Abstract

Perceptual transparency was measured in two experiments by using simulations of illuminated surfaces presented on a CRT monitor. In a two-alternative forced-choice paradigm, observers viewed two simulated Mondrians in temporal sequence. In one sequence the Mondrian was simulated to be partially covered by a transparent filter; in the other sequence the filter color over each Mondrian patch was modified. Observers were instructed to select the sequence containing a transparent filter. Observers’ selections corresponded to sequences in which the cone-excitation ratios for each adjacent pair of Mondrian patches were approximately the same as the cone-excitation ratios for the pair of patches covered by a filter. The results suggest that cone-excitation ratios may be a cue for perceptual transparency.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Koffka, Principles of Gestalt Psychology (Harcourt, Brace, New York, 1935).
  2. S. C. Masin, “The luminance conditions of fuchs’s transparency in two-dimensional patterns,” Perception 27, 851–859 (1998).
    [CrossRef]
  3. S. Morinaga, K. Noguchi, A. Ohishi, “Dominance of main direction in the apparent transparency,” Jpn. Psychol. Res. 4, 113–118 (1962).
  4. O. Da Pos, Trasparenze (Icone, Padua, Italy, 1989).
  5. B. Khang, Q. Zaidi, “Accuracy of color scission for spectral transparencies,” J. Vision 2, 451–466 (2000a).
  6. G. Kanizsa, Organization in Vision (Praeger, New York, 1979).
  7. P. Cavanagh, “Reconstructing the third dimension: Interactions between color, texture, motion, binocular disparity and shape,” Comput. Vision Graph. Image Process. 37, 171–195 (1987).
    [CrossRef]
  8. E. H. Adelson, P. Anandan, “Ordinal characteristics of transparency,” in Workshop on Qualitative Vision (American Association for Artificial IntelligenceBoston, Mass., 1990), pp. 77–81.
  9. S. C. Masin, “An experimental comparison of three- versus four-surface phenomenal transparency,” Percept. Psychophys. 35, 325–332 (1984).
    [CrossRef] [PubMed]
  10. B. Khang, Q. Zaidi, “Cues and strategies for color constancy: perceptual scission, image junctions and transformational color matching,” Vision Res. 42, 221–226 (2002).
  11. M. D’Zmura, P. Colantoni, K. Knoblauch, B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
    [CrossRef] [PubMed]
  12. J. V. Chen, M. D’Zmura, “Test of a convergence model for color transparency perception,” Perception 27, 595–608 (1998).
    [CrossRef]
  13. M. D’Zmura, O. Rinner, K. R. Gegenfurtner, “The colors seen behind transparent filters,” Perception 29, 911–926 (2000).
    [CrossRef]
  14. J. Hagedorn, M. D’Zmura, “Color appearance of surfaces viewed through fog,” Perception 29, 1169–1184 (2000).
    [CrossRef]
  15. D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 257, 115–121 (1994).
    [CrossRef]
  16. C. Ripamonti, S. Westland, “Perceptual transparency for chromatic and isoluminant stimuli,” Invest. Ophthalmol. Visual Sci. 42, S50 (2001).
  17. R. S. Berns, “Methods for characterizing CRT displays,” Displays 16, 173–182 (1996).
    [CrossRef]
  18. D. L. Post, C. S. Calhoun, “An evaluation of methods for producing desired colors on CRT monitors,” Color Res. Appl. 14, 172–189 (1989).
    [CrossRef]
  19. J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
    [CrossRef]
  20. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  21. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
    [CrossRef] [PubMed]
  22. S. Westland, C. Ripamonti, “Invariant cone-excitation ratios may predict transparency,” J. Opt. Soc. Am. A 17, 255–264 (2000).
    [CrossRef]
  23. S. M. C. Nascimento, D. H. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. London Ser. B 264, 1395–1402 (1997).
    [CrossRef]
  24. C. Ripamonti, S. Westland, “Invariant cone-excitation ratios predict the perception of transparency,” Invest. Ophthalmol. Visual Sci. 41(4), S238 (2000).

2002

B. Khang, Q. Zaidi, “Cues and strategies for color constancy: perceptual scission, image junctions and transformational color matching,” Vision Res. 42, 221–226 (2002).

2001

C. Ripamonti, S. Westland, “Perceptual transparency for chromatic and isoluminant stimuli,” Invest. Ophthalmol. Visual Sci. 42, S50 (2001).

2000

S. Westland, C. Ripamonti, “Invariant cone-excitation ratios may predict transparency,” J. Opt. Soc. Am. A 17, 255–264 (2000).
[CrossRef]

C. Ripamonti, S. Westland, “Invariant cone-excitation ratios predict the perception of transparency,” Invest. Ophthalmol. Visual Sci. 41(4), S238 (2000).

M. D’Zmura, O. Rinner, K. R. Gegenfurtner, “The colors seen behind transparent filters,” Perception 29, 911–926 (2000).
[CrossRef]

J. Hagedorn, M. D’Zmura, “Color appearance of surfaces viewed through fog,” Perception 29, 1169–1184 (2000).
[CrossRef]

B. Khang, Q. Zaidi, “Accuracy of color scission for spectral transparencies,” J. Vision 2, 451–466 (2000a).

1998

S. C. Masin, “The luminance conditions of fuchs’s transparency in two-dimensional patterns,” Perception 27, 851–859 (1998).
[CrossRef]

J. V. Chen, M. D’Zmura, “Test of a convergence model for color transparency perception,” Perception 27, 595–608 (1998).
[CrossRef]

1997

S. M. C. Nascimento, D. H. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. London Ser. B 264, 1395–1402 (1997).
[CrossRef]

M. D’Zmura, P. Colantoni, K. Knoblauch, B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
[CrossRef] [PubMed]

1996

R. S. Berns, “Methods for characterizing CRT displays,” Displays 16, 173–182 (1996).
[CrossRef]

1994

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 257, 115–121 (1994).
[CrossRef]

1989

D. L. Post, C. S. Calhoun, “An evaluation of methods for producing desired colors on CRT monitors,” Color Res. Appl. 14, 172–189 (1989).
[CrossRef]

J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
[CrossRef]

1987

P. Cavanagh, “Reconstructing the third dimension: Interactions between color, texture, motion, binocular disparity and shape,” Comput. Vision Graph. Image Process. 37, 171–195 (1987).
[CrossRef]

1986

1984

S. C. Masin, “An experimental comparison of three- versus four-surface phenomenal transparency,” Percept. Psychophys. 35, 325–332 (1984).
[CrossRef] [PubMed]

1962

S. Morinaga, K. Noguchi, A. Ohishi, “Dominance of main direction in the apparent transparency,” Jpn. Psychol. Res. 4, 113–118 (1962).

Adelson, E. H.

E. H. Adelson, P. Anandan, “Ordinal characteristics of transparency,” in Workshop on Qualitative Vision (American Association for Artificial IntelligenceBoston, Mass., 1990), pp. 77–81.

Anandan, P.

E. H. Adelson, P. Anandan, “Ordinal characteristics of transparency,” in Workshop on Qualitative Vision (American Association for Artificial IntelligenceBoston, Mass., 1990), pp. 77–81.

Berns, R. S.

R. S. Berns, “Methods for characterizing CRT displays,” Displays 16, 173–182 (1996).
[CrossRef]

Calhoun, C. S.

D. L. Post, C. S. Calhoun, “An evaluation of methods for producing desired colors on CRT monitors,” Color Res. Appl. 14, 172–189 (1989).
[CrossRef]

Cavanagh, P.

P. Cavanagh, “Reconstructing the third dimension: Interactions between color, texture, motion, binocular disparity and shape,” Comput. Vision Graph. Image Process. 37, 171–195 (1987).
[CrossRef]

Chen, J. V.

J. V. Chen, M. D’Zmura, “Test of a convergence model for color transparency perception,” Perception 27, 595–608 (1998).
[CrossRef]

Colantoni, P.

M. D’Zmura, P. Colantoni, K. Knoblauch, B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
[CrossRef] [PubMed]

D’Zmura, M.

M. D’Zmura, O. Rinner, K. R. Gegenfurtner, “The colors seen behind transparent filters,” Perception 29, 911–926 (2000).
[CrossRef]

J. Hagedorn, M. D’Zmura, “Color appearance of surfaces viewed through fog,” Perception 29, 1169–1184 (2000).
[CrossRef]

J. V. Chen, M. D’Zmura, “Test of a convergence model for color transparency perception,” Perception 27, 595–608 (1998).
[CrossRef]

M. D’Zmura, P. Colantoni, K. Knoblauch, B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
[CrossRef] [PubMed]

Da Pos, O.

O. Da Pos, Trasparenze (Icone, Padua, Italy, 1989).

Foster, D. H.

S. M. C. Nascimento, D. H. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. London Ser. B 264, 1395–1402 (1997).
[CrossRef]

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 257, 115–121 (1994).
[CrossRef]

Gegenfurtner, K. R.

M. D’Zmura, O. Rinner, K. R. Gegenfurtner, “The colors seen behind transparent filters,” Perception 29, 911–926 (2000).
[CrossRef]

Hagedorn, J.

J. Hagedorn, M. D’Zmura, “Color appearance of surfaces viewed through fog,” Perception 29, 1169–1184 (2000).
[CrossRef]

Hallikainen, J.

Jaaskelainen, T.

Kanizsa, G.

G. Kanizsa, Organization in Vision (Praeger, New York, 1979).

Khang, B.

B. Khang, Q. Zaidi, “Cues and strategies for color constancy: perceptual scission, image junctions and transformational color matching,” Vision Res. 42, 221–226 (2002).

B. Khang, Q. Zaidi, “Accuracy of color scission for spectral transparencies,” J. Vision 2, 451–466 (2000a).

Knoblauch, K.

M. D’Zmura, P. Colantoni, K. Knoblauch, B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
[CrossRef] [PubMed]

Koffka, K.

K. Koffka, Principles of Gestalt Psychology (Harcourt, Brace, New York, 1935).

Laget, B.

M. D’Zmura, P. Colantoni, K. Knoblauch, B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
[CrossRef] [PubMed]

Maloney, L. T.

Masin, S. C.

S. C. Masin, “The luminance conditions of fuchs’s transparency in two-dimensional patterns,” Perception 27, 851–859 (1998).
[CrossRef]

S. C. Masin, “An experimental comparison of three- versus four-surface phenomenal transparency,” Percept. Psychophys. 35, 325–332 (1984).
[CrossRef] [PubMed]

Morinaga, S.

S. Morinaga, K. Noguchi, A. Ohishi, “Dominance of main direction in the apparent transparency,” Jpn. Psychol. Res. 4, 113–118 (1962).

Nascimento, S. M. C.

S. M. C. Nascimento, D. H. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. London Ser. B 264, 1395–1402 (1997).
[CrossRef]

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 257, 115–121 (1994).
[CrossRef]

Noguchi, K.

S. Morinaga, K. Noguchi, A. Ohishi, “Dominance of main direction in the apparent transparency,” Jpn. Psychol. Res. 4, 113–118 (1962).

Ohishi, A.

S. Morinaga, K. Noguchi, A. Ohishi, “Dominance of main direction in the apparent transparency,” Jpn. Psychol. Res. 4, 113–118 (1962).

Parkkinen, J. P. S.

Post, D. L.

D. L. Post, C. S. Calhoun, “An evaluation of methods for producing desired colors on CRT monitors,” Color Res. Appl. 14, 172–189 (1989).
[CrossRef]

Rinner, O.

M. D’Zmura, O. Rinner, K. R. Gegenfurtner, “The colors seen behind transparent filters,” Perception 29, 911–926 (2000).
[CrossRef]

Ripamonti, C.

C. Ripamonti, S. Westland, “Perceptual transparency for chromatic and isoluminant stimuli,” Invest. Ophthalmol. Visual Sci. 42, S50 (2001).

S. Westland, C. Ripamonti, “Invariant cone-excitation ratios may predict transparency,” J. Opt. Soc. Am. A 17, 255–264 (2000).
[CrossRef]

C. Ripamonti, S. Westland, “Invariant cone-excitation ratios predict the perception of transparency,” Invest. Ophthalmol. Visual Sci. 41(4), S238 (2000).

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Westland, S.

C. Ripamonti, S. Westland, “Perceptual transparency for chromatic and isoluminant stimuli,” Invest. Ophthalmol. Visual Sci. 42, S50 (2001).

C. Ripamonti, S. Westland, “Invariant cone-excitation ratios predict the perception of transparency,” Invest. Ophthalmol. Visual Sci. 41(4), S238 (2000).

S. Westland, C. Ripamonti, “Invariant cone-excitation ratios may predict transparency,” J. Opt. Soc. Am. A 17, 255–264 (2000).
[CrossRef]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Zaidi, Q.

B. Khang, Q. Zaidi, “Cues and strategies for color constancy: perceptual scission, image junctions and transformational color matching,” Vision Res. 42, 221–226 (2002).

B. Khang, Q. Zaidi, “Accuracy of color scission for spectral transparencies,” J. Vision 2, 451–466 (2000a).

Color Res. Appl.

D. L. Post, C. S. Calhoun, “An evaluation of methods for producing desired colors on CRT monitors,” Color Res. Appl. 14, 172–189 (1989).
[CrossRef]

Comput. Vision Graph. Image Process.

P. Cavanagh, “Reconstructing the third dimension: Interactions between color, texture, motion, binocular disparity and shape,” Comput. Vision Graph. Image Process. 37, 171–195 (1987).
[CrossRef]

Displays

R. S. Berns, “Methods for characterizing CRT displays,” Displays 16, 173–182 (1996).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

C. Ripamonti, S. Westland, “Perceptual transparency for chromatic and isoluminant stimuli,” Invest. Ophthalmol. Visual Sci. 42, S50 (2001).

C. Ripamonti, S. Westland, “Invariant cone-excitation ratios predict the perception of transparency,” Invest. Ophthalmol. Visual Sci. 41(4), S238 (2000).

J. Opt. Soc. Am. A

J. Vision

B. Khang, Q. Zaidi, “Accuracy of color scission for spectral transparencies,” J. Vision 2, 451–466 (2000a).

Jpn. Psychol. Res.

S. Morinaga, K. Noguchi, A. Ohishi, “Dominance of main direction in the apparent transparency,” Jpn. Psychol. Res. 4, 113–118 (1962).

Percept. Psychophys.

S. C. Masin, “An experimental comparison of three- versus four-surface phenomenal transparency,” Percept. Psychophys. 35, 325–332 (1984).
[CrossRef] [PubMed]

Perception

M. D’Zmura, P. Colantoni, K. Knoblauch, B. Laget, “Color transparency,” Perception 26, 471–492 (1997).
[CrossRef] [PubMed]

J. V. Chen, M. D’Zmura, “Test of a convergence model for color transparency perception,” Perception 27, 595–608 (1998).
[CrossRef]

M. D’Zmura, O. Rinner, K. R. Gegenfurtner, “The colors seen behind transparent filters,” Perception 29, 911–926 (2000).
[CrossRef]

J. Hagedorn, M. D’Zmura, “Color appearance of surfaces viewed through fog,” Perception 29, 1169–1184 (2000).
[CrossRef]

S. C. Masin, “The luminance conditions of fuchs’s transparency in two-dimensional patterns,” Perception 27, 851–859 (1998).
[CrossRef]

Proc. R. Soc. London Ser. B

S. M. C. Nascimento, D. H. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. London Ser. B 264, 1395–1402 (1997).
[CrossRef]

Proc. R. Soc. London, Ser. B

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 257, 115–121 (1994).
[CrossRef]

Vision Res.

B. Khang, Q. Zaidi, “Cues and strategies for color constancy: perceptual scission, image junctions and transformational color matching,” Vision Res. 42, 221–226 (2002).

Other

K. Koffka, Principles of Gestalt Psychology (Harcourt, Brace, New York, 1935).

O. Da Pos, Trasparenze (Icone, Padua, Italy, 1989).

G. Kanizsa, Organization in Vision (Praeger, New York, 1979).

E. H. Adelson, P. Anandan, “Ordinal characteristics of transparency,” in Workshop on Qualitative Vision (American Association for Artificial IntelligenceBoston, Mass., 1990), pp. 77–81.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Opaque areas A and B are partially covered by a single filter, giving rise to the filtered areas C and D.

Fig. 2
Fig. 2

Each pair of sequential presentations showed a simulation of a Mondrian partially covered by either a vertically or a horizontally oriented filter.

Fig. 3
Fig. 3

Mean d values for three different values of σ. Observers prefer the real filter when d>0. The control condition and the perfect-versus-real condition are close to chance performance (d=0).

Fig. 4
Fig. 4

Mean d values for each of the four experimental conditions.

Fig. 5
Fig. 5

Each trial in experiment 2 consisted of sequential displays of two Mondrians partially covered by a transparent filter. In one display (shown left), the spatial cone-excitation ratios were indirectly determined by the properties of the filter [Eqs. (4) and (5)]. In the other display (shown right), the cone excitations were systematically perturbed.

Fig. 6
Fig. 6

Mean discrimination performance when noise is added to individual cone classes (L, M, and S), pairs of cone classes (LM, MS, and LS), and all three cone classes (LMS). Data for three levels of noise are shown.

Fig. 7
Fig. 7

Summary of observer performance at three different noise levels (averaged over all conditions).

Tables (6)

Tables Icon

Table 1 Mean Deviations for S-Cone Class a

Tables Icon

Table 2 Mean Deviations for M-Cone Class a

Tables Icon

Table 3 Mean Deviations for L-Cone Class a

Tables Icon

Table 4 Means of d Tested Against Zero a

Tables Icon

Table 5 Means of d Tested Against Zero a

Tables Icon

Table 6 Means of d Tested Against Zero a

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

xC=(1-α)xA+αg,
xD=(1-α)xB+αg,
ei,1/ei,2=ei,1/ei,2,
eC=(1-α)eA,
eD=(1-α)eB,
R(λ)=R(λ)[T(λ)(1-r)2]2,
T(λ)=0.4+0.6 exp[-(λ-λm)2/2σ2],
deviation=1-riifri1,
deviation=1-1/riifri>1,
ri=(ei,1/ei,2)/(ei,1/ei,2).

Metrics