Abstract

In Part I of this study [ J. Opt. Soc. Am. A 20, 698 ( 2003)], we presented a physically rigorous model for simulating optical probing techniques. We now introduce the concept of virtual experiments as the fundamental strategy for analyzing the measurement techniques and for supporting the design of the experiments. Thus a theoretical study of parasitic effects, the accuracy of the experiment, and the optimum probing conditions becomes possible. In our first example of application, free-carrier absorption measurements are discussed. We present quantitative results for the optimum sample geometry and the optimum optical setup. In addition, we demonstrate that backside laser probing, a typical representative of interferometric techniques, provides excellent spatial resolution and constitutes a powerful method to detect hot spots in the investigated sample.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Thalhammer, G. Wachutka, “Virtual optical experiments. Part I. Modeling the measurement process,” J. Opt. Soc. Am. A 20, 698–706 (2003).
    [CrossRef]
  2. H. B. Briggs, R. C. Fletcher, “Absorption of infrared light by free carriers in germanium,” Phys. Rev. 91, 1342–1346 (1953).
    [CrossRef]
  3. N. J. Harrick, “Use of infrared absorption to determine carrier distribution in germanium and surface recombination velocity,” Phys. Rev. 101, 491 (1956).
    [CrossRef]
  4. G Schierwater, “Untersuchung der optischen Absorption an freien Ladungsträgern und der Rekombinationsstrahlung am Elektron-Loch-Plasma von pin-Dioden,” Ph.D. thesis (Technische Universität Berlin, Berlin, 1975).
  5. D. E. Houston, S Krishna, E. D. Wolley, “Study of charge dynamics in high speed power devices using free carrier absorption measurement,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1976), pp. 504–507.
  6. R. W. Cooper, D. H. Paxman, “Measurement of charge carrier behavior in pin diodes using a laser technique,” Solid State Electron. 21, 865–869 (1978).
    [CrossRef]
  7. W Görtz, “Ein Beitrag zur Bestimmung des Ladungsträgerverhaltens in psn-Dioden im Fall starker Injektion unter Verwendung der Absorptions-Meßmethode,” Ph.D. thesis (Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany, 1984).
  8. H. Bleichner, E. Nordlander, M. Rosling, S. Berg, “A time-resolved optical system for spatial characterization of the carrier distribution in a gate-turn-off thyristor (GTO),” IEEE Trans. Instrum. Meas. 39, 473–478 (1990).
    [CrossRef]
  9. H. K. Heinrich, D. M. Bloom, B. R. Hemmenway, “Noninvasive sheet charge density probe for integrated silicon devices,” Appl. Phys. Lett. 48, 1066–1068 (1986).
    [CrossRef]
  10. M. Goldstein, G. Sölkner, E. Gornik, “Heterodyn interferometer for the detection of electric and thermal signals in integrated circuits through the substrate,” Rev. Sci. Instrum. 64, 3009–3013 (1993).
    [CrossRef]
  11. N. Seliger, P. Habaš, E. Gornik, “A study of backside laser-probe signals in MOSFETs,” Microelectron. Eng. 31, 87–94 (1996).
    [CrossRef]
  12. R Thalhammer, C Fürböck, N. Seliger, G. Deboy, E. Gornik, G. Wachutka, “Internal characterization of IGBTs using the backside laser probing technique—interpretation of measurement by numerical simulation,” in Proceedings of IEEE International Conference of Power Semiconductor Devices and ICs (Institute of Electrical Engineers of Japan, Tokyo, Japan, 1998), pp. 199–202.
  13. N. Seliger, P. Habaš, D. Pogany, E. Gornik, “Time-resolved analysis of self-heating in power VDMOSFETs using backside laserprobing,” Solid State Electron. 41, 1285–1292 (1997).
    [CrossRef]
  14. N Seliger, P Habaš, E. Gornik, “Time-domain characterization of lattice heating in power VDMOSFETs by means of an interferometric laserprobe technique,” in Proceedings of European Solid State Device Research Conference, G. Baccarani, M. Rudan, eds. (Editions Frontières, Gif-sur-Yvette, France, 1996), pp. 847–850.
  15. N Seliger, D Pogany, C Fürböck, P. Habaš, E. Gornik, M. Stoisiek, “A study of temperature distribution in SOI-smart power devices in transient conditions by optical interferometry,” in Proceedings of European Solid State Device Research Conference (Editions Frontières, Gif-sur-Yvette, France, 1997), pp. 512–515.
  16. D. Pogany, N. Seliger, T. Lalinsky, J. Kuzmik, P. Habaš, P. Hrkut, E. Gornik, “Study of thermal effects in GaAs micromachined power sensor microsystems by an optical interferometer technique,” Microelectron. J. 29, 191–195 (1998).
    [CrossRef]
  17. C Fürböck, N. Seliger, D. Pogany, M. Litzenberger, E. Gornik, M. Stecher, H. Goßner, W. Werner, “Backside laserprober characterization of thermal effects during high current stress in smart power ESD protection devices,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 691–694.
  18. N Seliger, “Characterization of semiconductor devices by laser interferometry,” Ph.D. thesis (Vienna University of Technology, Vienna, 1998).
  19. M Litzenberger, “Thermal characterization of smart power electrostatic discharge protection devices by backside laserprobing,” M.S. thesis (Institute for Solid State Electronics, Vienna University of Technology, Vienna, 1999).

2003

1998

D. Pogany, N. Seliger, T. Lalinsky, J. Kuzmik, P. Habaš, P. Hrkut, E. Gornik, “Study of thermal effects in GaAs micromachined power sensor microsystems by an optical interferometer technique,” Microelectron. J. 29, 191–195 (1998).
[CrossRef]

1997

N. Seliger, P. Habaš, D. Pogany, E. Gornik, “Time-resolved analysis of self-heating in power VDMOSFETs using backside laserprobing,” Solid State Electron. 41, 1285–1292 (1997).
[CrossRef]

1996

N. Seliger, P. Habaš, E. Gornik, “A study of backside laser-probe signals in MOSFETs,” Microelectron. Eng. 31, 87–94 (1996).
[CrossRef]

1993

M. Goldstein, G. Sölkner, E. Gornik, “Heterodyn interferometer for the detection of electric and thermal signals in integrated circuits through the substrate,” Rev. Sci. Instrum. 64, 3009–3013 (1993).
[CrossRef]

1990

H. Bleichner, E. Nordlander, M. Rosling, S. Berg, “A time-resolved optical system for spatial characterization of the carrier distribution in a gate-turn-off thyristor (GTO),” IEEE Trans. Instrum. Meas. 39, 473–478 (1990).
[CrossRef]

1986

H. K. Heinrich, D. M. Bloom, B. R. Hemmenway, “Noninvasive sheet charge density probe for integrated silicon devices,” Appl. Phys. Lett. 48, 1066–1068 (1986).
[CrossRef]

1978

R. W. Cooper, D. H. Paxman, “Measurement of charge carrier behavior in pin diodes using a laser technique,” Solid State Electron. 21, 865–869 (1978).
[CrossRef]

1956

N. J. Harrick, “Use of infrared absorption to determine carrier distribution in germanium and surface recombination velocity,” Phys. Rev. 101, 491 (1956).
[CrossRef]

1953

H. B. Briggs, R. C. Fletcher, “Absorption of infrared light by free carriers in germanium,” Phys. Rev. 91, 1342–1346 (1953).
[CrossRef]

Berg, S.

H. Bleichner, E. Nordlander, M. Rosling, S. Berg, “A time-resolved optical system for spatial characterization of the carrier distribution in a gate-turn-off thyristor (GTO),” IEEE Trans. Instrum. Meas. 39, 473–478 (1990).
[CrossRef]

Bleichner, H.

H. Bleichner, E. Nordlander, M. Rosling, S. Berg, “A time-resolved optical system for spatial characterization of the carrier distribution in a gate-turn-off thyristor (GTO),” IEEE Trans. Instrum. Meas. 39, 473–478 (1990).
[CrossRef]

Bloom, D. M.

H. K. Heinrich, D. M. Bloom, B. R. Hemmenway, “Noninvasive sheet charge density probe for integrated silicon devices,” Appl. Phys. Lett. 48, 1066–1068 (1986).
[CrossRef]

Briggs, H. B.

H. B. Briggs, R. C. Fletcher, “Absorption of infrared light by free carriers in germanium,” Phys. Rev. 91, 1342–1346 (1953).
[CrossRef]

Cooper, R. W.

R. W. Cooper, D. H. Paxman, “Measurement of charge carrier behavior in pin diodes using a laser technique,” Solid State Electron. 21, 865–869 (1978).
[CrossRef]

Deboy, G.

R Thalhammer, C Fürböck, N. Seliger, G. Deboy, E. Gornik, G. Wachutka, “Internal characterization of IGBTs using the backside laser probing technique—interpretation of measurement by numerical simulation,” in Proceedings of IEEE International Conference of Power Semiconductor Devices and ICs (Institute of Electrical Engineers of Japan, Tokyo, Japan, 1998), pp. 199–202.

Fletcher, R. C.

H. B. Briggs, R. C. Fletcher, “Absorption of infrared light by free carriers in germanium,” Phys. Rev. 91, 1342–1346 (1953).
[CrossRef]

Fürböck, C

C Fürböck, N. Seliger, D. Pogany, M. Litzenberger, E. Gornik, M. Stecher, H. Goßner, W. Werner, “Backside laserprober characterization of thermal effects during high current stress in smart power ESD protection devices,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 691–694.

R Thalhammer, C Fürböck, N. Seliger, G. Deboy, E. Gornik, G. Wachutka, “Internal characterization of IGBTs using the backside laser probing technique—interpretation of measurement by numerical simulation,” in Proceedings of IEEE International Conference of Power Semiconductor Devices and ICs (Institute of Electrical Engineers of Japan, Tokyo, Japan, 1998), pp. 199–202.

N Seliger, D Pogany, C Fürböck, P. Habaš, E. Gornik, M. Stoisiek, “A study of temperature distribution in SOI-smart power devices in transient conditions by optical interferometry,” in Proceedings of European Solid State Device Research Conference (Editions Frontières, Gif-sur-Yvette, France, 1997), pp. 512–515.

Goldstein, M.

M. Goldstein, G. Sölkner, E. Gornik, “Heterodyn interferometer for the detection of electric and thermal signals in integrated circuits through the substrate,” Rev. Sci. Instrum. 64, 3009–3013 (1993).
[CrossRef]

Gornik, E.

D. Pogany, N. Seliger, T. Lalinsky, J. Kuzmik, P. Habaš, P. Hrkut, E. Gornik, “Study of thermal effects in GaAs micromachined power sensor microsystems by an optical interferometer technique,” Microelectron. J. 29, 191–195 (1998).
[CrossRef]

N. Seliger, P. Habaš, D. Pogany, E. Gornik, “Time-resolved analysis of self-heating in power VDMOSFETs using backside laserprobing,” Solid State Electron. 41, 1285–1292 (1997).
[CrossRef]

N. Seliger, P. Habaš, E. Gornik, “A study of backside laser-probe signals in MOSFETs,” Microelectron. Eng. 31, 87–94 (1996).
[CrossRef]

M. Goldstein, G. Sölkner, E. Gornik, “Heterodyn interferometer for the detection of electric and thermal signals in integrated circuits through the substrate,” Rev. Sci. Instrum. 64, 3009–3013 (1993).
[CrossRef]

N Seliger, P Habaš, E. Gornik, “Time-domain characterization of lattice heating in power VDMOSFETs by means of an interferometric laserprobe technique,” in Proceedings of European Solid State Device Research Conference, G. Baccarani, M. Rudan, eds. (Editions Frontières, Gif-sur-Yvette, France, 1996), pp. 847–850.

C Fürböck, N. Seliger, D. Pogany, M. Litzenberger, E. Gornik, M. Stecher, H. Goßner, W. Werner, “Backside laserprober characterization of thermal effects during high current stress in smart power ESD protection devices,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 691–694.

N Seliger, D Pogany, C Fürböck, P. Habaš, E. Gornik, M. Stoisiek, “A study of temperature distribution in SOI-smart power devices in transient conditions by optical interferometry,” in Proceedings of European Solid State Device Research Conference (Editions Frontières, Gif-sur-Yvette, France, 1997), pp. 512–515.

R Thalhammer, C Fürböck, N. Seliger, G. Deboy, E. Gornik, G. Wachutka, “Internal characterization of IGBTs using the backside laser probing technique—interpretation of measurement by numerical simulation,” in Proceedings of IEEE International Conference of Power Semiconductor Devices and ICs (Institute of Electrical Engineers of Japan, Tokyo, Japan, 1998), pp. 199–202.

Görtz, W

W Görtz, “Ein Beitrag zur Bestimmung des Ladungsträgerverhaltens in psn-Dioden im Fall starker Injektion unter Verwendung der Absorptions-Meßmethode,” Ph.D. thesis (Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany, 1984).

Goßner, H.

C Fürböck, N. Seliger, D. Pogany, M. Litzenberger, E. Gornik, M. Stecher, H. Goßner, W. Werner, “Backside laserprober characterization of thermal effects during high current stress in smart power ESD protection devices,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 691–694.

Habaš, P

N Seliger, P Habaš, E. Gornik, “Time-domain characterization of lattice heating in power VDMOSFETs by means of an interferometric laserprobe technique,” in Proceedings of European Solid State Device Research Conference, G. Baccarani, M. Rudan, eds. (Editions Frontières, Gif-sur-Yvette, France, 1996), pp. 847–850.

Habaš, P.

D. Pogany, N. Seliger, T. Lalinsky, J. Kuzmik, P. Habaš, P. Hrkut, E. Gornik, “Study of thermal effects in GaAs micromachined power sensor microsystems by an optical interferometer technique,” Microelectron. J. 29, 191–195 (1998).
[CrossRef]

N. Seliger, P. Habaš, D. Pogany, E. Gornik, “Time-resolved analysis of self-heating in power VDMOSFETs using backside laserprobing,” Solid State Electron. 41, 1285–1292 (1997).
[CrossRef]

N. Seliger, P. Habaš, E. Gornik, “A study of backside laser-probe signals in MOSFETs,” Microelectron. Eng. 31, 87–94 (1996).
[CrossRef]

N Seliger, D Pogany, C Fürböck, P. Habaš, E. Gornik, M. Stoisiek, “A study of temperature distribution in SOI-smart power devices in transient conditions by optical interferometry,” in Proceedings of European Solid State Device Research Conference (Editions Frontières, Gif-sur-Yvette, France, 1997), pp. 512–515.

Harrick, N. J.

N. J. Harrick, “Use of infrared absorption to determine carrier distribution in germanium and surface recombination velocity,” Phys. Rev. 101, 491 (1956).
[CrossRef]

Heinrich, H. K.

H. K. Heinrich, D. M. Bloom, B. R. Hemmenway, “Noninvasive sheet charge density probe for integrated silicon devices,” Appl. Phys. Lett. 48, 1066–1068 (1986).
[CrossRef]

Hemmenway, B. R.

H. K. Heinrich, D. M. Bloom, B. R. Hemmenway, “Noninvasive sheet charge density probe for integrated silicon devices,” Appl. Phys. Lett. 48, 1066–1068 (1986).
[CrossRef]

Houston, D. E.

D. E. Houston, S Krishna, E. D. Wolley, “Study of charge dynamics in high speed power devices using free carrier absorption measurement,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1976), pp. 504–507.

Hrkut, P.

D. Pogany, N. Seliger, T. Lalinsky, J. Kuzmik, P. Habaš, P. Hrkut, E. Gornik, “Study of thermal effects in GaAs micromachined power sensor microsystems by an optical interferometer technique,” Microelectron. J. 29, 191–195 (1998).
[CrossRef]

Krishna, S

D. E. Houston, S Krishna, E. D. Wolley, “Study of charge dynamics in high speed power devices using free carrier absorption measurement,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1976), pp. 504–507.

Kuzmik, J.

D. Pogany, N. Seliger, T. Lalinsky, J. Kuzmik, P. Habaš, P. Hrkut, E. Gornik, “Study of thermal effects in GaAs micromachined power sensor microsystems by an optical interferometer technique,” Microelectron. J. 29, 191–195 (1998).
[CrossRef]

Lalinsky, T.

D. Pogany, N. Seliger, T. Lalinsky, J. Kuzmik, P. Habaš, P. Hrkut, E. Gornik, “Study of thermal effects in GaAs micromachined power sensor microsystems by an optical interferometer technique,” Microelectron. J. 29, 191–195 (1998).
[CrossRef]

Litzenberger, M

M Litzenberger, “Thermal characterization of smart power electrostatic discharge protection devices by backside laserprobing,” M.S. thesis (Institute for Solid State Electronics, Vienna University of Technology, Vienna, 1999).

Litzenberger, M.

C Fürböck, N. Seliger, D. Pogany, M. Litzenberger, E. Gornik, M. Stecher, H. Goßner, W. Werner, “Backside laserprober characterization of thermal effects during high current stress in smart power ESD protection devices,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 691–694.

Nordlander, E.

H. Bleichner, E. Nordlander, M. Rosling, S. Berg, “A time-resolved optical system for spatial characterization of the carrier distribution in a gate-turn-off thyristor (GTO),” IEEE Trans. Instrum. Meas. 39, 473–478 (1990).
[CrossRef]

Paxman, D. H.

R. W. Cooper, D. H. Paxman, “Measurement of charge carrier behavior in pin diodes using a laser technique,” Solid State Electron. 21, 865–869 (1978).
[CrossRef]

Pogany, D

N Seliger, D Pogany, C Fürböck, P. Habaš, E. Gornik, M. Stoisiek, “A study of temperature distribution in SOI-smart power devices in transient conditions by optical interferometry,” in Proceedings of European Solid State Device Research Conference (Editions Frontières, Gif-sur-Yvette, France, 1997), pp. 512–515.

Pogany, D.

D. Pogany, N. Seliger, T. Lalinsky, J. Kuzmik, P. Habaš, P. Hrkut, E. Gornik, “Study of thermal effects in GaAs micromachined power sensor microsystems by an optical interferometer technique,” Microelectron. J. 29, 191–195 (1998).
[CrossRef]

N. Seliger, P. Habaš, D. Pogany, E. Gornik, “Time-resolved analysis of self-heating in power VDMOSFETs using backside laserprobing,” Solid State Electron. 41, 1285–1292 (1997).
[CrossRef]

C Fürböck, N. Seliger, D. Pogany, M. Litzenberger, E. Gornik, M. Stecher, H. Goßner, W. Werner, “Backside laserprober characterization of thermal effects during high current stress in smart power ESD protection devices,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 691–694.

Rosling, M.

H. Bleichner, E. Nordlander, M. Rosling, S. Berg, “A time-resolved optical system for spatial characterization of the carrier distribution in a gate-turn-off thyristor (GTO),” IEEE Trans. Instrum. Meas. 39, 473–478 (1990).
[CrossRef]

Schierwater, G

G Schierwater, “Untersuchung der optischen Absorption an freien Ladungsträgern und der Rekombinationsstrahlung am Elektron-Loch-Plasma von pin-Dioden,” Ph.D. thesis (Technische Universität Berlin, Berlin, 1975).

Seliger, N

N Seliger, P Habaš, E. Gornik, “Time-domain characterization of lattice heating in power VDMOSFETs by means of an interferometric laserprobe technique,” in Proceedings of European Solid State Device Research Conference, G. Baccarani, M. Rudan, eds. (Editions Frontières, Gif-sur-Yvette, France, 1996), pp. 847–850.

N Seliger, “Characterization of semiconductor devices by laser interferometry,” Ph.D. thesis (Vienna University of Technology, Vienna, 1998).

N Seliger, D Pogany, C Fürböck, P. Habaš, E. Gornik, M. Stoisiek, “A study of temperature distribution in SOI-smart power devices in transient conditions by optical interferometry,” in Proceedings of European Solid State Device Research Conference (Editions Frontières, Gif-sur-Yvette, France, 1997), pp. 512–515.

Seliger, N.

D. Pogany, N. Seliger, T. Lalinsky, J. Kuzmik, P. Habaš, P. Hrkut, E. Gornik, “Study of thermal effects in GaAs micromachined power sensor microsystems by an optical interferometer technique,” Microelectron. J. 29, 191–195 (1998).
[CrossRef]

N. Seliger, P. Habaš, D. Pogany, E. Gornik, “Time-resolved analysis of self-heating in power VDMOSFETs using backside laserprobing,” Solid State Electron. 41, 1285–1292 (1997).
[CrossRef]

N. Seliger, P. Habaš, E. Gornik, “A study of backside laser-probe signals in MOSFETs,” Microelectron. Eng. 31, 87–94 (1996).
[CrossRef]

R Thalhammer, C Fürböck, N. Seliger, G. Deboy, E. Gornik, G. Wachutka, “Internal characterization of IGBTs using the backside laser probing technique—interpretation of measurement by numerical simulation,” in Proceedings of IEEE International Conference of Power Semiconductor Devices and ICs (Institute of Electrical Engineers of Japan, Tokyo, Japan, 1998), pp. 199–202.

C Fürböck, N. Seliger, D. Pogany, M. Litzenberger, E. Gornik, M. Stecher, H. Goßner, W. Werner, “Backside laserprober characterization of thermal effects during high current stress in smart power ESD protection devices,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 691–694.

Sölkner, G.

M. Goldstein, G. Sölkner, E. Gornik, “Heterodyn interferometer for the detection of electric and thermal signals in integrated circuits through the substrate,” Rev. Sci. Instrum. 64, 3009–3013 (1993).
[CrossRef]

Stecher, M.

C Fürböck, N. Seliger, D. Pogany, M. Litzenberger, E. Gornik, M. Stecher, H. Goßner, W. Werner, “Backside laserprober characterization of thermal effects during high current stress in smart power ESD protection devices,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 691–694.

Stoisiek, M.

N Seliger, D Pogany, C Fürböck, P. Habaš, E. Gornik, M. Stoisiek, “A study of temperature distribution in SOI-smart power devices in transient conditions by optical interferometry,” in Proceedings of European Solid State Device Research Conference (Editions Frontières, Gif-sur-Yvette, France, 1997), pp. 512–515.

Thalhammer, R

R Thalhammer, C Fürböck, N. Seliger, G. Deboy, E. Gornik, G. Wachutka, “Internal characterization of IGBTs using the backside laser probing technique—interpretation of measurement by numerical simulation,” in Proceedings of IEEE International Conference of Power Semiconductor Devices and ICs (Institute of Electrical Engineers of Japan, Tokyo, Japan, 1998), pp. 199–202.

Thalhammer, R.

Wachutka, G.

R. Thalhammer, G. Wachutka, “Virtual optical experiments. Part I. Modeling the measurement process,” J. Opt. Soc. Am. A 20, 698–706 (2003).
[CrossRef]

R Thalhammer, C Fürböck, N. Seliger, G. Deboy, E. Gornik, G. Wachutka, “Internal characterization of IGBTs using the backside laser probing technique—interpretation of measurement by numerical simulation,” in Proceedings of IEEE International Conference of Power Semiconductor Devices and ICs (Institute of Electrical Engineers of Japan, Tokyo, Japan, 1998), pp. 199–202.

Werner, W.

C Fürböck, N. Seliger, D. Pogany, M. Litzenberger, E. Gornik, M. Stecher, H. Goßner, W. Werner, “Backside laserprober characterization of thermal effects during high current stress in smart power ESD protection devices,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 691–694.

Wolley, E. D.

D. E. Houston, S Krishna, E. D. Wolley, “Study of charge dynamics in high speed power devices using free carrier absorption measurement,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1976), pp. 504–507.

Appl. Phys. Lett.

H. K. Heinrich, D. M. Bloom, B. R. Hemmenway, “Noninvasive sheet charge density probe for integrated silicon devices,” Appl. Phys. Lett. 48, 1066–1068 (1986).
[CrossRef]

IEEE Trans. Instrum. Meas.

H. Bleichner, E. Nordlander, M. Rosling, S. Berg, “A time-resolved optical system for spatial characterization of the carrier distribution in a gate-turn-off thyristor (GTO),” IEEE Trans. Instrum. Meas. 39, 473–478 (1990).
[CrossRef]

J. Opt. Soc. Am. A

Microelectron. Eng.

N. Seliger, P. Habaš, E. Gornik, “A study of backside laser-probe signals in MOSFETs,” Microelectron. Eng. 31, 87–94 (1996).
[CrossRef]

Microelectron. J.

D. Pogany, N. Seliger, T. Lalinsky, J. Kuzmik, P. Habaš, P. Hrkut, E. Gornik, “Study of thermal effects in GaAs micromachined power sensor microsystems by an optical interferometer technique,” Microelectron. J. 29, 191–195 (1998).
[CrossRef]

Phys. Rev.

H. B. Briggs, R. C. Fletcher, “Absorption of infrared light by free carriers in germanium,” Phys. Rev. 91, 1342–1346 (1953).
[CrossRef]

N. J. Harrick, “Use of infrared absorption to determine carrier distribution in germanium and surface recombination velocity,” Phys. Rev. 101, 491 (1956).
[CrossRef]

Rev. Sci. Instrum.

M. Goldstein, G. Sölkner, E. Gornik, “Heterodyn interferometer for the detection of electric and thermal signals in integrated circuits through the substrate,” Rev. Sci. Instrum. 64, 3009–3013 (1993).
[CrossRef]

Solid State Electron.

R. W. Cooper, D. H. Paxman, “Measurement of charge carrier behavior in pin diodes using a laser technique,” Solid State Electron. 21, 865–869 (1978).
[CrossRef]

N. Seliger, P. Habaš, D. Pogany, E. Gornik, “Time-resolved analysis of self-heating in power VDMOSFETs using backside laserprobing,” Solid State Electron. 41, 1285–1292 (1997).
[CrossRef]

Other

N Seliger, P Habaš, E. Gornik, “Time-domain characterization of lattice heating in power VDMOSFETs by means of an interferometric laserprobe technique,” in Proceedings of European Solid State Device Research Conference, G. Baccarani, M. Rudan, eds. (Editions Frontières, Gif-sur-Yvette, France, 1996), pp. 847–850.

N Seliger, D Pogany, C Fürböck, P. Habaš, E. Gornik, M. Stoisiek, “A study of temperature distribution in SOI-smart power devices in transient conditions by optical interferometry,” in Proceedings of European Solid State Device Research Conference (Editions Frontières, Gif-sur-Yvette, France, 1997), pp. 512–515.

R Thalhammer, C Fürböck, N. Seliger, G. Deboy, E. Gornik, G. Wachutka, “Internal characterization of IGBTs using the backside laser probing technique—interpretation of measurement by numerical simulation,” in Proceedings of IEEE International Conference of Power Semiconductor Devices and ICs (Institute of Electrical Engineers of Japan, Tokyo, Japan, 1998), pp. 199–202.

C Fürböck, N. Seliger, D. Pogany, M. Litzenberger, E. Gornik, M. Stecher, H. Goßner, W. Werner, “Backside laserprober characterization of thermal effects during high current stress in smart power ESD protection devices,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 691–694.

N Seliger, “Characterization of semiconductor devices by laser interferometry,” Ph.D. thesis (Vienna University of Technology, Vienna, 1998).

M Litzenberger, “Thermal characterization of smart power electrostatic discharge protection devices by backside laserprobing,” M.S. thesis (Institute for Solid State Electronics, Vienna University of Technology, Vienna, 1999).

W Görtz, “Ein Beitrag zur Bestimmung des Ladungsträgerverhaltens in psn-Dioden im Fall starker Injektion unter Verwendung der Absorptions-Meßmethode,” Ph.D. thesis (Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany, 1984).

G Schierwater, “Untersuchung der optischen Absorption an freien Ladungsträgern und der Rekombinationsstrahlung am Elektron-Loch-Plasma von pin-Dioden,” Ph.D. thesis (Technische Universität Berlin, Berlin, 1975).

D. E. Houston, S Krishna, E. D. Wolley, “Study of charge dynamics in high speed power devices using free carrier absorption measurement,” in Technical Digest of International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1976), pp. 504–507.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Strategy for optimizing the optical experiment. The carrier and temperature distributions n extr and T extr extracted from simulating the measurement process on prepared samples are compared with the reference data n ref and T ref from a device simulation of unprepared samples.

Fig. 2
Fig. 2

Optical field distribution of a probing beam ( η A = 0.1 ) incident at x = 60   μ m (sample length L = 2.5   mm , wafer thickness of 120 μm). Isolines of the intensity are shown in the contour plot and in the projection onto the x z plane.

Fig. 3
Fig. 3

Optical field distribution of a probing beam ( η A = 0.1 ) incident at x = 10   μ m .

Fig. 4
Fig. 4

Experimental intensity distribution at the rear surface for a beam position (a) in the center of the sample and (b) near the anode boundary. The profiles along the indicated cutlines are plotted in the lower parts of the figures.

Fig. 5
Fig. 5

Carrier distribution in a power p-i-n diode extracted from virtual absorption experiments on samples of different sizes (symbols). The reference profile is obtained by a device simulation (solid curve).

Fig. 6
Fig. 6

Relative deviation [Eq. (2)] of the carrier distribution extracted from a virtual experiment from the reference profile obtained by device simulation (carrier lifetime of 0.8 μs).

Fig. 7
Fig. 7

Backside laser probing of an insulated gate bipolar transistor (IGBT) sample. A laser beam penetrates the structure from the rear and is reflected at the top layer. Its phase shift with reference to a second beam is detected by interference on a photodetector.

Fig. 8
Fig. 8

Optical field distribution for backside laser probing ( η A = 0.25 ) . The window in the rear metallization is 70 μm in size, and wafer thickness is 220 μm.

Fig. 9
Fig. 9

Intensity signals on the detector [Eq. (7), Δ ω = 0 ] for virtual experiments on an IGBT sample under short-circuit operation (pulse duration of 3 μs). Use of different angular apertures results in almost the same detector signal.

Fig. 10
Fig. 10

Phase-shift signal (solid curve) extracted from the intensity modulation plotted in Fig. 9. As a reference, the symbols represent the integrated carrier and temperature profiles according to Eq. (5).

Fig. 11
Fig. 11

Phase-shift signal for probing an IGBT sample operating with low power dissipation (current-pulse duration of 50 μs). Dashed curves, simulations; solid curve, a real measurement.

Fig. 12
Fig. 12

IGBT sample operating under short-circuit conditions (pulse duration of 10 μs). Solid curves and dashed curves indicate the phase-shift signals Δ φ ( t ) (left-hand axis), which can be interpreted in terms of a surface temperature rise (right-hand axis); see Eq. (9). Dotted curves indicate the surface temperature rise obtained by device simulation.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I on ( x ) I off ( x ) = exp - L   α C   n ( x ) ,
E rel 1 N i = 1 N n extr ( x i ) n ref ( x i ) - 1 2 1 / 2 ,
w ( z ) = 2 k 0 η A 1 + zk 0 η A 2 2 n ω 2 1 / 2 .
η A , opt = 4 3 n ω k 0 L 1 / 2 .
Δ φ = 2   2 π λ 0 L n ω T   Δ T + n ω n   Δ n + n ω p   Δ p d z .
E pr ( t ) = E pr 0 exp [ i ( ω + 2 ω 1 ) t + i Δ φ ( t ) ] ,
E ref ( t ) = E ref 0 exp [ i ( ω + 2 ω 2 ) t ] ,
I D ( t ) = | E pr 0 | 2 + | E ref 0 | 2 + 2 E pr 0 E ref 0 × cos [ 2 Δ ω t + Δ φ ( t ) ] ,
Δ ω = ω 1 - ω 2 .
Δ φ ( t ) = 4 π λ c tot   A n ω T 0 L c tot   A Δ T ( z ,   t ) d z = 4 π λ c tot   A n ω T   Δ Q ( t ) .
Δ φ ( t ) = 2 π L λ n ω T   Δ T ( z = 0 ,   t ) .

Metrics