Abstract

A theoretical model of the group velocity, dispersion parameter, and dispersion slope of coupled-cavity waveguides in photonic crystals is reported. Results arising from closed-form expressions show a good agreement with simulation results obtained by employing a plane-wave expansion method. Coupled-cavity waveguides present interesting dispersion properties that may be employed in applications such as optical signal processing, dispersion compensation, and optical delay lines.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
Photonic-crystal slow-light enhancement of nonlinear phase sensitivity

Marin Soljačić, Steven G. Johnson, Shanhui Fan, Mihai Ibanescu, Erich Ippen, and J. D. Joannopoulos
J. Opt. Soc. Am. B 19(9) 2052-2059 (2002)

Transmission properties of coupled-cavity waveguides based on two-dimensional photonic crystals with a triangular lattice of air holes

Tao Yang, Yoshimasa Sugimoto, Sheng Lan, Naoki Ikeda, Yu Tanaka, and Kiyoshi Asakawa
J. Opt. Soc. Am. B 20(9) 1922-1926 (2003)

Multiple period s-p hybridization in nano-strip embedded photonic crystal

Seunghoon Han, Il-Min Lee, Hwi Kim, and Byoungho Lee
Opt. Express 13(7) 2774-2781 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription