Abstract

Corneal and ocular aberrations were measured in a group of eyes before and after cataract surgery with spherical intraocular lens (IOL) implantation by use of well-tested techniques developed in our laboratory. By subtraction of corneal from total aberration maps, we also estimated the optical quality of the intraocular lens in vivo. We found that aberrations in pseudophakic eyes are not significantly different from aberrations in eyes before cataract surgery or from previously reported aberrations in healthy eyes of the same age. However, aberrations in pseudophakic eyes are significantly higher than in young eyes. We found a slight increase of corneal aberrations after surgery. The aberrations of the IOL and the lack of balance of the corneal spherical aberrations by the spherical aberrations of the intraocular lens also degraded the optical quality in pseudophakic eyes. We also measured the aberrations of the IOL in vitro, using an eye cell model, and simulated the aberrations of the IOL on the basis of the IOL’s physical parameters. We found a good agreement among in vivo, in vitro, and simulated measures of spherical aberration: Unlike the spherical aberration of the young crystalline lens, which tends to be negative, the spherical aberration of the IOL is positive and increases with lens power. Computer simulations and in vitro measurements show that tilts and decentrations might be contributors to the increased third-order aberrations in vivo in comparison with in vitro measurements.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Azar, Intraocular Lenses in Cataract and Refractive Surgery (Saunders, Philadelphia, Pa., 2001).
  2. M. J. Simpson, “Optical quality of intraocular lenses,” J. Cataract Refractive Surg. 18, 86–94 (1992).
    [CrossRef]
  3. V. Portney, “Optical testing and inspection methodology for modern intraocular lenses,” J. Cataract Refractive Surg. 18, 607–613 (1992).
    [CrossRef]
  4. N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silberman, “Determining the imaging quality of intraocular lenses,” J. Cataract Refractive Surg. 24, 703–714 (1998).
    [CrossRef]
  5. G. Smith, C. W. Lu, “The spherical aberration of intraocular lenses,” Ophthalmic Physiol. Opt. 8, 287–294 (1988).
    [CrossRef]
  6. D. Atchison, “Third-order aberrations of pseudophakic eyes,” Ophthalmic Physiol. Opt. 9, 205–210 (1989).
    [CrossRef] [PubMed]
  7. D. A. Atchison, “Optical design of intraocular lenses. I. On-axis performance,” Optom. Vision Sci. 66, 492–506 (1989).
    [CrossRef]
  8. D. Atchison, “Design of aspheric intraocular lenses,” Ophthalmic Physiol. Opt. 11, 137–146 (1991).
    [CrossRef] [PubMed]
  9. C. W. Lu, G. Smith, “Aspherizing of intra-ocular lenses,” Ophthalmic Physiol. Opt. 10, 54–66 (1990).
    [CrossRef] [PubMed]
  10. R. Navarro, M. Ferro, P. Artal, I. Miranda, “Modulation transfer functions of eyes implanted with intraocular lenses,” Appl. Opt. 32, 6359–6367 (1993).
    [CrossRef] [PubMed]
  11. P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
    [CrossRef]
  12. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
    [CrossRef] [PubMed]
  13. J. Santamaria, P. Artal, J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [CrossRef] [PubMed]
  14. P. Mierdel, M. Kaemmerer, H. E. Krinke, T. Seiler, “Effects of photorefractive keratectomy and cataract surgery on ocular optical erros of higher order,” Graefes Arch. Clin. Exp. Ophthalmol. 237, 725–729 (1999).
    [CrossRef] [PubMed]
  15. M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
    [PubMed]
  16. K. Hayashi, H. Hayashi, T. Oshika, F. Hayashi, “Fourier analysis of irregular astigmatism after implantation of 3 types of intraocular lenses,” J. Cataract Refract. Surg. 26, 1510–1516 (2000).
    [CrossRef] [PubMed]
  17. T. Oshika, G. Sugita, T. Tanabe, A. Tomidokoro, S. Amano, “Regular and irregular astigmatism after superior versus temporal scleral incision cataract surgery,” Ophthalmology 107, 2049–2053 (2000).
    [CrossRef] [PubMed]
  18. R. Gross, “Corneal astigmatism after phacoemulsification and lens implantation through unsutured scleral and corneal tunnel incisions,” Am. J. Ophthalmol. 121, 57–64 (1996).
    [PubMed]
  19. T. Kohnen, B. Dick, K. Jacobi, “Comparison of the induced astigmatism after temporal clear corneal tunnel incisions of different sizes,” J. Cataract Refract. Surg. 21, 417–424 (1995).
    [CrossRef] [PubMed]
  20. P. Nielsen, “Prospective evaluation of surgically induced astigmatism and astigmatic keratotomy effects of various self-sealing small incisions,” J. Cataract Refract. Surg. 21, 43–48 (1995).
    [CrossRef] [PubMed]
  21. R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Visual Opt., (1996).
  22. R. Navarro, E. Moreno-Barriuso, “A laser ray-tracing method for optical testing,” Opt. Lett. 24, 951–953 (1999).
    [CrossRef]
  23. S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
    [PubMed]
  24. C. Dorronsoro, S. Barbero, L. Llorente, S. Marcos, “Detailed on-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,” Optom. Vision Sci. 80, 115–125 (2003).
    [CrossRef]
  25. S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).
  26. J. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).
  27. A. Guirao, M. Redondo, P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
    [CrossRef]
  28. A. Glasser, M. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
    [CrossRef] [PubMed]
  29. G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberration of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
    [CrossRef] [PubMed]
  30. E. Moreno-Barriuso, S. Marcos, R. Navarro, S. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
    [CrossRef]
  31. R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
    [CrossRef]
  32. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshimarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.
  33. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
    [CrossRef]
  34. , American National Standards Institute, “American national standard for the safe use of lasers” (The Laser Institute of America, Orlando, Fla., 1993).
  35. S. Barbero, S. Marcos, J. Merayo-Lloves, “Corneal and total aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
    [CrossRef] [PubMed]
  36. A. Guirao, P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000).
    [CrossRef]
  37. M. J. Simpson, “Diffractive multifocal intraocular lens image quality,” Appl. Opt. 31, 3621–3626 (1992).
    [CrossRef] [PubMed]
  38. M. Herzberger, “Colour correction in optical systems and a new dispersion formula,” Opt. Acta 6, 197–215 (1959).
    [CrossRef]
  39. M. Dubbelman, H. A. Weeber, R. G. Van der Heijde, H. J. Volker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80, 379–383 (2002).
    [CrossRef] [PubMed]
  40. P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
    [CrossRef]
  41. P. Waard, J. Jspeert, T. Van de Berg, P. Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Visual Sci. 33, 618–625 (1992).
  42. P. Philips, H. Rosskothen, J. Emmanuelli, C. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).
    [CrossRef]
  43. G. Smith, B. K. Pierscionek, “The optical structure of the lens and its contribution to the refractive status of the eye,” Ophthalmic Physiol. Opt. 18, 21–29 (1997).
    [CrossRef]
  44. Y. Matsumoto, T. Hara, K. Chiba, M. Chikuda, “Optimal incision sites to obtain an astigmatism-free cornea after cataract surgery with a 3.2 mm sutureless incision,” J. Cataract Refract. Surg. 27, 1615–1619 (2001).
    [CrossRef] [PubMed]
  45. F. Mutlu, A. Bilge, H. Altinsoy, E. Yumusak, “The role of capsulotomy and intraocular lens type on tilt and decentration of polymethylmethacrylate and foldable acrylic lenses,” Ophthalmologica 212, 359–363 (1998).
    [CrossRef] [PubMed]
  46. C. K. Jung, S. K. Chung, N. H. Baek, “Decentration and tilt: silicone multifocal versus acrylic soft intraocular lenses,” J. Cataract Refract. Surg. 26, 582–585 (2000).
    [CrossRef] [PubMed]
  47. M. Wang, L. Woung, C. Hu, H. Kuo, “Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,” J. Cataract Refract. Surg. 24, 1652–1657 (1998).
    [CrossRef] [PubMed]
  48. A. Glasser, M. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39, 1991–2015 (1999).
    [CrossRef] [PubMed]
  49. T. Oshika, Y. Shiokawa, “Effect of folding on the optical quality of soft acrylic intraocular lenses,” J. Cataract Refract. Surg. 22, 1360–1364 (1996).
    [CrossRef] [PubMed]

2003 (2)

C. Dorronsoro, S. Barbero, L. Llorente, S. Marcos, “Detailed on-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,” Optom. Vision Sci. 80, 115–125 (2003).
[CrossRef]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
[CrossRef]

2002 (5)

S. Barbero, S. Marcos, J. Merayo-Lloves, “Corneal and total aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[CrossRef] [PubMed]

M. Dubbelman, H. A. Weeber, R. G. Van der Heijde, H. J. Volker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80, 379–383 (2002).
[CrossRef] [PubMed]

P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

2001 (5)

Y. Matsumoto, T. Hara, K. Chiba, M. Chikuda, “Optimal incision sites to obtain an astigmatism-free cornea after cataract surgery with a 3.2 mm sutureless incision,” J. Cataract Refract. Surg. 27, 1615–1619 (2001).
[CrossRef] [PubMed]

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

J. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberration of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
[CrossRef] [PubMed]

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

2000 (6)

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

K. Hayashi, H. Hayashi, T. Oshika, F. Hayashi, “Fourier analysis of irregular astigmatism after implantation of 3 types of intraocular lenses,” J. Cataract Refract. Surg. 26, 1510–1516 (2000).
[CrossRef] [PubMed]

T. Oshika, G. Sugita, T. Tanabe, A. Tomidokoro, S. Amano, “Regular and irregular astigmatism after superior versus temporal scleral incision cataract surgery,” Ophthalmology 107, 2049–2053 (2000).
[CrossRef] [PubMed]

C. K. Jung, S. K. Chung, N. H. Baek, “Decentration and tilt: silicone multifocal versus acrylic soft intraocular lenses,” J. Cataract Refract. Surg. 26, 582–585 (2000).
[CrossRef] [PubMed]

A. Guirao, P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000).
[CrossRef]

A. Guirao, M. Redondo, P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
[CrossRef]

1999 (3)

R. Navarro, E. Moreno-Barriuso, “A laser ray-tracing method for optical testing,” Opt. Lett. 24, 951–953 (1999).
[CrossRef]

A. Glasser, M. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39, 1991–2015 (1999).
[CrossRef] [PubMed]

P. Mierdel, M. Kaemmerer, H. E. Krinke, T. Seiler, “Effects of photorefractive keratectomy and cataract surgery on ocular optical erros of higher order,” Graefes Arch. Clin. Exp. Ophthalmol. 237, 725–729 (1999).
[CrossRef] [PubMed]

1998 (4)

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silberman, “Determining the imaging quality of intraocular lenses,” J. Cataract Refractive Surg. 24, 703–714 (1998).
[CrossRef]

M. Wang, L. Woung, C. Hu, H. Kuo, “Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,” J. Cataract Refract. Surg. 24, 1652–1657 (1998).
[CrossRef] [PubMed]

F. Mutlu, A. Bilge, H. Altinsoy, E. Yumusak, “The role of capsulotomy and intraocular lens type on tilt and decentration of polymethylmethacrylate and foldable acrylic lenses,” Ophthalmologica 212, 359–363 (1998).
[CrossRef] [PubMed]

A. Glasser, M. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

1997 (2)

G. Smith, B. K. Pierscionek, “The optical structure of the lens and its contribution to the refractive status of the eye,” Ophthalmic Physiol. Opt. 18, 21–29 (1997).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

1996 (3)

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Visual Opt., (1996).

R. Gross, “Corneal astigmatism after phacoemulsification and lens implantation through unsutured scleral and corneal tunnel incisions,” Am. J. Ophthalmol. 121, 57–64 (1996).
[PubMed]

T. Oshika, Y. Shiokawa, “Effect of folding on the optical quality of soft acrylic intraocular lenses,” J. Cataract Refract. Surg. 22, 1360–1364 (1996).
[CrossRef] [PubMed]

1995 (3)

T. Kohnen, B. Dick, K. Jacobi, “Comparison of the induced astigmatism after temporal clear corneal tunnel incisions of different sizes,” J. Cataract Refract. Surg. 21, 417–424 (1995).
[CrossRef] [PubMed]

P. Nielsen, “Prospective evaluation of surgically induced astigmatism and astigmatic keratotomy effects of various self-sealing small incisions,” J. Cataract Refract. Surg. 21, 43–48 (1995).
[CrossRef] [PubMed]

P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
[CrossRef]

1993 (1)

1992 (4)

M. J. Simpson, “Diffractive multifocal intraocular lens image quality,” Appl. Opt. 31, 3621–3626 (1992).
[CrossRef] [PubMed]

P. Waard, J. Jspeert, T. Van de Berg, P. Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Visual Sci. 33, 618–625 (1992).

M. J. Simpson, “Optical quality of intraocular lenses,” J. Cataract Refractive Surg. 18, 86–94 (1992).
[CrossRef]

V. Portney, “Optical testing and inspection methodology for modern intraocular lenses,” J. Cataract Refractive Surg. 18, 607–613 (1992).
[CrossRef]

1991 (1)

D. Atchison, “Design of aspheric intraocular lenses,” Ophthalmic Physiol. Opt. 11, 137–146 (1991).
[CrossRef] [PubMed]

1990 (1)

C. W. Lu, G. Smith, “Aspherizing of intra-ocular lenses,” Ophthalmic Physiol. Opt. 10, 54–66 (1990).
[CrossRef] [PubMed]

1989 (2)

D. Atchison, “Third-order aberrations of pseudophakic eyes,” Ophthalmic Physiol. Opt. 9, 205–210 (1989).
[CrossRef] [PubMed]

D. A. Atchison, “Optical design of intraocular lenses. I. On-axis performance,” Optom. Vision Sci. 66, 492–506 (1989).
[CrossRef]

1988 (2)

G. Smith, C. W. Lu, “The spherical aberration of intraocular lenses,” Ophthalmic Physiol. Opt. 8, 287–294 (1988).
[CrossRef]

P. Philips, H. Rosskothen, J. Emmanuelli, C. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).
[CrossRef]

1987 (1)

1959 (1)

M. Herzberger, “Colour correction in optical systems and a new dispersion formula,” Opt. Acta 6, 197–215 (1959).
[CrossRef]

Altinsoy, H.

F. Mutlu, A. Bilge, H. Altinsoy, E. Yumusak, “The role of capsulotomy and intraocular lens type on tilt and decentration of polymethylmethacrylate and foldable acrylic lenses,” Ophthalmologica 212, 359–363 (1998).
[CrossRef] [PubMed]

Amano, S.

T. Oshika, G. Sugita, T. Tanabe, A. Tomidokoro, S. Amano, “Regular and irregular astigmatism after superior versus temporal scleral incision cataract surgery,” Ophthalmology 107, 2049–2053 (2000).
[CrossRef] [PubMed]

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshimarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Artal, P.

Atchison, D.

D. Atchison, “Design of aspheric intraocular lenses,” Ophthalmic Physiol. Opt. 11, 137–146 (1991).
[CrossRef] [PubMed]

D. Atchison, “Third-order aberrations of pseudophakic eyes,” Ophthalmic Physiol. Opt. 9, 205–210 (1989).
[CrossRef] [PubMed]

Atchison, D. A.

D. A. Atchison, “Optical design of intraocular lenses. I. On-axis performance,” Optom. Vision Sci. 66, 492–506 (1989).
[CrossRef]

Azar, D. T.

D. T. Azar, Intraocular Lenses in Cataract and Refractive Surgery (Saunders, Philadelphia, Pa., 2001).

Baek, N. H.

C. K. Jung, S. K. Chung, N. H. Baek, “Decentration and tilt: silicone multifocal versus acrylic soft intraocular lenses,” J. Cataract Refract. Surg. 26, 582–585 (2000).
[CrossRef] [PubMed]

Barbero, S.

C. Dorronsoro, S. Barbero, L. Llorente, S. Marcos, “Detailed on-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,” Optom. Vision Sci. 80, 115–125 (2003).
[CrossRef]

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, “Corneal and total aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

Berrio, E.

Bescós, J.

Bilge, A.

F. Mutlu, A. Bilge, H. Altinsoy, E. Yumusak, “The role of capsulotomy and intraocular lens type on tilt and decentration of polymethylmethacrylate and foldable acrylic lenses,” Ophthalmologica 212, 359–363 (1998).
[CrossRef] [PubMed]

Burns, S.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

Burns, S. A.

J. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

Calver, R.

G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberration of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
[CrossRef] [PubMed]

Campbell, M.

A. Glasser, M. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39, 1991–2015 (1999).
[CrossRef] [PubMed]

A. Glasser, M. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

Chiba, K.

Y. Matsumoto, T. Hara, K. Chiba, M. Chikuda, “Optimal incision sites to obtain an astigmatism-free cornea after cataract surgery with a 3.2 mm sutureless incision,” J. Cataract Refract. Surg. 27, 1615–1619 (2001).
[CrossRef] [PubMed]

Chikuda, M.

Y. Matsumoto, T. Hara, K. Chiba, M. Chikuda, “Optimal incision sites to obtain an astigmatism-free cornea after cataract surgery with a 3.2 mm sutureless incision,” J. Cataract Refract. Surg. 27, 1615–1619 (2001).
[CrossRef] [PubMed]

Chung, S. K.

C. K. Jung, S. K. Chung, N. H. Baek, “Decentration and tilt: silicone multifocal versus acrylic soft intraocular lenses,” J. Cataract Refract. Surg. 26, 582–585 (2000).
[CrossRef] [PubMed]

Cox, M. J.

G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberration of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
[CrossRef] [PubMed]

Diaz-Santana, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
[CrossRef]

Dick, B.

T. Kohnen, B. Dick, K. Jacobi, “Comparison of the induced astigmatism after temporal clear corneal tunnel incisions of different sizes,” J. Cataract Refract. Surg. 21, 417–424 (1995).
[CrossRef] [PubMed]

Dorronsoro, C.

C. Dorronsoro, S. Barbero, L. Llorente, S. Marcos, “Detailed on-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,” Optom. Vision Sci. 80, 115–125 (2003).
[CrossRef]

Dubbelman, M.

M. Dubbelman, H. A. Weeber, R. G. Van der Heijde, H. J. Volker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80, 379–383 (2002).
[CrossRef] [PubMed]

Emmanuelli, J.

P. Philips, H. Rosskothen, J. Emmanuelli, C. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).
[CrossRef]

Ferro, M.

P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
[CrossRef]

R. Navarro, M. Ferro, P. Artal, I. Miranda, “Modulation transfer functions of eyes implanted with intraocular lenses,” Appl. Opt. 32, 6359–6367 (1993).
[CrossRef] [PubMed]

Garner, L. F.

G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberration of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
[CrossRef] [PubMed]

Geraghty, E.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[CrossRef] [PubMed]

Geraghty, E. P.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silberman, “Determining the imaging quality of intraocular lenses,” J. Cataract Refractive Surg. 24, 703–714 (1998).
[CrossRef]

Glasser, A.

A. Glasser, M. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39, 1991–2015 (1999).
[CrossRef] [PubMed]

A. Glasser, M. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

Gross, R.

R. Gross, “Corneal astigmatism after phacoemulsification and lens implantation through unsutured scleral and corneal tunnel incisions,” Am. J. Ophthalmol. 121, 57–64 (1996).
[PubMed]

Grossman, L. W.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silberman, “Determining the imaging quality of intraocular lenses,” J. Cataract Refractive Surg. 24, 703–714 (1998).
[CrossRef]

Guirao, A.

Hara, T.

Y. Matsumoto, T. Hara, K. Chiba, M. Chikuda, “Optimal incision sites to obtain an astigmatism-free cornea after cataract surgery with a 3.2 mm sutureless incision,” J. Cataract Refract. Surg. 27, 1615–1619 (2001).
[CrossRef] [PubMed]

Hayashi, F.

K. Hayashi, H. Hayashi, T. Oshika, F. Hayashi, “Fourier analysis of irregular astigmatism after implantation of 3 types of intraocular lenses,” J. Cataract Refract. Surg. 26, 1510–1516 (2000).
[CrossRef] [PubMed]

Hayashi, H.

K. Hayashi, H. Hayashi, T. Oshika, F. Hayashi, “Fourier analysis of irregular astigmatism after implantation of 3 types of intraocular lenses,” J. Cataract Refract. Surg. 26, 1510–1516 (2000).
[CrossRef] [PubMed]

Hayashi, K.

K. Hayashi, H. Hayashi, T. Oshika, F. Hayashi, “Fourier analysis of irregular astigmatism after implantation of 3 types of intraocular lenses,” J. Cataract Refract. Surg. 26, 1510–1516 (2000).
[CrossRef] [PubMed]

Herzberger, M.

M. Herzberger, “Colour correction in optical systems and a new dispersion formula,” Opt. Acta 6, 197–215 (1959).
[CrossRef]

Hu, C.

M. Wang, L. Woung, C. Hu, H. Kuo, “Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,” J. Cataract Refract. Surg. 24, 1652–1657 (1998).
[CrossRef] [PubMed]

Jacobi, K.

T. Kohnen, B. Dick, K. Jacobi, “Comparison of the induced astigmatism after temporal clear corneal tunnel incisions of different sizes,” J. Cataract Refract. Surg. 21, 417–424 (1995).
[CrossRef] [PubMed]

Jong, P.

P. Waard, J. Jspeert, T. Van de Berg, P. Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Visual Sci. 33, 618–625 (1992).

Jspeert, J.

P. Waard, J. Jspeert, T. Van de Berg, P. Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Visual Sci. 33, 618–625 (1992).

Jung, C. K.

C. K. Jung, S. K. Chung, N. H. Baek, “Decentration and tilt: silicone multifocal versus acrylic soft intraocular lenses,” J. Cataract Refract. Surg. 26, 582–585 (2000).
[CrossRef] [PubMed]

Kaemmerer, M.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

P. Mierdel, M. Kaemmerer, H. E. Krinke, T. Seiler, “Effects of photorefractive keratectomy and cataract surgery on ocular optical erros of higher order,” Graefes Arch. Clin. Exp. Ophthalmol. 237, 725–729 (1999).
[CrossRef] [PubMed]

Koester, C.

P. Philips, H. Rosskothen, J. Emmanuelli, C. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).
[CrossRef]

Kohnen, T.

T. Kohnen, B. Dick, K. Jacobi, “Comparison of the induced astigmatism after temporal clear corneal tunnel incisions of different sizes,” J. Cataract Refract. Surg. 21, 417–424 (1995).
[CrossRef] [PubMed]

Kreiner, C. F.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silberman, “Determining the imaging quality of intraocular lenses,” J. Cataract Refractive Surg. 24, 703–714 (1998).
[CrossRef]

Krinke, H. E.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

P. Mierdel, M. Kaemmerer, H. E. Krinke, T. Seiler, “Effects of photorefractive keratectomy and cataract surgery on ocular optical erros of higher order,” Graefes Arch. Clin. Exp. Ophthalmol. 237, 725–729 (1999).
[CrossRef] [PubMed]

Kuo, H.

M. Wang, L. Woung, C. Hu, H. Kuo, “Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,” J. Cataract Refract. Surg. 24, 1652–1657 (1998).
[CrossRef] [PubMed]

Lara-Saucedo, D.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
[CrossRef]

Llorente, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
[CrossRef]

C. Dorronsoro, S. Barbero, L. Llorente, S. Marcos, “Detailed on-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,” Optom. Vision Sci. 80, 115–125 (2003).
[CrossRef]

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

Losada, M. A.

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Visual Opt., (1996).

Lu, C. W.

C. W. Lu, G. Smith, “Aspherizing of intra-ocular lenses,” Ophthalmic Physiol. Opt. 10, 54–66 (1990).
[CrossRef] [PubMed]

G. Smith, C. W. Lu, “The spherical aberration of intraocular lenses,” Ophthalmic Physiol. Opt. 8, 287–294 (1988).
[CrossRef]

Marcos, S.

C. Dorronsoro, S. Barbero, L. Llorente, S. Marcos, “Detailed on-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,” Optom. Vision Sci. 80, 115–125 (2003).
[CrossRef]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
[CrossRef]

S. Barbero, S. Marcos, J. Merayo-Lloves, “Corneal and total aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

J. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
[CrossRef]

Matsumoto, Y.

Y. Matsumoto, T. Hara, K. Chiba, M. Chikuda, “Optimal incision sites to obtain an astigmatism-free cornea after cataract surgery with a 3.2 mm sutureless incision,” J. Cataract Refract. Surg. 27, 1615–1619 (2001).
[CrossRef] [PubMed]

McLellan, J.

J. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

Members, V. S. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshimarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Merayo-Lloves, J.

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, “Corneal and total aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

Mierdel, P.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

P. Mierdel, M. Kaemmerer, H. E. Krinke, T. Seiler, “Effects of photorefractive keratectomy and cataract surgery on ocular optical erros of higher order,” Graefes Arch. Clin. Exp. Ophthalmol. 237, 725–729 (1999).
[CrossRef] [PubMed]

Mihori, M.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silberman, “Determining the imaging quality of intraocular lenses,” J. Cataract Refractive Surg. 24, 703–714 (1998).
[CrossRef]

Miranda, I.

P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
[CrossRef]

R. Navarro, M. Ferro, P. Artal, I. Miranda, “Modulation transfer functions of eyes implanted with intraocular lenses,” Appl. Opt. 32, 6359–6367 (1993).
[CrossRef] [PubMed]

Moreno-Barriuso, E.

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

R. Navarro, E. Moreno-Barriuso, “A laser ray-tracing method for optical testing,” Opt. Lett. 24, 951–953 (1999).
[CrossRef]

Mrochen, M.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

Mutlu, F.

F. Mutlu, A. Bilge, H. Altinsoy, E. Yumusak, “The role of capsulotomy and intraocular lens type on tilt and decentration of polymethylmethacrylate and foldable acrylic lenses,” Ophthalmologica 212, 359–363 (1998).
[CrossRef] [PubMed]

Navarro, R.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

R. Navarro, E. Moreno-Barriuso, “A laser ray-tracing method for optical testing,” Opt. Lett. 24, 951–953 (1999).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Visual Opt., (1996).

P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
[CrossRef]

R. Navarro, M. Ferro, P. Artal, I. Miranda, “Modulation transfer functions of eyes implanted with intraocular lenses,” Appl. Opt. 32, 6359–6367 (1993).
[CrossRef] [PubMed]

Nielsen, P.

P. Nielsen, “Prospective evaluation of surgically induced astigmatism and astigmatic keratotomy effects of various self-sealing small incisions,” J. Cataract Refract. Surg. 21, 43–48 (1995).
[CrossRef] [PubMed]

Norrby, N. E.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silberman, “Determining the imaging quality of intraocular lenses,” J. Cataract Refractive Surg. 24, 703–714 (1998).
[CrossRef]

Norrby, S.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[CrossRef] [PubMed]

Oshika, T.

T. Oshika, G. Sugita, T. Tanabe, A. Tomidokoro, S. Amano, “Regular and irregular astigmatism after superior versus temporal scleral incision cataract surgery,” Ophthalmology 107, 2049–2053 (2000).
[CrossRef] [PubMed]

K. Hayashi, H. Hayashi, T. Oshika, F. Hayashi, “Fourier analysis of irregular astigmatism after implantation of 3 types of intraocular lenses,” J. Cataract Refract. Surg. 26, 1510–1516 (2000).
[CrossRef] [PubMed]

T. Oshika, Y. Shiokawa, “Effect of folding on the optical quality of soft acrylic intraocular lenses,” J. Cataract Refract. Surg. 22, 1360–1364 (1996).
[CrossRef] [PubMed]

Patel, A. S.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silberman, “Determining the imaging quality of intraocular lenses,” J. Cataract Refractive Surg. 24, 703–714 (1998).
[CrossRef]

Philips, P.

P. Philips, H. Rosskothen, J. Emmanuelli, C. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).
[CrossRef]

Piers, P.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[CrossRef] [PubMed]

P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

Pierscionek, B. K.

G. Smith, B. K. Pierscionek, “The optical structure of the lens and its contribution to the refractive status of the eye,” Ophthalmic Physiol. Opt. 18, 21–29 (1997).
[CrossRef]

Portney, V.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silberman, “Determining the imaging quality of intraocular lenses,” J. Cataract Refractive Surg. 24, 703–714 (1998).
[CrossRef]

V. Portney, “Optical testing and inspection methodology for modern intraocular lenses,” J. Cataract Refractive Surg. 18, 607–613 (1992).
[CrossRef]

Redondo, M.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
[CrossRef]

Rosskothen, H.

P. Philips, H. Rosskothen, J. Emmanuelli, C. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).
[CrossRef]

Santamaria, J.

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshimarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Seiler, T.

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

P. Mierdel, M. Kaemmerer, H. E. Krinke, T. Seiler, “Effects of photorefractive keratectomy and cataract surgery on ocular optical erros of higher order,” Graefes Arch. Clin. Exp. Ophthalmol. 237, 725–729 (1999).
[CrossRef] [PubMed]

Shiokawa, Y.

T. Oshika, Y. Shiokawa, “Effect of folding on the optical quality of soft acrylic intraocular lenses,” J. Cataract Refract. Surg. 22, 1360–1364 (1996).
[CrossRef] [PubMed]

Silberman, D. M.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silberman, “Determining the imaging quality of intraocular lenses,” J. Cataract Refractive Surg. 24, 703–714 (1998).
[CrossRef]

Simpson, M. J.

M. J. Simpson, “Optical quality of intraocular lenses,” J. Cataract Refractive Surg. 18, 86–94 (1992).
[CrossRef]

M. J. Simpson, “Diffractive multifocal intraocular lens image quality,” Appl. Opt. 31, 3621–3626 (1992).
[CrossRef] [PubMed]

Smith, G.

G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberration of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
[CrossRef] [PubMed]

G. Smith, B. K. Pierscionek, “The optical structure of the lens and its contribution to the refractive status of the eye,” Ophthalmic Physiol. Opt. 18, 21–29 (1997).
[CrossRef]

C. W. Lu, G. Smith, “Aspherizing of intra-ocular lenses,” Ophthalmic Physiol. Opt. 10, 54–66 (1990).
[CrossRef] [PubMed]

G. Smith, C. W. Lu, “The spherical aberration of intraocular lenses,” Ophthalmic Physiol. Opt. 8, 287–294 (1988).
[CrossRef]

Sugita, G.

T. Oshika, G. Sugita, T. Tanabe, A. Tomidokoro, S. Amano, “Regular and irregular astigmatism after superior versus temporal scleral incision cataract surgery,” Ophthalmology 107, 2049–2053 (2000).
[CrossRef] [PubMed]

Tanabe, T.

T. Oshika, G. Sugita, T. Tanabe, A. Tomidokoro, S. Amano, “Regular and irregular astigmatism after superior versus temporal scleral incision cataract surgery,” Ophthalmology 107, 2049–2053 (2000).
[CrossRef] [PubMed]

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshimarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Tomidokoro, A.

T. Oshika, G. Sugita, T. Tanabe, A. Tomidokoro, S. Amano, “Regular and irregular astigmatism after superior versus temporal scleral incision cataract surgery,” Ophthalmology 107, 2049–2053 (2000).
[CrossRef] [PubMed]

Van de Berg, T.

P. Waard, J. Jspeert, T. Van de Berg, P. Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Visual Sci. 33, 618–625 (1992).

Van der Heijde, R. G.

M. Dubbelman, H. A. Weeber, R. G. Van der Heijde, H. J. Volker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80, 379–383 (2002).
[CrossRef] [PubMed]

Volker-Dieben, H. J.

M. Dubbelman, H. A. Weeber, R. G. Van der Heijde, H. J. Volker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80, 379–383 (2002).
[CrossRef] [PubMed]

Waard, P.

P. Waard, J. Jspeert, T. Van de Berg, P. Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Visual Sci. 33, 618–625 (1992).

Wang, M.

M. Wang, L. Woung, C. Hu, H. Kuo, “Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,” J. Cataract Refract. Surg. 24, 1652–1657 (1998).
[CrossRef] [PubMed]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshimarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Weeber, H. A.

M. Dubbelman, H. A. Weeber, R. G. Van der Heijde, H. J. Volker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80, 379–383 (2002).
[CrossRef] [PubMed]

Woung, L.

M. Wang, L. Woung, C. Hu, H. Kuo, “Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,” J. Cataract Refract. Surg. 24, 1652–1657 (1998).
[CrossRef] [PubMed]

Yumusak, E.

F. Mutlu, A. Bilge, H. Altinsoy, E. Yumusak, “The role of capsulotomy and intraocular lens type on tilt and decentration of polymethylmethacrylate and foldable acrylic lenses,” Ophthalmologica 212, 359–363 (1998).
[CrossRef] [PubMed]

Acta Ophthalmol. Scand. (1)

M. Dubbelman, H. A. Weeber, R. G. Van der Heijde, H. J. Volker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80, 379–383 (2002).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (1)

R. Gross, “Corneal astigmatism after phacoemulsification and lens implantation through unsutured scleral and corneal tunnel incisions,” Am. J. Ophthalmol. 121, 57–64 (1996).
[PubMed]

Appl. Opt. (2)

Arch. Ophthalmol. (1)

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[CrossRef] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

P. Mierdel, M. Kaemmerer, H. E. Krinke, T. Seiler, “Effects of photorefractive keratectomy and cataract surgery on ocular optical erros of higher order,” Graefes Arch. Clin. Exp. Ophthalmol. 237, 725–729 (1999).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (3)

P. Waard, J. Jspeert, T. Van de Berg, P. Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Visual Sci. 33, 618–625 (1992).

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

J. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

J. Cataract Refract. Surg. (9)

S. Barbero, S. Marcos, J. Merayo-Lloves, “Corneal and total aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

P. Philips, H. Rosskothen, J. Emmanuelli, C. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).
[CrossRef]

Y. Matsumoto, T. Hara, K. Chiba, M. Chikuda, “Optimal incision sites to obtain an astigmatism-free cornea after cataract surgery with a 3.2 mm sutureless incision,” J. Cataract Refract. Surg. 27, 1615–1619 (2001).
[CrossRef] [PubMed]

T. Kohnen, B. Dick, K. Jacobi, “Comparison of the induced astigmatism after temporal clear corneal tunnel incisions of different sizes,” J. Cataract Refract. Surg. 21, 417–424 (1995).
[CrossRef] [PubMed]

P. Nielsen, “Prospective evaluation of surgically induced astigmatism and astigmatic keratotomy effects of various self-sealing small incisions,” J. Cataract Refract. Surg. 21, 43–48 (1995).
[CrossRef] [PubMed]

K. Hayashi, H. Hayashi, T. Oshika, F. Hayashi, “Fourier analysis of irregular astigmatism after implantation of 3 types of intraocular lenses,” J. Cataract Refract. Surg. 26, 1510–1516 (2000).
[CrossRef] [PubMed]

C. K. Jung, S. K. Chung, N. H. Baek, “Decentration and tilt: silicone multifocal versus acrylic soft intraocular lenses,” J. Cataract Refract. Surg. 26, 582–585 (2000).
[CrossRef] [PubMed]

M. Wang, L. Woung, C. Hu, H. Kuo, “Position of poly(methyl methacrylate) and silicone intraocular lenses after phacoemulsification,” J. Cataract Refract. Surg. 24, 1652–1657 (1998).
[CrossRef] [PubMed]

T. Oshika, Y. Shiokawa, “Effect of folding on the optical quality of soft acrylic intraocular lenses,” J. Cataract Refract. Surg. 22, 1360–1364 (1996).
[CrossRef] [PubMed]

J. Cataract Refractive Surg. (3)

M. J. Simpson, “Optical quality of intraocular lenses,” J. Cataract Refractive Surg. 18, 86–94 (1992).
[CrossRef]

V. Portney, “Optical testing and inspection methodology for modern intraocular lenses,” J. Cataract Refractive Surg. 18, 607–613 (1992).
[CrossRef]

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, D. M. Silberman, “Determining the imaging quality of intraocular lenses,” J. Cataract Refractive Surg. 24, 703–714 (1998).
[CrossRef]

J. Opt. Soc. Am. A (4)

J. Refract. Surg. (2)

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, T. Seiler, “Principles of Tscherning aberrometry,” J. Refract. Surg. 16, S570–S571 (2000).
[PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

Ophthalmic Physiol. Opt. (5)

G. Smith, B. K. Pierscionek, “The optical structure of the lens and its contribution to the refractive status of the eye,” Ophthalmic Physiol. Opt. 18, 21–29 (1997).
[CrossRef]

D. Atchison, “Design of aspheric intraocular lenses,” Ophthalmic Physiol. Opt. 11, 137–146 (1991).
[CrossRef] [PubMed]

C. W. Lu, G. Smith, “Aspherizing of intra-ocular lenses,” Ophthalmic Physiol. Opt. 10, 54–66 (1990).
[CrossRef] [PubMed]

G. Smith, C. W. Lu, “The spherical aberration of intraocular lenses,” Ophthalmic Physiol. Opt. 8, 287–294 (1988).
[CrossRef]

D. Atchison, “Third-order aberrations of pseudophakic eyes,” Ophthalmic Physiol. Opt. 9, 205–210 (1989).
[CrossRef] [PubMed]

Ophthalmologica (1)

F. Mutlu, A. Bilge, H. Altinsoy, E. Yumusak, “The role of capsulotomy and intraocular lens type on tilt and decentration of polymethylmethacrylate and foldable acrylic lenses,” Ophthalmologica 212, 359–363 (1998).
[CrossRef] [PubMed]

Ophthalmology (1)

T. Oshika, G. Sugita, T. Tanabe, A. Tomidokoro, S. Amano, “Regular and irregular astigmatism after superior versus temporal scleral incision cataract surgery,” Ophthalmology 107, 2049–2053 (2000).
[CrossRef] [PubMed]

Opt. Acta (1)

M. Herzberger, “Colour correction in optical systems and a new dispersion formula,” Opt. Acta 6, 197–215 (1959).
[CrossRef]

Opt. Eng. (1)

P. Artal, S. Marcos, R. Navarro, I. Miranda, M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995).
[CrossRef]

Opt. Lett. (1)

Optom. Vision Sci. (5)

C. Dorronsoro, S. Barbero, L. Llorente, S. Marcos, “Detailed on-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry,” Optom. Vision Sci. 80, 115–125 (2003).
[CrossRef]

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26–35 (2003).
[CrossRef]

D. A. Atchison, “Optical design of intraocular lenses. I. On-axis performance,” Optom. Vision Sci. 66, 492–506 (1989).
[CrossRef]

Vision Res. (3)

A. Glasser, M. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38, 209–229 (1998).
[CrossRef] [PubMed]

G. Smith, M. J. Cox, R. Calver, L. F. Garner, “The spherical aberration of the crystalline lens of the human eye,” Vision Res. 41, 235–243 (2001).
[CrossRef] [PubMed]

A. Glasser, M. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39, 1991–2015 (1999).
[CrossRef] [PubMed]

Visual Opt. (1)

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Visual Opt., (1996).

Other (3)

, American National Standards Institute, “American national standard for the safe use of lasers” (The Laser Institute of America, Orlando, Fla., 1993).

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshimarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

D. T. Azar, Intraocular Lenses in Cataract and Refractive Surgery (Saunders, Philadelphia, Pa., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Photograph of the eye cell model system used for in vitro measurements. (b) Schematic diagram of the eye cell model, consisting of a camera objective, a methacrylate cube filled with water, the IOL mounted on a rotation stage, and an artificial retina.

Fig. 2
Fig. 2

(a) Wave aberration patterns (without tilts and defocus) of nine postcataract-surgery eyes, measured in vivo, for total aberrations (first column), corneal aberrations (middle column) and internal aberrations (third column). Contour lines are plotted every 1 µm. The gray-scale bar represents wave aberration heights in micrometers. The same scale was used for all eyes. Diameters were 5 mm. (b) Internal wave aberration patterns (excluding astigmatism) for all eyes, plotted on a common scale.

Fig. 3
Fig. 3

Corneal RMS wave-front error for third- and higher-order aberrations, preoperative (gray bars) and postoperative (black bars), for eyes #8, #14, and #16.

Fig. 4
Fig. 4

Average total, corneal, and internal RMSs (third- and higher-order aberrations) for preoperative (light-gray bars), postoperative (black bars), and young eyes (dark-gray bars). Error bars represent standard deviation.

Fig. 5
Fig. 5

Wave aberration patterns (third- and higher-order aberrations) of IOLs measured in vitro, with use of the eye cell model depicted in Fig. 1 and the laser ray-tracing technique.

Fig. 6
Fig. 6

Comparison of average IOL RMS in vivo (black bars) and in vitro (gray bars), for third- and higher-order, third-order, and fourth- and higher-order aberrations and astigmatism.

Fig. 7
Fig. 7

(a) Spherical aberration (Z40) of the IOLs as a function of IOL power, from in vivo measurements (diamonds), in vitro measurements (circles), and simulations (squares). (b) Total spherical aberration (Z40), from in vivo experimental measurements (black bars), and simulations (gray bars) with use of ocular individual parameters (corneal topography, lens position, axial length) and the corresponding IOL parameters.

Fig. 8
Fig. 8

(a) Changes in third-order IOL RMS as a function of tilt from in vitro measurements (open diamonds) and from simulations (solid circles). (b) Simulated IOL third-order RMS as a function of lens decentration. (c) Simulated third-order IOL RMS as a function of lens horizontal and vertical tilts, for a fixed simulated 0.5-mm IOL horizontal decentration. (d) Simulated third-order IOL RMS as a function of horizontal and vertical decentrations of the IOL, for a fixed simulated 2-deg IOL tilt (horizontal axis).

Fig. 9
Fig. 9

Total (black bars), corneal (dark-gray bars), and internal (light-gray bars) spherical aberration (Z40) for young, preoperative, and postoperative eyes.

Fig. 10
Fig. 10

Average MTF (radial profile), computed from the wave aberrations for the young and the postoperative groups in comparison with double-pass MTF measurements from previous studies by Artal et al.11 and Guirao et al.12 Pupil diameter=4 mm.

Fig. 11
Fig. 11

Average MTF (radial profile) computed from the wave aberration for a group of young crystalline lenses and for IOLs, both measured in vivo. Pupil diameter=5 mm. Error bars represent standard deviation across eyes.

Fig. 12
Fig. 12

Average MTF (radial profile) computed from the wave aberration for in vitro measurements and simulations from this study and for in vitro MTF measurements by Oshika and Shiokawa49 and by Norrby et al.4 Pupil diameter=3 mm. Error bars represent standard deviation of the in vitro measurements across eyes.

Tables (1)

Tables Icon

Table 1 Subjects’ Measurements

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P(α, β)=T(α, β)exp[-i 2πλ W(α, β)],

Metrics