-system contributions to re-sponses of colour-opponent neurons in monkey lateral geniculate,” Biological Cybern. 44, 211–221 (1982).
[CrossRef]

Virsu, V.

V. Virsu, B. B. Lee, “Light adaptation in cells of the macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophys. 50, 864–877 (1983).

Vos, J. J.

J. J. Vos, “Colorimetric and photometric properties of a 2 degree fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

Wade, A. R.

A. R. Wade, B. A. Wandell, “Chromatic light adaptation measured using functional magnetic resonance imaging,” J. Neurosci. 22, 8148–8157 (2002).
[PubMed]

Wandell, B. A.

A. R. Wade, B. A. Wandell, “Chromatic light adaptation measured using functional magnetic resonance imaging,” J. Neurosci. 22, 8148–8157 (2002).
[PubMed]

E. Seidemann, A. B. Poirson, B. A. Wandell, W. T. Newsome, “Color signals in area MT of the macaque monkey,” Neuron 24, 911–917 (1999).
[CrossRef]

D. H. Marimont, B. A. Wandell, “Matching color images: the impact of axial chromatic aberration,” J. Opt. Soc. Am. A 11, 3113–3122 (1994).
[CrossRef]

Weale, R. A.

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

Williams, D. R.

Wooten, B. R.

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Yamauchi, Y.

Ye, M.

Zaidi, Q.

K. R. Gegenfurtner, D. C. Kiper, J. Beusmans, M. Carandini, Q. Zaidi, J. A. Movshon, “Chromatic properties of neurons in macaque MT,” Visual Neurosci. 11, 455–466 (1994).
[CrossRef]

Zhang, X.

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular aberrations in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howard, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

Appl. Opt.

Biological Cybern.

C. C. A. M. Gielen, J. A. M. Ginsbergen, A. J. H. Ven-drik, “Reconstruction of cone-system contributions to re-sponses of colour-opponent neurons in monkey lateral geniculate,” Biological Cybern. 44, 211–221 (1982).
[CrossRef]

Color Res. Appl.

J. J. Vos, “Colorimetric and photometric properties of a 2 degree fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

Gerontologia

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).

D. M. Snodderly, J. D. Auran, F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674–685 (1984).

J. Comp. Neurol.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

J. Neurophys.

V. Virsu, B. B. Lee, “Light adaptation in cells of the macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophys. 50, 864–877 (1983).

K. R. Gegenfurtner, D. C. Kiper, J. Levitt, “Functional properties of neurons in macaque area V3,” J. Neurophys. 77, 1906–1923 (1997).

J. Neurophysiol.

J. P. Jones, L. A. Palmer, “The two-dimensional spatial structure of simple receptive fields in cats visual cortex,” J. Neurophysiol. 58, 1187–1211 (1987).
[PubMed]

J. Neurosci.

P. Lennie, J. Krauskopf, G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

A. R. Wade, B. A. Wandell, “Chromatic light adaptation measured using functional magnetic resonance imaging,” J. Neurosci. 22, 8148–8157 (2002).
[PubMed]

B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1),” J. Neurosci. 21, 2768–2783 (2001).
[PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Kremers, H. P. N. School, H. Knau, T. T. M. Berendschot, T. Usui, L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

K. R. Dobkins, A. Thiele, T. D. Albright, “Comparison of red–green equiluminance points in humans and macaques: evidence for different L:M cone ratios between species,” J. Opt. Soc. Am. A 17, 545–556 (2000).
[CrossRef]

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

D. H. Marimont, B. A. Wandell, “Matching color images: the impact of axial chromatic aberration,” J. Opt. Soc. Am. A 11, 3113–3122 (1994).
[CrossRef]

D. R. Williams, D. H. Brainard, M. J. McMahon, R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11, 3123–3135 (1994).
[CrossRef]

B. R. Hammond, B. R. Wooten, D. M. Snodderly, “Individual variations in the spatial profile of human macular pigment,” J. Opt. Soc. Am. A 14, 1187–1196 (1997).
[CrossRef]

A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[CrossRef]

A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[CrossRef]

J. Physiol.

E. A. Benardete, E. Kaplan, “Dynamics of primate P retinal ganglion cells: responses to chromatic and achromatic stimuli,” J. Physiol. 519, 775–790 (1999).
[CrossRef] [PubMed]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

J. Physiol. (London)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

J. Vision

J. Albrecht, H. Jagle, D. C. Hood, L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vision 2, 543–558 (2002).
[CrossRef]

Nature

R. C. Reid, R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature 356, 716–718 (1992).
[CrossRef] [PubMed]

N. P. Cottaris, R. L. De Valois, “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature 395, 896–900 (1998).
[CrossRef] [PubMed]

Nature Neurosci.

E. N. Johnson, M. J. Hawken, R. M. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nature Neurosci. 4, 409–416 (2001).
[CrossRef] [PubMed]

Neuron

S. Chatterjee, E. M. Callaway, “S cone contributions to the magnocellular visual pathway in macaque monkey,” Neuron 35, 1135–1146 (2002).
[CrossRef] [PubMed]

E. Seidemann, A. B. Poirson, B. A. Wandell, W. T. Newsome, “Color signals in area MT of the macaque monkey,” Neuron 24, 911–917 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[CrossRef] [PubMed]

Proc. Phys. Soc. London Sect. B

B. H. Crawford, “The scotopic visibility function,” Proc. Phys. Soc. London Sect. B 62, 321–344 (1949).
[CrossRef]

Proc. R. Soc. London Ser. A

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London Ser. A 231, 91–103 (1955).
[CrossRef]

Soc. Neurosci. Abst.

N. P. Cottaris, S. D. Elfar, R. L. De Valois, “Spatio-temporal luminance and chromatic receptive field profiles of macaque striate cortex simple cells,” Soc. Neurosci. Abst. 22, 376.3 (1996).

Soc. Neurosci. Abstr.

N. P. Cottaris, S. D. Elfar, R. L. De Valois, “Strong S-cone inputs to macaque V1 simple cells’ spatiotemporal receptive fields corrected for axial chromatic aberration,” Soc. Neurosci. Abstr. 26, 54.11 (2000).

Vision Res.

L. J. Croner, E. Kaplan, “Receptive fields of P and M ganglion cells across the primate retina,” Vision Res. 35, 7–24 (1995).
[CrossRef] [PubMed]

P. Simonet, C. W. Campbell, “The optical transverse chromatic aberration of the human eye,” Vision Res. 30, 187–206 (1990).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howard, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33–49 (1990).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29, 249–360 (1989).
[CrossRef]

O. Estevez, H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vision Res. 22, 681–691 (1982).
[CrossRef]

R. A. Bone, J. M. B. Sparrock, “Comparison of macular pigment densities in human eyes,” Vision Res. 11, 1057–1064 (1971).
[CrossRef] [PubMed]

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

A. Stockman, L. T. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[CrossRef]

A. Stockman, L. T. Sharpe, C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
[CrossRef] [PubMed]

R. A. Bone, J. T. Landrum, A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vision Res. 32, 105–110 (1992).
[CrossRef] [PubMed]

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

Visual Neurosci.

D. C. Kiper, S. B. Fenstemaker, K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Visual Neurosci. 14, 1061–1072 (1997).
[CrossRef]

K. R. Gegenfurtner, D. C. Kiper, J. Beusmans, M. Carandini, Q. Zaidi, J. A. Movshon, “Chromatic properties of neurons in macaque MT,” Visual Neurosci. 11, 455–466 (1994).
[CrossRef]

Other

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

A. Knowles, H. J. A. Dartnall, “The photobiology of vision,” in The Eye, H. Davson, ed. (Academic, London, 1977).

L. T. Sharpe, A. Stockman, H. Jagle, J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 2000), pp. 3–51.

A. Stockman, L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 2000), pp. 53–87.

D. B. Judd, “Basic correlates of the visual stimulus,” in Handbook of Experimental Psychology, S. S. Stevens, ed. (Wiley, New York, 1951), pp. 811–867.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Spectral power distributions (SPDs) of phosphors in an NEC 5FGe CRT display and of Smith–Pokorny15-based cone-isolating stimuli generated on this CRT display. (a) SPDs of red, green, and blue phosphors are plotted as light-gray, dark-gray, and black curves, respectively. SPDs of the (b) L-cone isolating, (c) M-cone isolating, and (d) S-cone isolating stimuli are plotted as dark-gray curves. In (b)–(d), light-gray curves depict the SPD of the background against which these cone-isolating stimuli are modulated.

Fig. 2
Fig. 2

Transmission spectra of crystalline lens (left) and of macular pigment (right). Human data are plotted as solid curves, macaque data as dashed curves.

Fig. 3
Fig. 3

L- (light-gray), M- (black), and S- (dark-gray) cone fundamentals with which retinal cone contrasts are evaluated. Solid and dashed curves depict human and macaque versions, respectively. For (g, h) and (g*, h*) fundamentals, solid curves depict the Stockman et al.49 fundamentals, and dotted curves depict the Stockman and Sharpe50 fundamentals. Letter coding of each cone fundamental set is shown inside the panels (see Table 1).

Fig. 4
Fig. 4

Retinal cone-contrast estimates for spatially uniform (a) 20% L-, (b) 24% M-, and (c) 84% S-cone-isolating stimuli as measured by the 16 cone fundamentals. Note the different scaling of the y axes for the targeted (left-column panels) versus the two nontargeted (middle- and right-column panels) cone mosaics. L-, M-, and S-cone contrasts are plotted in light gray, black, and dark gray, respectively.

Fig. 5
Fig. 5

Surface plot of the spatio-spectro optical transfer function of the eye focused at 580 nm.

Fig. 6
Fig. 6

Combined effects of preretinal absorption and axial chromatic aberration on the retinal contrasts of (a) 20% L-, (b) 24% M-, and (c) 84% S-cone-isolating sinusoidal gratings as a function of spatial frequency and as measured by the 16 cone fundamentals. Note the different scaling of the y axes for the targeted (left-column panels) versus the two nontargeted (middle- and right-column panels) cone mosaics. Figure format is similar to that of Fig. 4.

Fig. 7
Fig. 7

Contaminations in L-, M-, and S-cone-isolating sinusoidal gratings due to the combined effects of preretinal absorption and axial chromatic aberration as a function of spatial frequency.

Fig. 8
Fig. 8

Spatial distributions of retinal L-, M-, and S-cone contrasts for (a) a 20% L-, (b) a 24% M-, and (c) a 84% S-cone-isolating rectangular pulse with a width of 18 arc min (0.3 deg). The specified pulse is depicted by dotted curves in the left column. The width of the specified pulse is shown as dotted lines in the middle- and right-column plots. Note the different scaling of the y axes for the targeted (left-column panels) versus the two nontargeted (middle- and right-column panels) cone mosaics.

Fig. 9
Fig. 9

Combined effects of preretinal absorption and axial chromatic aberration on the retinal contrasts of (a) 20% L-, (b) 24% M-, and (c) 84% S-cone-isolating rectangular pulses as a function of pulse width and as measured by the 16 cone fundamentals. Contrasts within and outside the spatial extent of the rectangular pulse are plotted separately. Note the different scaling of the y axes for the targeted (left-column panels) versus the two nontargeted (middle- and right-column panels) cone mosaics.

Fig. 10
Fig. 10

Contaminations within L-, M-, and S-cone-isolating rectangular pulses due to the combined effects of preretinal absorption and axial chromatic aberration as a function of pulse width.

Fig. 11
Fig. 11

Estimating artifacts in spatiochromatic RF mapping. (a) Slices at time of peak magnitude through the spatio-temporo-chromatic RF of a magnocellular LGN neuron as measured with reverse correlation and with no corrections for the combined effects of preretinal absorption and axial chromatic aberration. (b) Most probable spatial distribution of corneal cone contrasts. (c) Most probable spatial distribution of retinal L- (light-gray), M- (black), and S- (dark-gray) cone contrasts computed with use of the macaque no-macular-pigment cone fundamentals.

Fig. 12
Fig. 12

Demonstration of the iterative procedure for improving spatiochromatic RF estimates: neuron with a linear contrast-response function. (a) The first three estimates of contributions originating in the L-, M-, and S-cone mosaics in response to the most probable L-, M-, and S-cone isolating stimulus. (b) Uncorrected and first two corrected estimates of spatio-chromatic RF. (c) Convergence of the iterative corrective procedure demonstrated by plotting the relative L-, M-, and S-cone weights as a function of iteration number.

Fig. 13
Fig. 13

Demonstration of the iterative procedure for improving spatiochromatic RF estimate: neuron with a nonlinear contrast-response function. (a) Contrast-response functions. (b) The first three estimates of contributions originating in the L-, M-, and S-cone mosaics in response to the most probable L-, M-, and S-cone-isolating stimulus. (c) Uncorrected and first two corrected estimates of spatiochromatic RF. (d) Convergence of the iterative corrective procedure demonstrated by plotting the relative L-, M-, and S-cone weights as a function of iteration number.

Fig. 14
Fig. 14

Luminance contrast artifacts in a nominally isoluminant color plane (top) are plotted as a function of chromatic angle, Θ, for the 16 examined Vλ functions. Within each panel, data for 0, 0.08, 0.31, 0.86, 1.88, 4.23, 9.1, and 19.6 c/deg are shifted along the vertical axis (bottom to top) by one vertical tick mark (3% luminance contrast). Artifact peaks (shown in circles) are connected by dotted lines.

Fig. 15
Fig. 15

Magnitude of peak luminance-contrast artifacts as a function of stimulus spatial frequency and L:M-cone ratio (see text), for the 16 examined Vλ functions. Solid black curves correspond to a Vλ with a 2:1 L:M-cone ratio except for fundamentals g, h, g*, h*, which have a 1.5:1 L:M-cone ratio. Dotted dark-gray curves correspond to a Vλ with an L:M-cone ratio of 0.76:1, and dotted light-gray curves correspond to a Vλ with an L:M-cone ratio of 3.62:1.

Tables (1)

Tables Icon

Table 1 Retinal Cone Contrasts Visible to the Targeted Mosaics and Relative Contaminations of the Nontargeted Mosaics for Spatially Uniform L-, M-, and S-Cone-Isolating Stimuli a

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

Econe=KiSPD(λi)ϕconeSP(λi)Δλ,
Econe=Ki[rR(λi)+gG(λi)+bB(λi)]ϕconeSP(λi)Δλ,
RL=KiR(λi)ϕLSP(λi)Δλ,
GL=KiG(λi)ϕLSP(λi)Δλ,
BL=KiB(λi)ϕLSP(λi)Δλ,
ELEMES=RLGLBLRMGMBMRSGSBS×rgb,
rgb=RLGLBLRMGMBMRSGSBS-1×ELEMES.
ELEMES=1+CL00010001×EL¯EM¯ES¯.
VλJuddVos(λ)=ϕLSP(λ)+ϕMSP(λ),
(ELstim, EMstim, ESstim)T
=(EL¯+ΔELM, EM¯-ΔELM, ES¯+ΔES)T,
OTF(f, λ)=H(f, λ)K(f).
H(f, λ)=4πα01-(s/2)2sinα1-y2-|s|2dy,
s=c λfDop,α=4πλ |f| DoD(λ)Do+D(λ),
D(λ)=q1-q2λ/1000-q3.
K(f)=0.3481+0.6519 exp(-0.1212f).
T(λ)=10-D(λ).
ϕconemacaque(λ)=ϕconeSP(λ)×Tlensmacaque(λ)Tmac.pigm.macaque(λ)Tlenshuman(λ)Tmac.pigm.human(λ).
ϕconeextreme(λ)=ϕconestandard(λ)×Tmac.pigm.extreme(λ)Tmac.pigm.standard(λ).
ϕconeperiphery(λ)=ϕconestandard(λ)×1Tmac.pigm.standard(λ).
ϕconeextreme(λ)=ϕconestandard(λ)×Tlensextreme(λ)Tlensstandard(λ).
Cconeϕi=Econestim,ϕi-Econeϕi¯Econeϕi¯.
coneϕi=Cconeϕi|Ctarg.coneϕi|×100%.
Econestim,ϕi(f)=Econeϕi¯+Kj{[SPDstim(λj)-SPDbkgnd(λj)]OTF(f, λj)}ϕconei(λj)Δλ,
Cconeϕi(f)=Econestim,ϕi(f)-Econeϕi¯Econeϕi¯.
STAC(cone, x, τ)=1Ni=1NCcone(x, ti-τ),
STCRF(cone, x, τ)=STAC(cone, x, τ)Ccone2.
CL(x)=STAC(L, x, τmax)max[STAC(L, x, τmax)]×20%,
CM(x)=STAC(M, x, τmax)max[STAC(M, x, τmax)]×24%,
CS(x)=STAC(S, x, τmax)max[STAC(S, x, τmax)]×84%,
RLstim=xCLstim,ϕi(x)STCRF(L, x, τmax),
RMstim=xCMstim,ϕi(x)STCRF(M, x, τmax),
RSstim=xCSstim,ϕi(x)STCRF(S, x, τmax).
STCRF(L, x, τmax)=STCRF(L, x, τmax)×1-RML+RSL|RLL|+|RML|+|RSL|,
STCRF(M, x, τmax)=STCRF(M, x, τmax)×1-RLM+RSM|RLM|+|RMM|+|RSM|,
STCRF(S, x, τmax)=STCRF(S, x, τmax)×1-RLS+RMS|RLS|+|RMS|+|RSS|.
RLstim=xCLstim,ϕi(x)STCRF(L, x, τmax),
RMstim=xCMstim,ϕi(x)STCRF(M, x, τmax),
RSstim=xCSstim,ϕi(x)STCRF(S, x, τmax).

Metrics