Abstract

In order to investigate the sources of wave-front aberrations in the human eye, we have measured the aberrations of the anterior cornea and the whole eye using a topographic system and a psychophysical wave-front sensor. We have also calculated the aberrations for the internal optics of both eyes of 45 young subjects (aged 9 to 29 years). The mean rms for the anterior cornea was similar to that for the internal optics and the whole eye when astigmatism was included, but less than that for both the internal optics and the whole eye with astigmatism removed. For eyes with low whole-eye rms values, mean rms for the anterior cornea was greater than that for the whole eye, suggesting that the anterior corneal aberration is partially compensated by the internal optics of the eye to produce the low whole-eye rms. For eyes with larger whole-eye rms values, the rms values for both the anterior cornea and the internal optics were less than that for the whole eye. Thus the aberrations for the two elements tend to be primarily additive. This pattern exists whether or not astigmatism was included in the wave-front aberration rms. For individual Zernike terms, astigmatism and spherical aberration in the anterior cornea were partially compensated by internal optics, while some other Zernike terms showed addition between the anterior cornea and internal optics. Individual eyes show different combinations of compensation and addition across different Zernike terms. Our data suggest that the reported loss of internal compensation for anterior corneal aberrations in elderly eyes with large whole-eye aberrations [J. Opt. Soc. Am. A 19, 137 (2002)] may also occur in young eyes.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Hage, F. Berny, “Contribution of crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973).
    [CrossRef] [PubMed]
  2. M. Millodot, J. G. Sivak, “Contribution of the cornea and the lens to the spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
    [CrossRef]
  3. J. G. Sivak, R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23, 59–70 (1983).
    [CrossRef] [PubMed]
  4. A. Tomlinson, R. P. Hemenger, R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629 (1993).
  5. P. Artal, A. Guirao, “Contribution of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
    [CrossRef]
  6. A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
    [CrossRef] [PubMed]
  7. G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberrations of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
    [CrossRef] [PubMed]
  8. J. Schwiegerling, J. E. Greivenkamp, J. M. Miller, “Representation of videokeratoscopic height data with Zernike polynomials,” J. Opt. Soc. Am. A 12, 2105–2113 (1995).
    [CrossRef]
  9. R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
    [CrossRef]
  10. A. Guirao, P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000).
    [CrossRef]
  11. J. C. He, E. Ong, J. Gwiazda, R. Held, F. Thorn, “Wave-front aberrations in the cornea and the whole eye,” Invest. Ophthalmol. Visual Sci. 41, s105 (2000).
  12. B. Howland, H. C. Howland, “Subjective measurement of high-order aberrations of the eye,” Science 193, 580–582 (1976).
    [CrossRef] [PubMed]
  13. J. Liang, B. Grimm, S. Goetz, J. F. Bille, “Objective measurements of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  14. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  15. J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
    [CrossRef]
  16. J. C. He, P. Sun, R. Held, F. Thorn, X. Sun, J. Gwiazda, “Wave-front aberrations in the eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
    [CrossRef] [PubMed]
  17. P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision1, 1–8 (2001); http://journalofvision.org/1/1/1 , DOI 10.167/1.1.1.
    [CrossRef]
  18. P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
    [CrossRef]
  19. T. O. Salmon, L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A 19, 657–669 (2002).
    [CrossRef]

2002 (3)

2001 (1)

G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberrations of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
[CrossRef] [PubMed]

2000 (2)

A. Guirao, P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000).
[CrossRef]

J. C. He, E. Ong, J. Gwiazda, R. Held, F. Thorn, “Wave-front aberrations in the cornea and the whole eye,” Invest. Ophthalmol. Visual Sci. 41, s105 (2000).

1998 (3)

1997 (1)

1995 (2)

J. Schwiegerling, J. E. Greivenkamp, J. M. Miller, “Representation of videokeratoscopic height data with Zernike polynomials,” J. Opt. Soc. Am. A 12, 2105–2113 (1995).
[CrossRef]

R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

1994 (1)

1993 (1)

A. Tomlinson, R. P. Hemenger, R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629 (1993).

1983 (1)

J. G. Sivak, R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23, 59–70 (1983).
[CrossRef] [PubMed]

1979 (1)

M. Millodot, J. G. Sivak, “Contribution of the cornea and the lens to the spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
[CrossRef]

1976 (1)

B. Howland, H. C. Howland, “Subjective measurement of high-order aberrations of the eye,” Science 193, 580–582 (1976).
[CrossRef] [PubMed]

1973 (1)

Applegate, R. A.

R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

Artal, P.

Berny, F.

Berrio, E.

Bille, J. F.

Buettner, J.

R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

Burns, S. A.

Calver, R.

G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberrations of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
[CrossRef] [PubMed]

Campbell, M. C. W.

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

Cox, M. J.

G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberrations of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
[CrossRef] [PubMed]

Garner, L. F.

G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberrations of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
[CrossRef] [PubMed]

Garriott, R.

A. Tomlinson, R. P. Hemenger, R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629 (1993).

Glasser, A.

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

Goetz, S.

Greivenkamp, J. E.

Grimm, B.

Guirao, A.

Gwiazda, J.

J. C. He, P. Sun, R. Held, F. Thorn, X. Sun, J. Gwiazda, “Wave-front aberrations in the eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

J. C. He, E. Ong, J. Gwiazda, R. Held, F. Thorn, “Wave-front aberrations in the cornea and the whole eye,” Invest. Ophthalmol. Visual Sci. 41, s105 (2000).

Hage, S. G.

He, J. C.

J. C. He, P. Sun, R. Held, F. Thorn, X. Sun, J. Gwiazda, “Wave-front aberrations in the eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

J. C. He, E. Ong, J. Gwiazda, R. Held, F. Thorn, “Wave-front aberrations in the cornea and the whole eye,” Invest. Ophthalmol. Visual Sci. 41, s105 (2000).

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

Held, R.

J. C. He, P. Sun, R. Held, F. Thorn, X. Sun, J. Gwiazda, “Wave-front aberrations in the eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

J. C. He, E. Ong, J. Gwiazda, R. Held, F. Thorn, “Wave-front aberrations in the cornea and the whole eye,” Invest. Ophthalmol. Visual Sci. 41, s105 (2000).

Hemenger, R. P.

A. Tomlinson, R. P. Hemenger, R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629 (1993).

Howland, B.

B. Howland, H. C. Howland, “Subjective measurement of high-order aberrations of the eye,” Science 193, 580–582 (1976).
[CrossRef] [PubMed]

Howland, H. C.

R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

B. Howland, H. C. Howland, “Subjective measurement of high-order aberrations of the eye,” Science 193, 580–582 (1976).
[CrossRef] [PubMed]

Kreuzer, R. O.

J. G. Sivak, R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23, 59–70 (1983).
[CrossRef] [PubMed]

Liang, J.

Marcos, S.

Miller, J. M.

Millodot, M.

M. Millodot, J. G. Sivak, “Contribution of the cornea and the lens to the spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
[CrossRef]

Nunez, R.

R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

Ong, E.

J. C. He, E. Ong, J. Gwiazda, R. Held, F. Thorn, “Wave-front aberrations in the cornea and the whole eye,” Invest. Ophthalmol. Visual Sci. 41, s105 (2000).

Piers, P.

Salmon, T. O.

Schwiegerling, J.

Sivak, J. G.

J. G. Sivak, R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23, 59–70 (1983).
[CrossRef] [PubMed]

M. Millodot, J. G. Sivak, “Contribution of the cornea and the lens to the spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
[CrossRef]

Smith, G.

G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberrations of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
[CrossRef] [PubMed]

Sun, P.

J. C. He, P. Sun, R. Held, F. Thorn, X. Sun, J. Gwiazda, “Wave-front aberrations in the eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

Sun, X.

J. C. He, P. Sun, R. Held, F. Thorn, X. Sun, J. Gwiazda, “Wave-front aberrations in the eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

Thibos, L. N.

Thorn, F.

J. C. He, P. Sun, R. Held, F. Thorn, X. Sun, J. Gwiazda, “Wave-front aberrations in the eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

J. C. He, E. Ong, J. Gwiazda, R. Held, F. Thorn, “Wave-front aberrations in the cornea and the whole eye,” Invest. Ophthalmol. Visual Sci. 41, s105 (2000).

Tomlinson, A.

A. Tomlinson, R. P. Hemenger, R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629 (1993).

Webb, R. H.

Williams, D. R.

Invest. Ophthalmol. Visual Sci. (2)

A. Tomlinson, R. P. Hemenger, R. Garriott, “Method for estimating the spherical aberration of the human crystalline lens in vivo,” Invest. Ophthalmol. Visual Sci. 34, 621–629 (1993).

J. C. He, E. Ong, J. Gwiazda, R. Held, F. Thorn, “Wave-front aberrations in the cornea and the whole eye,” Invest. Ophthalmol. Visual Sci. 41, s105 (2000).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (7)

Opt. Lett. (1)

Optom. Vision Sci. (1)

R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevations?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

Science (1)

B. Howland, H. C. Howland, “Subjective measurement of high-order aberrations of the eye,” Science 193, 580–582 (1976).
[CrossRef] [PubMed]

Vision Res. (5)

J. C. He, P. Sun, R. Held, F. Thorn, X. Sun, J. Gwiazda, “Wave-front aberrations in the eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

M. Millodot, J. G. Sivak, “Contribution of the cornea and the lens to the spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
[CrossRef]

J. G. Sivak, R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23, 59–70 (1983).
[CrossRef] [PubMed]

A. Glasser, M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberrations of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
[CrossRef] [PubMed]

Other (1)

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision1, 1–8 (2001); http://journalofvision.org/1/1/1 , DOI 10.167/1.1.1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Rms values of the wave-front aberrations for 45 subjects in both the anterior cornea (squares) and the whole eye (circles). The rms value (y axis) is plotted against the eye number (x axis) sequenced by size of the rms value of the whole eye.

Fig. 2
Fig. 2

Compensation factor for the 45 subjects. The compensation factor (y axis) is plotted against the eye number (x axis) sequenced by the size of rms in the whole eye. The dotted line indicates a compensation factor equal to zero.

Fig. 3
Fig. 3

Rms values of the wave-front aberrations with astigmatism removed for 45 subjects in both the anterior cornea (squares) and the whole eye (circles). The rms value (y axis) is plotted against the eye number (x axis) sequenced by size of the rms value of the whole eye with astigmatism removed.

Fig. 4
Fig. 4

Compensation factor derived from rms of wave-front aberrations with astigmatism removed for the 45 subjects. The compensation factor (y axis) is plotted against the eye number (x axis) sequenced by the size of rms in the whole eye with astigmatism removed. The dotted line indicates a compensation factor equal to zero.

Fig. 5
Fig. 5

Wave-front aberrations (left-hand and middle panels) and Zernike aberrations (right-hand panels) for three typical eyes with rms in the cornea (a) greater than, (b) less than, and (c) close to that in the whole eye. For the wave-front aberration maps, the wave-front errors (z axis) are plotted within a normalized, two-dimensional pupillary area (x and y axes). For Zernike aberrations, the coefficients (y axis) are drawn against the number of Zernike function (2nd to 5th orders only) for the anterior cornea (pluses) and the whole eye (circles).

Fig. 6
Fig. 6

Zernike coefficients of Z5 (a) and Z12 (b) for 45 subjects in both the anterior cornea (squares) and the whole eye (circles). The Zernike coefficients (y axis) are plotted against the eye number (x axis) sequenced by size of the rms value of the whole eye as in Fig. 1. The dashed line indicates a coefficient equal to zero.

Tables (5)

Tables Icon

Table 1 Actual and Measured Radius and Shape Factor for Six Standard Surfaces

Tables Icon

Table 2 Mean Rms Values of the Wave-Front Aberrations in the Anterior Corneal Surface, the Internal Surfaces, and the Whole Eye a

Tables Icon

Table 3 Mean Rms Values of the Wave-Front Aberrations with and without Astigmatism in the Anterior Corneal Surface, the Internal Surfaces, and the Whole Eye for Low- and High-Aberration Groups a

Tables Icon

Table 4 Mean Absolute Coefficient Values of the Zernike Aberrations in the Anterior Corneal Surface, the Internal Surfaces, and the Whole Eye a

Tables Icon

Table 5 Mean Coefficient Values of the Zernike Aberrations in the Anterior Corneal Surface, the Internal Surfaces, and the Whole Eye a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dR=0.04038*(0.3-k)+0.05083*(7.8-R)-0.06167.

Metrics