Abstract

Scattering of light from single spheres placed behind a glass–air interface with light incident through the glass is examined. This scattering is investigated for both p- and s-polarized light incident at angles below the glass–air critical angle. The intensity of light scattered into the air half-space from each sphere is measured as a function of scattering angle, and this response is compared in situ with the background scatter produced by the planar substrate. A detailed comparison between data and established theory are thereby obtained. This system is of interest in the field of optical biosensing.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, “Beitrage zur optik truber medien speziell kolloidaler metallosungen,” Ann. Phys. 25, 377–445 (1908).
    [CrossRef]
  2. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).
  3. H. C. Van De Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  4. P. A. Bobbert, J. Vlieger, “Light-scattering by a sphere on a substrate,” Physica A 137, 209–242 (1986).
    [CrossRef]
  5. I. V. Lindell, A. H. Sihvola, K. O. Muinonen, P. W. Barber, “Scattering by a small object close to an interface. I. Exact-image theory formulation,” J. Opt. Soc. Am. A 8, 472–476 (1991).
    [CrossRef]
  6. K. O. Muinonen, A. H. Sihvola, I. V. Lindell, K. A. Lumme, “Scattering by a small object close to an interface. 2. Study of backscattering,” J. Opt. Soc. Am. A 8, 477–482 (1991).
    [CrossRef]
  7. G. Videen, “Light-scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483–489 (1991); errata, 9, 844–845 (1992).
    [CrossRef]
  8. A. Doicu, Y. A. Eremin, T. Wriedt, “Convergence of the T-matrix method for light scattering from a particle on or near a surface,” Opt. Commun. 159, 266–267 (1999).
    [CrossRef]
  9. T. Wriedt, A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun. 152, 376–384 (1998).
    [CrossRef]
  10. A. Doicu, Y. Eremin, T. Wriedt, “Non-axisymmetric models for light scattering from a particle on or near a plane surface,” Opt. Commun. 182, 281–288 (2000).
    [CrossRef]
  11. C. Liu, T. Weigel, G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
    [CrossRef]
  12. R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B Lasers Opt. 68, 225–232 (1999).
    [CrossRef]
  13. B. J. Soller, D. G. Hall, “Dynamics modifications to the plasmon resonance of a metallic nanoparticle coupled to a planar waveguide: beyond the point-dipole limit,” J. Opt. Soc. Am. B 19, 1195–1203 (2002).
    [CrossRef]
  14. H. Ishikawa, H. Tamaru, K. Miyano, “Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field,” J. Opt. Soc. Am. A 17, 802–813 (2000).
    [CrossRef]
  15. G. Videen, “Light-scattering from a sphere behind a surface,” J. Opt. Soc. Am. A 10, 110–117 (1993).
    [CrossRef]
  16. D. C. Prieve, F. Lanni, F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” Faraday Discuss. 83, 297–307 (1987).
    [CrossRef]
  17. D. C. Prieve, N. A. Frej, “Total internal-reflection microscopy—a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
    [CrossRef]
  18. M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
    [CrossRef]
  19. I. Braslavsky, R. Amit, B. M. J. Ali, O. Gileadi, A. Oppenheim, J. Stavans, “Objective-type dark-field illumination for scattering from microbeads,” Appl. Opt. 40, 5650–5657 (2001).
    [CrossRef]
  20. G. A. Schumacher, T. G. M. Vandeven, “Evanescent wave scattering studies on latex–glass interactions,” Langmuir 7, 2028–2033 (1991).
    [CrossRef]
  21. Z. M. Xia, T. G. M. Vandeven, “Adhesion kinetics of phosphatidylcholine liposomes by evanescent wave light-scattering,” Langmuir 8, 2938–2946 (1992).
    [CrossRef]
  22. M. Polverari, T. G. M. Vandeven, “Electrostatic and steric interactions in particle deposition studied by evanescent-wave light-scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
    [CrossRef]
  23. W. J. Albery, G. R. Kneebone, A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
    [CrossRef]
  24. W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
    [CrossRef]
  25. F. Yang, J. R. Sambles, G. W. Bradberry, “Determination of the optical constants and thickness of a highly absorbing film using the attenuated total reflection technique,” J. Mod. Opt. 38, 1441–1450 (1991).
    [CrossRef]
  26. S. C. Kitson, J. R. Sambles, “Critical edge studies of highly absorbing anisotropic films,” Thin Solid Films 229, 128–132 (1993).
    [CrossRef]
  27. B. Mizaikoff, “Mid infra-red evanescent wave sensors—a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
    [CrossRef]
  28. C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fiber optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
    [CrossRef]
  29. L. T. Gao, C. J. Seliskar, L. Milstein, “Spectroscopic sensing with a highly transparent, ion-exchangeable polymer blend,” Appl. Spectrosc. 51, 1745–1752 (1997).
    [CrossRef]
  30. G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
    [CrossRef]
  31. S. McCabe, B. D. MacCraith, “Novel mid infra-red LED as a source for optical-fiber gas-sensing,” Electron. Lett. 29, 1719–1721 (1993).
    [CrossRef]
  32. M. J. Jory, S. N. Swatton, E. Perkins, N. J. Geddes, J. R. Sambles, “Measurement of light scattering from a dielectric sphere behind a glass/air interface,” J. Mod. Opt. 48, 565–572 (2001).
  33. Corning 7509 fusion-drawn glass supplied by Gooch and Housego Ltd., The Old Magistrates Court, Ilminster, Somerset, TA19 OAS, UK; http://www.goochandhousego.com .
  34. UV-cured glue, Norland Optical Adhesive 65, refractive index 1.52, supplied by Tech Optics Ltd., Unit 6, Cala Industrial Estate, Tonbridge, Kent, UK; http://www.norlandprod.com .
  35. In situ microscope, Intel Play microscope supplied by Intel Corporation UK Ltd, Pipers Way, Swindon, Wiltshire, SN3 1RJ, UK; http://www.intel.com .
  36. E. Hecht, Optics (Addison-Wesley, London, 1987), p. 107.
  37. G. Videen, D. Ngo, “Light scattering from a cylinder near a plane interface: theory and comparison with experiment,” J. Opt. Soc. Am. A 14, 70–78 (1997).
    [CrossRef]
  38. G. Videen, Q. Fu, P. Chylek, “Special issue—light scattering by non-spherical particles-preface,” J. Quant. Spectrosc. Radiat. Transf. 70, 373–374 ( 2001 ).
    [CrossRef]
  39. G. Videen, D. Secker, “Focus issue: Light scattering by non-spherical particles,” Opt. Express 8, 288–289 (2001) .
    [CrossRef]
  40. Y. Eremin, N. Orlov, “Modelling of light scattering by non-spherical particles based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 60, 451–462 (1998).
    [CrossRef]
  41. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  42. J. R. Sambles, G. W. Bradberry, F. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32, 173–183 (1991).
    [CrossRef]
  43. E. A. Perkins, D. J. Squirrell, “Development of instrumentation to allow the detection of microorganisms using light scattering in combination with surface plasmon resonance,” Biosens. Bioelectron. 14, 853–859 (2000).
    [CrossRef] [PubMed]

2002 (1)

2001 (4)

G. Videen, D. Secker, “Focus issue: Light scattering by non-spherical particles,” Opt. Express 8, 288–289 (2001) .
[CrossRef]

I. Braslavsky, R. Amit, B. M. J. Ali, O. Gileadi, A. Oppenheim, J. Stavans, “Objective-type dark-field illumination for scattering from microbeads,” Appl. Opt. 40, 5650–5657 (2001).
[CrossRef]

M. J. Jory, S. N. Swatton, E. Perkins, N. J. Geddes, J. R. Sambles, “Measurement of light scattering from a dielectric sphere behind a glass/air interface,” J. Mod. Opt. 48, 565–572 (2001).

G. Videen, Q. Fu, P. Chylek, “Special issue—light scattering by non-spherical particles-preface,” J. Quant. Spectrosc. Radiat. Transf. 70, 373–374 ( 2001 ).
[CrossRef]

2000 (4)

H. Ishikawa, H. Tamaru, K. Miyano, “Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field,” J. Opt. Soc. Am. A 17, 802–813 (2000).
[CrossRef]

E. A. Perkins, D. J. Squirrell, “Development of instrumentation to allow the detection of microorganisms using light scattering in combination with surface plasmon resonance,” Biosens. Bioelectron. 14, 853–859 (2000).
[CrossRef] [PubMed]

A. Doicu, Y. Eremin, T. Wriedt, “Non-axisymmetric models for light scattering from a particle on or near a plane surface,” Opt. Commun. 182, 281–288 (2000).
[CrossRef]

C. Liu, T. Weigel, G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
[CrossRef]

1999 (3)

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B Lasers Opt. 68, 225–232 (1999).
[CrossRef]

A. Doicu, Y. A. Eremin, T. Wriedt, “Convergence of the T-matrix method for light scattering from a particle on or near a surface,” Opt. Commun. 159, 266–267 (1999).
[CrossRef]

B. Mizaikoff, “Mid infra-red evanescent wave sensors—a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
[CrossRef]

1998 (3)

C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fiber optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
[CrossRef]

T. Wriedt, A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun. 152, 376–384 (1998).
[CrossRef]

Y. Eremin, N. Orlov, “Modelling of light scattering by non-spherical particles based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 60, 451–462 (1998).
[CrossRef]

1997 (2)

1995 (2)

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

M. Polverari, T. G. M. Vandeven, “Electrostatic and steric interactions in particle deposition studied by evanescent-wave light-scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
[CrossRef]

1993 (3)

S. C. Kitson, J. R. Sambles, “Critical edge studies of highly absorbing anisotropic films,” Thin Solid Films 229, 128–132 (1993).
[CrossRef]

S. McCabe, B. D. MacCraith, “Novel mid infra-red LED as a source for optical-fiber gas-sensing,” Electron. Lett. 29, 1719–1721 (1993).
[CrossRef]

G. Videen, “Light-scattering from a sphere behind a surface,” J. Opt. Soc. Am. A 10, 110–117 (1993).
[CrossRef]

1992 (1)

Z. M. Xia, T. G. M. Vandeven, “Adhesion kinetics of phosphatidylcholine liposomes by evanescent wave light-scattering,” Langmuir 8, 2938–2946 (1992).
[CrossRef]

1991 (6)

F. Yang, J. R. Sambles, G. W. Bradberry, “Determination of the optical constants and thickness of a highly absorbing film using the attenuated total reflection technique,” J. Mod. Opt. 38, 1441–1450 (1991).
[CrossRef]

G. A. Schumacher, T. G. M. Vandeven, “Evanescent wave scattering studies on latex–glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

J. R. Sambles, G. W. Bradberry, F. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32, 173–183 (1991).
[CrossRef]

I. V. Lindell, A. H. Sihvola, K. O. Muinonen, P. W. Barber, “Scattering by a small object close to an interface. I. Exact-image theory formulation,” J. Opt. Soc. Am. A 8, 472–476 (1991).
[CrossRef]

K. O. Muinonen, A. H. Sihvola, I. V. Lindell, K. A. Lumme, “Scattering by a small object close to an interface. 2. Study of backscattering,” J. Opt. Soc. Am. A 8, 477–482 (1991).
[CrossRef]

G. Videen, “Light-scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483–489 (1991); errata, 9, 844–845 (1992).
[CrossRef]

1990 (2)

D. C. Prieve, N. A. Frej, “Total internal-reflection microscopy—a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

1989 (1)

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

1987 (1)

D. C. Prieve, F. Lanni, F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” Faraday Discuss. 83, 297–307 (1987).
[CrossRef]

1986 (1)

P. A. Bobbert, J. Vlieger, “Light-scattering by a sphere on a substrate,” Physica A 137, 209–242 (1986).
[CrossRef]

1985 (1)

W. J. Albery, G. R. Kneebone, A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
[CrossRef]

1908 (1)

G. Mie, “Beitrage zur optik truber medien speziell kolloidaler metallosungen,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Albery, W. J.

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

W. J. Albery, G. R. Kneebone, A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
[CrossRef]

Ali, B. M. J.

Amit, R.

Barber, P. W.

Bobbert, P. A.

P. A. Bobbert, J. Vlieger, “Light-scattering by a sphere on a substrate,” Physica A 137, 209–242 (1986).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Bradberry, G. W.

J. R. Sambles, G. W. Bradberry, F. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32, 173–183 (1991).
[CrossRef]

F. Yang, J. R. Sambles, G. W. Bradberry, “Determination of the optical constants and thickness of a highly absorbing film using the attenuated total reflection technique,” J. Mod. Opt. 38, 1441–1450 (1991).
[CrossRef]

Braslavsky, I.

Brown, M. A.

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

Chylek, P.

G. Videen, Q. Fu, P. Chylek, “Special issue—light scattering by non-spherical particles-preface,” J. Quant. Spectrosc. Radiat. Transf. 70, 373–374 ( 2001 ).
[CrossRef]

Doicu, A.

A. Doicu, Y. Eremin, T. Wriedt, “Non-axisymmetric models for light scattering from a particle on or near a plane surface,” Opt. Commun. 182, 281–288 (2000).
[CrossRef]

A. Doicu, Y. A. Eremin, T. Wriedt, “Convergence of the T-matrix method for light scattering from a particle on or near a surface,” Opt. Commun. 159, 266–267 (1999).
[CrossRef]

T. Wriedt, A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun. 152, 376–384 (1998).
[CrossRef]

Eremin, Y.

A. Doicu, Y. Eremin, T. Wriedt, “Non-axisymmetric models for light scattering from a particle on or near a plane surface,” Opt. Commun. 182, 281–288 (2000).
[CrossRef]

Y. Eremin, N. Orlov, “Modelling of light scattering by non-spherical particles based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 60, 451–462 (1998).
[CrossRef]

Eremin, Y. A.

A. Doicu, Y. A. Eremin, T. Wriedt, “Convergence of the T-matrix method for light scattering from a particle on or near a surface,” Opt. Commun. 159, 266–267 (1999).
[CrossRef]

Foulds, A. W.

W. J. Albery, G. R. Kneebone, A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
[CrossRef]

Fredlein, R. A.

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

Frej, N. A.

D. C. Prieve, N. A. Frej, “Total internal-reflection microscopy—a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

Fu, Q.

G. Videen, Q. Fu, P. Chylek, “Special issue—light scattering by non-spherical particles-preface,” J. Quant. Spectrosc. Radiat. Transf. 70, 373–374 ( 2001 ).
[CrossRef]

Gao, L. T.

Geddes, N. J.

M. J. Jory, S. N. Swatton, E. Perkins, N. J. Geddes, J. R. Sambles, “Measurement of light scattering from a dielectric sphere behind a glass/air interface,” J. Mod. Opt. 48, 565–572 (2001).

Gileadi, O.

Hall, D. G.

Hecht, E.

E. Hecht, Optics (Addison-Wesley, London, 1987), p. 107.

Ishikawa, H.

Jory, M. J.

M. J. Jory, S. N. Swatton, E. Perkins, N. J. Geddes, J. R. Sambles, “Measurement of light scattering from a dielectric sphere behind a glass/air interface,” J. Mod. Opt. 48, 565–572 (2001).

Kitson, S. C.

S. C. Kitson, J. R. Sambles, “Critical edge studies of highly absorbing anisotropic films,” Thin Solid Films 229, 128–132 (1993).
[CrossRef]

Kneebone, G. R.

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

W. J. Albery, G. R. Kneebone, A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
[CrossRef]

Landl, M.

C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fiber optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
[CrossRef]

Lanni, F.

D. C. Prieve, F. Lanni, F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” Faraday Discuss. 83, 297–307 (1987).
[CrossRef]

Lindell, I. V.

Liu, C.

C. Liu, T. Weigel, G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
[CrossRef]

Lumme, K. A.

Luo, F.

D. C. Prieve, F. Lanni, F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” Faraday Discuss. 83, 297–307 (1987).
[CrossRef]

MacCraith, B. D.

C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fiber optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
[CrossRef]

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

S. McCabe, B. D. MacCraith, “Novel mid infra-red LED as a source for optical-fiber gas-sensing,” Electron. Lett. 29, 1719–1721 (1993).
[CrossRef]

Malins, C.

C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fiber optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
[CrossRef]

McCabe, S.

S. McCabe, B. D. MacCraith, “Novel mid infra-red LED as a source for optical-fiber gas-sensing,” Electron. Lett. 29, 1719–1721 (1993).
[CrossRef]

McDonagh, C. M.

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

McEvoy, A. K.

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

McGilp, J. F.

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

Mie, G.

G. Mie, “Beitrage zur optik truber medien speziell kolloidaler metallosungen,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Milstein, L.

Miyano, K.

Mizaikoff, B.

B. Mizaikoff, “Mid infra-red evanescent wave sensors—a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
[CrossRef]

Muinonen, K. O.

Ngo, D.

O’Keeffe, G.

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

O’Shea, G. J.

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

Oppenheim, A.

Orlov, N.

Y. Eremin, N. Orlov, “Modelling of light scattering by non-spherical particles based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 60, 451–462 (1998).
[CrossRef]

Pack, A.

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B Lasers Opt. 68, 225–232 (1999).
[CrossRef]

Perkins, E.

M. J. Jory, S. N. Swatton, E. Perkins, N. J. Geddes, J. R. Sambles, “Measurement of light scattering from a dielectric sphere behind a glass/air interface,” J. Mod. Opt. 48, 565–572 (2001).

Perkins, E. A.

E. A. Perkins, D. J. Squirrell, “Development of instrumentation to allow the detection of microorganisms using light scattering in combination with surface plasmon resonance,” Biosens. Bioelectron. 14, 853–859 (2000).
[CrossRef] [PubMed]

Polverari, M.

M. Polverari, T. G. M. Vandeven, “Electrostatic and steric interactions in particle deposition studied by evanescent-wave light-scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
[CrossRef]

Prieve, D. C.

D. C. Prieve, N. A. Frej, “Total internal-reflection microscopy—a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

D. C. Prieve, F. Lanni, F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” Faraday Discuss. 83, 297–307 (1987).
[CrossRef]

Quinten, M.

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B Lasers Opt. 68, 225–232 (1999).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Sambles, J. R.

M. J. Jory, S. N. Swatton, E. Perkins, N. J. Geddes, J. R. Sambles, “Measurement of light scattering from a dielectric sphere behind a glass/air interface,” J. Mod. Opt. 48, 565–572 (2001).

S. C. Kitson, J. R. Sambles, “Critical edge studies of highly absorbing anisotropic films,” Thin Solid Films 229, 128–132 (1993).
[CrossRef]

F. Yang, J. R. Sambles, G. W. Bradberry, “Determination of the optical constants and thickness of a highly absorbing film using the attenuated total reflection technique,” J. Mod. Opt. 38, 1441–1450 (1991).
[CrossRef]

J. R. Sambles, G. W. Bradberry, F. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32, 173–183 (1991).
[CrossRef]

Schumacher, G. A.

G. A. Schumacher, T. G. M. Vandeven, “Evanescent wave scattering studies on latex–glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

Schweiger, G.

C. Liu, T. Weigel, G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
[CrossRef]

Secker, D.

Seliskar, C. J.

Sihvola, A. H.

Simon, P.

C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fiber optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
[CrossRef]

Smith, A. L.

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

Soller, B. J.

Squirrell, D. J.

E. A. Perkins, D. J. Squirrell, “Development of instrumentation to allow the detection of microorganisms using light scattering in combination with surface plasmon resonance,” Biosens. Bioelectron. 14, 853–859 (2000).
[CrossRef] [PubMed]

Staples, E. J.

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

Stavans, J.

Swatton, S. N.

M. J. Jory, S. N. Swatton, E. Perkins, N. J. Geddes, J. R. Sambles, “Measurement of light scattering from a dielectric sphere behind a glass/air interface,” J. Mod. Opt. 48, 565–572 (2001).

Tamaru, H.

Van De Hulst, H. C.

H. C. Van De Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Vandeven, T. G. M.

M. Polverari, T. G. M. Vandeven, “Electrostatic and steric interactions in particle deposition studied by evanescent-wave light-scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
[CrossRef]

Z. M. Xia, T. G. M. Vandeven, “Adhesion kinetics of phosphatidylcholine liposomes by evanescent wave light-scattering,” Langmuir 8, 2938–2946 (1992).
[CrossRef]

G. A. Schumacher, T. G. M. Vandeven, “Evanescent wave scattering studies on latex–glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

Videen, G.

Vlieger, J.

P. A. Bobbert, J. Vlieger, “Light-scattering by a sphere on a substrate,” Physica A 137, 209–242 (1986).
[CrossRef]

Wannemacher, R.

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B Lasers Opt. 68, 225–232 (1999).
[CrossRef]

Weigel, T.

C. Liu, T. Weigel, G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Wriedt, T.

A. Doicu, Y. Eremin, T. Wriedt, “Non-axisymmetric models for light scattering from a particle on or near a plane surface,” Opt. Commun. 182, 281–288 (2000).
[CrossRef]

A. Doicu, Y. A. Eremin, T. Wriedt, “Convergence of the T-matrix method for light scattering from a particle on or near a surface,” Opt. Commun. 159, 266–267 (1999).
[CrossRef]

T. Wriedt, A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun. 152, 376–384 (1998).
[CrossRef]

Xia, Z. M.

Z. M. Xia, T. G. M. Vandeven, “Adhesion kinetics of phosphatidylcholine liposomes by evanescent wave light-scattering,” Langmuir 8, 2938–2946 (1992).
[CrossRef]

Yang, F.

F. Yang, J. R. Sambles, G. W. Bradberry, “Determination of the optical constants and thickness of a highly absorbing film using the attenuated total reflection technique,” J. Mod. Opt. 38, 1441–1450 (1991).
[CrossRef]

J. R. Sambles, G. W. Bradberry, F. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32, 173–183 (1991).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beitrage zur optik truber medien speziell kolloidaler metallosungen,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B Lasers Opt. (1)

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B Lasers Opt. 68, 225–232 (1999).
[CrossRef]

Appl. Spectrosc. (1)

Biosens. Bioelectron. (1)

E. A. Perkins, D. J. Squirrell, “Development of instrumentation to allow the detection of microorganisms using light scattering in combination with surface plasmon resonance,” Biosens. Bioelectron. 14, 853–859 (2000).
[CrossRef] [PubMed]

Colloids Surf. (1)

W. J. Albery, R. A. Fredlein, G. R. Kneebone, G. J. O’Shea, A. L. Smith, “The kinetics of colloidal deposition under conditions of controlled potential,” Colloids Surf. 44, 337–356 (1990).
[CrossRef]

Contemp. Phys. (1)

J. R. Sambles, G. W. Bradberry, F. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32, 173–183 (1991).
[CrossRef]

Electron. Lett. (1)

S. McCabe, B. D. MacCraith, “Novel mid infra-red LED as a source for optical-fiber gas-sensing,” Electron. Lett. 29, 1719–1721 (1993).
[CrossRef]

Faraday Discuss. (1)

D. C. Prieve, F. Lanni, F. Luo, “Brownian-motion of a hydrosol particle in a colloidal force-field,” Faraday Discuss. 83, 297–307 (1987).
[CrossRef]

J. Colloid Interface Sci. (2)

M. Polverari, T. G. M. Vandeven, “Electrostatic and steric interactions in particle deposition studied by evanescent-wave light-scattering,” J. Colloid Interface Sci. 173, 343–353 (1995).
[CrossRef]

W. J. Albery, G. R. Kneebone, A. W. Foulds, “Kinetics of colloidal deposition studied by a wall-jet cell,” J. Colloid Interface Sci. 108, 193–198 (1985).
[CrossRef]

J. Mod. Opt. (2)

F. Yang, J. R. Sambles, G. W. Bradberry, “Determination of the optical constants and thickness of a highly absorbing film using the attenuated total reflection technique,” J. Mod. Opt. 38, 1441–1450 (1991).
[CrossRef]

M. J. Jory, S. N. Swatton, E. Perkins, N. J. Geddes, J. R. Sambles, “Measurement of light scattering from a dielectric sphere behind a glass/air interface,” J. Mod. Opt. 48, 565–572 (2001).

J. Opt. Soc. Am. A (6)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (2)

G. Videen, Q. Fu, P. Chylek, “Special issue—light scattering by non-spherical particles-preface,” J. Quant. Spectrosc. Radiat. Transf. 70, 373–374 ( 2001 ).
[CrossRef]

Y. Eremin, N. Orlov, “Modelling of light scattering by non-spherical particles based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transf. 60, 451–462 (1998).
[CrossRef]

Langmuir (4)

D. C. Prieve, N. A. Frej, “Total internal-reflection microscopy—a quantitative tool for the measurement of colloidal forces,” Langmuir 6, 396–403 (1990).
[CrossRef]

M. A. Brown, A. L. Smith, E. J. Staples, “A method using total internal-reflection microscopy and radiation pressure to study weak interaction forces of particles near surfaces,” Langmuir 5, 1319–1324 (1989).
[CrossRef]

G. A. Schumacher, T. G. M. Vandeven, “Evanescent wave scattering studies on latex–glass interactions,” Langmuir 7, 2028–2033 (1991).
[CrossRef]

Z. M. Xia, T. G. M. Vandeven, “Adhesion kinetics of phosphatidylcholine liposomes by evanescent wave light-scattering,” Langmuir 8, 2938–2946 (1992).
[CrossRef]

Meas. Sci. Technol. (1)

B. Mizaikoff, “Mid infra-red evanescent wave sensors—a novel approach for subsea monitoring,” Meas. Sci. Technol. 10, 1185–1194 (1999).
[CrossRef]

Opt. Commun. (4)

A. Doicu, Y. A. Eremin, T. Wriedt, “Convergence of the T-matrix method for light scattering from a particle on or near a surface,” Opt. Commun. 159, 266–267 (1999).
[CrossRef]

T. Wriedt, A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun. 152, 376–384 (1998).
[CrossRef]

A. Doicu, Y. Eremin, T. Wriedt, “Non-axisymmetric models for light scattering from a particle on or near a plane surface,” Opt. Commun. 182, 281–288 (2000).
[CrossRef]

C. Liu, T. Weigel, G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun. 185, 249–261 (2000).
[CrossRef]

Opt. Express (1)

Physica A (1)

P. A. Bobbert, J. Vlieger, “Light-scattering by a sphere on a substrate,” Physica A 137, 209–242 (1986).
[CrossRef]

Sens. Actuators B (2)

C. Malins, M. Landl, P. Simon, B. D. MacCraith, “Fiber optic ammonia sensing employing novel near infrared dyes,” Sens. Actuators B 51, 359–367 (1998).
[CrossRef]

G. O’Keeffe, B. D. MacCraith, A. K. McEvoy, C. M. McDonagh, J. F. McGilp, “Development of a LED-based phase fluorometric oxygen sensor using evanescent-wave excitation of a sol-gel immobilised dye,” Sens. Actuators B 29, 226–230 (1995).
[CrossRef]

Thin Solid Films (1)

S. C. Kitson, J. R. Sambles, “Critical edge studies of highly absorbing anisotropic films,” Thin Solid Films 229, 128–132 (1993).
[CrossRef]

Other (7)

Corning 7509 fusion-drawn glass supplied by Gooch and Housego Ltd., The Old Magistrates Court, Ilminster, Somerset, TA19 OAS, UK; http://www.goochandhousego.com .

UV-cured glue, Norland Optical Adhesive 65, refractive index 1.52, supplied by Tech Optics Ltd., Unit 6, Cala Industrial Estate, Tonbridge, Kent, UK; http://www.norlandprod.com .

In situ microscope, Intel Play microscope supplied by Intel Corporation UK Ltd, Pipers Way, Swindon, Wiltshire, SN3 1RJ, UK; http://www.intel.com .

E. Hecht, Optics (Addison-Wesley, London, 1987), p. 107.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

H. C. Van De Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Prism assembly. The distance from the curved surface of the cylindrical lens to the outer surface of the glass slide is equal to the radius of curvature of the former. When the sample is positioned so as to measure the scattering response of the glass slide alone, the laser beam strikes the surface of the glass slide so that the refracted ray does not strike the sphere. (b) Experimental arrangement. (c) The modified prism. (The hypotenuse face 1,2,3,4,5 is foremost). The bottom of the exit face of the prism is machined at an angle of 47° to produce face 4,5,7,8. After partial reflection at the sample surface (9) the laser beam strikes face 4,5,7,8. Consequently, any light reflected here as the beam leaves the prism is directed away from the surface of the glass slide. (For clarity, only the prism itself is shown here).

Fig. 2
Fig. 2

Total scattered intensity versus scattering angle (light scattering profile) for a 5-µm diameter glass sphere placed behind a glass–air interface and illuminated with light at an angle of incidence of 31.0° (below the critical angle). The light solid curves and dotted curves are the experimental data (left-hand axis) and predicted theory (right-hand axis), respectively. The heavy solid curve (left-hand axis) indicates the experimentally measured response of the planar glass surface alone (i.e., no sphere). (a) p-polarized incident beam, (b) s-polarized incident beam.

Fig. 3
Fig. 3

Data from Fig. 2 shown on an expanded scale for scattering angles between -90° and -30°.

Fig. 4
Fig. 4

Light-scattering profile for the same system as in Fig. 2, but illuminated at an angle of incidence of 34.0°. (a) p-polarized incident beam, (b) s-polarized incident beam. The experimentally measured scattering responses from the sphere and substrate are indicated by the light solid and heavy solid curves, respectively, and compared with the response predicted by theory (dotted curves).

Fig. 5
Fig. 5

Data from Fig. 4 shown on an expanded scale for scattering angles between -90° and -30°.

Fig. 6
Fig. 6

Light-scattering profile for the same system as Fig. 2 but illuminated at an angle of incidence of 37.0°. (a) p-polarized incident beam, (b) s-polarized incident beam. The experimentally measured scattering responses from the sphere and substrate are indicated by the light solid and heavy solid curves, respectively, and compared to the response predicted by theory (dotted curves).

Fig. 7
Fig. 7

Total scattered intensity versus scattering angle (light scattering profile) for a 1.5-µm diameter latex sphere placed behind a glass–air interface and illuminated with light at an angle of incidence of 35.0°. The light solid and heavy solid curves are the experimental data acquired for the sphere and the substrate, respectively. (a) p-polarized incident beam, (b) s-polarized incident beam.

Fig. 8
Fig. 8

Same as in Fig. 7 but angle of incidence is 37.0°.

Fig. 9
Fig. 9

Experimental data, light-scattering profile, for the same sphere and angle of incidence as for Fig. 7, having subtracted the background signal (solid curve, left-hand axis). The dotted curves show the corresponding response predicted by theory (right-hand axis).

Fig. 10
Fig. 10

Experimental data, light-scattering profile, for the same sphere and angle of incidence as for Fig. 8, having subtracted the background signal (solid curve, left-hand axis). The dotted curves show the corresponding response predicted by theory (right-hand axis).

Metrics