Abstract

The conservation equation for a monochromatic field with arbitrary polarization propagating in an inhomogeneous transparent medium is expressed in terms of amplitude and phase variables. The expressions obtained for linearly polarized fields are compared with the results obtained in the eikonal approximation. The electric field wave equation is written in terms of intensity and phase variables. The transport equations for the irradiance and the phase are shown to be particular cases of these derivations. The conservation equation arising from the second-order differential wave equation is shown to be equivalent to that obtained from Poynting’s theorem.

© 2003 Optical Society of America

Full Article  |  PDF Article

Errata

Manuel Fernández-Guasti, José L. Jiménez, Fermı́n Granados-Agustı́n, and Alejandro Cornejo-Rodrı́guez, "Amplitude and phase representation of monochromatic fields in physical optics," J. Opt. Soc. Am. A 20, 1629-1634 (2003)
https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-20-8-1629

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription