Abstract

For some sets of surfaces, the spatial ratios of cone-photoreceptor excitations produced by light reflected from pairs of surfaces are almost invariant under illuminant changes. These sets include large populations of spectral reflectances, some of which represent individual natural surfaces but not their relative abundances in nature. The aim of this study was to determine whether spatial cone-excitation ratios are preserved under illuminant changes within the natural visual environment. A fast hyperspectral imaging system was used to obtain populations of 640,000 reflectance spectra from each of 30 natural scenes. The statistics of spatial cone-excitation ratios for randomly selected pairs of points in these scenes were determined for two extreme daylights. Almost-invariant ratios were common, suggesting that they represent a reliable property of the natural visual environment and a suitable foundation for visual color constancy.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
    [CrossRef]
  2. D. H. Foster, S. M. C. Nascimento, Relational colour constancy from invariant cone-excitation ratios, Proc. R. Soc. London Ser. B 257, 115–121 (1994).
    [CrossRef]
  3. E. H. Land, J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
    [CrossRef] [PubMed]
  4. J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in Retinex theory. A comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
    [CrossRef]
  5. G. West, M. H. Brill, “Necessary and sufficient conditions for von Kries chromatic adaptation to give color constancy,” J. Math. Biol. 15, 249–258 (1982).
    [CrossRef] [PubMed]
  6. J. A. Worthey, M. H. Brill, “Heuristic analysis of von Kries color constancy,” J. Opt. Soc. Am. A 3, 1708–1712 (1986).
    [CrossRef] [PubMed]
  7. S. M. C. Nascimento, D. H. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. London Ser. B 264, 1395–1402 (1997).
    [CrossRef]
  8. S. M. C. Nascimento, D. H. Foster, “Relational color constancy in achromatic and isoluminant images,” J. Opt. Soc. Am. A 17, 225–231 (2000).
    [CrossRef]
  9. D. H. Foster, K. Amano, S. M. C. Nascimento, “Colour constancy from temporal cues: better matches with less variability under fast illuminant changes,” Vision Res. 41, 285–293 (2001).
    [CrossRef] [PubMed]
  10. D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
    [CrossRef] [PubMed]
  11. Munsell Book of Color—Matte Finish Collection (Munsell Color Corporation, Baltimore, Md., 1976).
  12. J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
    [CrossRef]
  13. T. Jaaskelainen, J. Parkkinen, S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990).
    [CrossRef]
  14. E. L. Krinov, “Spectral reflectance properties of natural formations,” (National Research Council of Canada, Ottawa, 1947).
  15. C. D. Hendley, S. Hecht, “The colors of natural objects and terrains, and their relation to visual color deficiency,” J. Opt. Soc. Am. 39, 870–873 (1949).
    [CrossRef] [PubMed]
  16. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
    [CrossRef]
  17. M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).
  18. D. Osorio, D. L. Ruderman, T. W. Cronin, “Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones,” J. Opt. Soc. Am. A 15, 16–22 (1998).
    [CrossRef]
  19. D. L. Ruderman, T. W. Cronin, C.-C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998).
    [CrossRef]
  20. C.-C. Chiao, T. W. Cronin, D. Osorio, “Color signals in natural scenes: characteristics of reflectance spectra and effects of natural illuminants,” J. Opt. Soc. Am. A 17, 218–224 (2000).
    [CrossRef]
  21. V. Bonnardel, L. T. Maloney, “Daylight, biochrome surfaces, and human chromatic response in the Fourier domain,” J. Opt. Soc. Am. A 17, 677–686 (2000).
    [CrossRef]
  22. C.-C. Chiao, M. Vorobyev, T. W. Cronin, D. Osorio, “Spectral tuning of dichromats to natural scenes,” Vision Res. 40, 3257–3271 (2000).
    [CrossRef] [PubMed]
  23. M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
    [CrossRef]
  24. C. A. Párraga, G. Brelstaff, T. Troscianko, I. R. Moorehead, “Color and luminance information in natural scenes,” J. Opt. Soc. Am. A 15, 563–569 (1998). For the correct spelling of the fourth author’s name, see C. A. Párraga, G. Brelstaff, T. Troscianko, I. R. Moorhead, “Color and luminance information in natural scenes: errata,” J. Opt. Soc. Am. A 15, 1708 (1998).
    [CrossRef]
  25. The term “hyperspectral” was used here instead of “multispectral” to indicate that the spacing of sample wavelengths could, in principle, have been arbitrarily fine.
  26. N. Gat, “Imaging spectroscopy using tunable filters: a review,” in Wavelet Applications VII, H. H. Szu, M. Vetterli, W. J. Campbell, J. R. Buss, eds., Proc. SPIE4056, 50–64 (2000).
    [CrossRef]
  27. V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
    [CrossRef] [PubMed]
  28. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  29. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  30. D. B. Judd, D. L. MacAdam, G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964).
    [CrossRef]
  31. G. J. Burton, I. R. Moorhead, “Color and spatial structure in natural scenes,” Appl. Opt. 26, 157–170 (1987).
    [CrossRef] [PubMed]
  32. Q. Zaidi, B. Spehar, J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
    [CrossRef]
  33. Q. Zaidi, “Identification of illuminant and object colors: heuristic-based algorithms,” J. Opt. Soc. Am. A 15, 1767–1776 (1998).
    [CrossRef]
  34. A formula based on a Michelson contrast produced similar values, apart from a scaling factor of approximately 2.
  35. A suggestion due to D. H. Brainard.
  36. S. M. C. Nascimento, D. H. Foster, “Detecting changes of spatial cone-excitation ratios in dichoptic viewing,” Vision Res. 41, 2601–2606 (2001).
    [CrossRef] [PubMed]

2001 (3)

D. H. Foster, K. Amano, S. M. C. Nascimento, “Colour constancy from temporal cues: better matches with less variability under fast illuminant changes,” Vision Res. 41, 285–293 (2001).
[CrossRef] [PubMed]

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef] [PubMed]

S. M. C. Nascimento, D. H. Foster, “Detecting changes of spatial cone-excitation ratios in dichoptic viewing,” Vision Res. 41, 2601–2606 (2001).
[CrossRef] [PubMed]

2000 (4)

1998 (4)

1997 (3)

Q. Zaidi, B. Spehar, J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
[CrossRef]

S. M. C. Nascimento, D. H. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. London Ser. B 264, 1395–1402 (1997).
[CrossRef]

M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
[CrossRef]

1994 (2)

M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

D. H. Foster, S. M. C. Nascimento, Relational colour constancy from invariant cone-excitation ratios, Proc. R. Soc. London Ser. B 257, 115–121 (1994).
[CrossRef]

1990 (1)

1989 (1)

1987 (1)

1986 (1)

1983 (1)

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
[CrossRef]

1982 (1)

G. West, M. H. Brill, “Necessary and sufficient conditions for von Kries chromatic adaptation to give color constancy,” J. Math. Biol. 15, 249–258 (1982).
[CrossRef] [PubMed]

1976 (1)

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in Retinex theory. A comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1972 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

1971 (1)

1964 (2)

1949 (1)

Amano, K.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef] [PubMed]

D. H. Foster, K. Amano, S. M. C. Nascimento, “Colour constancy from temporal cues: better matches with less variability under fast illuminant changes,” Vision Res. 41, 285–293 (2001).
[CrossRef] [PubMed]

Arend, L.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef] [PubMed]

Bonnardel, V.

Brelstaff, G.

Brill, M. H.

J. A. Worthey, M. H. Brill, “Heuristic analysis of von Kries color constancy,” J. Opt. Soc. Am. A 3, 1708–1712 (1986).
[CrossRef] [PubMed]

G. West, M. H. Brill, “Necessary and sufficient conditions for von Kries chromatic adaptation to give color constancy,” J. Math. Biol. 15, 249–258 (1982).
[CrossRef] [PubMed]

Buchsbaum, G.

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
[CrossRef]

Burton, G. J.

Chiao, C.-C.

Cohen, J.

J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
[CrossRef]

Cronin, T. W.

DeBonet, J.

Foster, D. H.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef] [PubMed]

S. M. C. Nascimento, D. H. Foster, “Detecting changes of spatial cone-excitation ratios in dichoptic viewing,” Vision Res. 41, 2601–2606 (2001).
[CrossRef] [PubMed]

D. H. Foster, K. Amano, S. M. C. Nascimento, “Colour constancy from temporal cues: better matches with less variability under fast illuminant changes,” Vision Res. 41, 285–293 (2001).
[CrossRef] [PubMed]

S. M. C. Nascimento, D. H. Foster, “Relational color constancy in achromatic and isoluminant images,” J. Opt. Soc. Am. A 17, 225–231 (2000).
[CrossRef]

S. M. C. Nascimento, D. H. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. London Ser. B 264, 1395–1402 (1997).
[CrossRef]

D. H. Foster, S. M. C. Nascimento, Relational colour constancy from invariant cone-excitation ratios, Proc. R. Soc. London Ser. B 257, 115–121 (1994).
[CrossRef]

Foster, J. S.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef] [PubMed]

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” in Wavelet Applications VII, H. H. Szu, M. Vetterli, W. J. Campbell, J. R. Buss, eds., Proc. SPIE4056, 50–64 (2000).
[CrossRef]

Gershon, R.

M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Gottschalk, A.

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
[CrossRef]

Hallikainen, J.

Hecht, S.

Hendley, C. D.

Iwan, L. S.

M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Jaaskelainen, T.

Judd, D. B.

Krinov, E. L.

E. L. Krinov, “Spectral reflectance properties of natural formations,” (National Research Council of Canada, Ottawa, 1947).

Land, E. H.

Linnell, K. J.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef] [PubMed]

MacAdam, D. L.

Maloney, L. T.

McCann, J. J.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in Retinex theory. A comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

E. H. Land, J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
[CrossRef] [PubMed]

McKee, S. P.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in Retinex theory. A comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

Mollon, J. D.

M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
[CrossRef]

Moorehead, I. R.

Moorhead, I. R.

Nascimento, S. M. C.

D. H. Foster, K. Amano, S. M. C. Nascimento, “Colour constancy from temporal cues: better matches with less variability under fast illuminant changes,” Vision Res. 41, 285–293 (2001).
[CrossRef] [PubMed]

S. M. C. Nascimento, D. H. Foster, “Detecting changes of spatial cone-excitation ratios in dichoptic viewing,” Vision Res. 41, 2601–2606 (2001).
[CrossRef] [PubMed]

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef] [PubMed]

S. M. C. Nascimento, D. H. Foster, “Relational color constancy in achromatic and isoluminant images,” J. Opt. Soc. Am. A 17, 225–231 (2000).
[CrossRef]

S. M. C. Nascimento, D. H. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. London Ser. B 264, 1395–1402 (1997).
[CrossRef]

D. H. Foster, S. M. C. Nascimento, Relational colour constancy from invariant cone-excitation ratios, Proc. R. Soc. London Ser. B 257, 115–121 (1994).
[CrossRef]

Nieves, J. L.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef] [PubMed]

Osorio, D.

Parkkinen, J.

Parkkinen, J. P. S.

Párraga, C. A.

Plet, S.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef] [PubMed]

Pokorny, J.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

Ruderman, D. L.

Smith, V. C.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

Spehar, B.

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Taylor, T. H.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in Retinex theory. A comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

Toyooka, S.

Troscianko, T.

Vorobyev, M.

C.-C. Chiao, M. Vorobyev, T. W. Cronin, D. Osorio, “Spectral tuning of dichromats to natural scenes,” Vision Res. 40, 3257–3271 (2000).
[CrossRef] [PubMed]

Vrhel, M. J.

M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Webster, M. A.

M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
[CrossRef]

West, G.

G. West, M. H. Brill, “Necessary and sufficient conditions for von Kries chromatic adaptation to give color constancy,” J. Math. Biol. 15, 249–258 (1982).
[CrossRef] [PubMed]

Worthey, J. A.

Wyszecki, G.

Zaidi, Q.

Appl. Opt. (1)

Color Res. Appl. (1)

M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

J. Math. Biol. (1)

G. West, M. H. Brill, “Necessary and sufficient conditions for von Kries chromatic adaptation to give color constancy,” J. Math. Biol. 15, 249–258 (1982).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (11)

C.-C. Chiao, T. W. Cronin, D. Osorio, “Color signals in natural scenes: characteristics of reflectance spectra and effects of natural illuminants,” J. Opt. Soc. Am. A 17, 218–224 (2000).
[CrossRef]

S. M. C. Nascimento, D. H. Foster, “Relational color constancy in achromatic and isoluminant images,” J. Opt. Soc. Am. A 17, 225–231 (2000).
[CrossRef]

V. Bonnardel, L. T. Maloney, “Daylight, biochrome surfaces, and human chromatic response in the Fourier domain,” J. Opt. Soc. Am. A 17, 677–686 (2000).
[CrossRef]

D. Osorio, D. L. Ruderman, T. W. Cronin, “Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones,” J. Opt. Soc. Am. A 15, 16–22 (1998).
[CrossRef]

C. A. Párraga, G. Brelstaff, T. Troscianko, I. R. Moorehead, “Color and luminance information in natural scenes,” J. Opt. Soc. Am. A 15, 563–569 (1998). For the correct spelling of the fourth author’s name, see C. A. Párraga, G. Brelstaff, T. Troscianko, I. R. Moorhead, “Color and luminance information in natural scenes: errata,” J. Opt. Soc. Am. A 15, 1708 (1998).
[CrossRef]

Q. Zaidi, “Identification of illuminant and object colors: heuristic-based algorithms,” J. Opt. Soc. Am. A 15, 1767–1776 (1998).
[CrossRef]

D. L. Ruderman, T. W. Cronin, C.-C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998).
[CrossRef]

Q. Zaidi, B. Spehar, J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
[CrossRef]

J. A. Worthey, M. H. Brill, “Heuristic analysis of von Kries color constancy,” J. Opt. Soc. Am. A 3, 1708–1712 (1986).
[CrossRef] [PubMed]

J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
[CrossRef]

T. Jaaskelainen, J. Parkkinen, S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. B (3)

S. M. C. Nascimento, D. H. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. London Ser. B 264, 1395–1402 (1997).
[CrossRef]

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London Ser. B 220, 89–113 (1983).
[CrossRef]

D. H. Foster, S. M. C. Nascimento, Relational colour constancy from invariant cone-excitation ratios, Proc. R. Soc. London Ser. B 257, 115–121 (1994).
[CrossRef]

Psychon. Sci. (1)

J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
[CrossRef]

Vision Res. (7)

S. M. C. Nascimento, D. H. Foster, “Detecting changes of spatial cone-excitation ratios in dichoptic viewing,” Vision Res. 41, 2601–2606 (2001).
[CrossRef] [PubMed]

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in Retinex theory. A comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

D. H. Foster, K. Amano, S. M. C. Nascimento, “Colour constancy from temporal cues: better matches with less variability under fast illuminant changes,” Vision Res. 41, 285–293 (2001).
[CrossRef] [PubMed]

C.-C. Chiao, M. Vorobyev, T. W. Cronin, D. Osorio, “Spectral tuning of dichromats to natural scenes,” Vision Res. 40, 3257–3271 (2000).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
[CrossRef]

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Other (7)

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

A formula based on a Michelson contrast produced similar values, apart from a scaling factor of approximately 2.

A suggestion due to D. H. Brainard.

The term “hyperspectral” was used here instead of “multispectral” to indicate that the spacing of sample wavelengths could, in principle, have been arbitrarily fine.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” in Wavelet Applications VII, H. H. Szu, M. Vetterli, W. J. Campbell, J. R. Buss, eds., Proc. SPIE4056, 50–64 (2000).
[CrossRef]

E. L. Krinov, “Spectral reflectance properties of natural formations,” (National Research Council of Canada, Ottawa, 1947).

Munsell Book of Color—Matte Finish Collection (Munsell Color Corporation, Baltimore, Md., 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Comparison of reflectance spectra estimated by hyperspectral imaging (symbols) and by telespectroradiometry (continuous lines). Data shown for a representative 4 of 15 colored surfaces used in a test scene.

Fig. 2
Fig. 2

Samples of rural and urban scenes used in this study.

Fig. 3
Fig. 3

Distributions in the CIE 1931 ( x ,   y ) chromaticity diagram of chromaticities (gray symbols) of populations of surfaces from sets of rural and urban scenes under CIE standard illuminant D 65 . Open symbols show mean chromaticity coordinates for each scene, and continuous lines show the daylight locus.

Fig. 4
Fig. 4

Cone excitations for a set of rural scenes. Each point in the graphs represents a pair of excitations for a single pixel: The value on the x axis is for a daylight of correlated color temperature 25,000 K, and the value on the y axis is for a daylight of correlated color temperature 4300 K. The data in each graph were based on 100 samples drawn at random from each of 15 rural scenes. Ranges were normalized to unity for each cone class. The straight lines are unconstrained regression lines. Data for a set of urban scenes were closely similar.

Fig. 5
Fig. 5

Frequencies of occurrence of relative deviations in spatial ratios of cone excitations under changes in illuminant for short-, medium-, and long-wavelength-sensitive cones, based on 15,000 pairs of surfaces drawn randomly from a set of 15 rural scenes and a set of 15 urban scenes (see Table 1 for mean values).

Tables (1)

Tables Icon

Table 1 Mean Relative Deviations in Spatial Ratios of Cone Excitations under Changes in Illuminant for the Three Classes of Cones (Standard Errors < 0.0006 )a

Metrics