Abstract

We compared the discriminability of motion direction with a relative motion stimulus after prolonged exposure to relative or uniform motion. Experiment 1 showed that the velocity threshold for the relative motion test after relative motion exposure was higher than that after uniform motion exposure, whereas no such difference was found when we tested with a uniform motion stimulus. Experiment 2 showed that prolonged exposure to relative motion decreased the discriminability of speed differences more than exposure to uniform motion. These results suggest that the visual system’s pathway for relative motion signals is different from that for uniform motion signals.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
    [CrossRef] [PubMed]
  2. J. S. Lappin, M. P. Donnelly, H. Kojima, “Coherence of early motion signals,” Vision Res. 41, 1631–1644 (2001).
    [CrossRef] [PubMed]
  3. J. M. Loomis, K. Nakayama, “A velocity analogue of brightness contrast,” Perception 2, 425–427 (1973).
    [CrossRef] [PubMed]
  4. I. Murakami, S. Shimojo, “Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes,” Vision Res. 33, 2091–2107 (1993).
    [CrossRef] [PubMed]
  5. M. Nawrot, R. Sekuler, “Assimilation and contrast in motion perception: explorations in cooperatively,” Vision Res. 30, 1439–1451 (1990).
    [CrossRef]
  6. R. J. Snowden, “Sensitivity to relative and absolute motion,” Perception 21, 563–568 (1992).
    [CrossRef] [PubMed]
  7. A. B. Watson, M. P. Eckert, “Motion-contrast sensitivity: visibility of motion gradients of various spatial frequencies,” J. Opt. Soc. Am. A 11, 496–505 (1994).
    [CrossRef]
  8. P. Walker, D. J. Powell, “Lateral interaction between neural channels sensitive to velocity in the human visual system,” Nature (London) 252, 732–733 (1974).
    [CrossRef]
  9. H. Ashida, K. Susami, “Linear motion aftereffect induced by pure relative motion,” Perception 26, 7–16 (1997).
    [CrossRef] [PubMed]
  10. H. Ashida, K. Susami, N. Osaka, “Re-evaluation of local adaptation for motion aftereffect,” Perception 25, 1391–1394 (1996).
    [CrossRef]
  11. H. H. Bell, S. W. Lehmkuhle, D. H. Westendorf, “On the relation between visual surround and motion aftereffect velocity,” Percept. Psychophys. 20, 13–16 (1976).
    [CrossRef]
  12. R. H. Day, E. R. Strelow, “Reduction or disappearance of visual aftereffect of movement in the absence of patterned surround,” Nature (London) 230, 55–56 (1971).
    [CrossRef]
  13. I. Murakami, “Motion aftereffect after monocular adaptation to filled-in motion at the blind spot,” Vision Res. 35, 1041–1045 (1995).
    [CrossRef] [PubMed]
  14. A. H. Reinhardt-Rutland, “Aftereffect of visual movement—the role of relative movement: a review,” Curr. Psychol. Res. Rev. 6, 275–288 (1988).
    [CrossRef]
  15. A. T. Smith, M. J. Musselwhite, P. Hammond, “The influence of background motion on the motion aftereffect,” Vision Res. 24, 1075–1082 (1984).
    [CrossRef] [PubMed]
  16. E. R. Strelow, R. H. Day, “Visual movement aftereffect: evidence for independent adaptation to moving target and stationary surround,” Vision Res. 15, 117–121 (1975).
    [CrossRef] [PubMed]
  17. M. T. Swanston, “Frames of reference and motion aftereffects,” Perception 23, 1257–1264 (1994).
    [CrossRef] [PubMed]
  18. M. T. Swanston, N. J. Wade, “Motion over the retina and motion aftereffect,” Perception 21, 569–582 (1992).
    [CrossRef]
  19. N. Wade, V. Silvano-Pardieu, “Visual motion aftereffects: differential adaptation and test stimulation,” Vision Res. 38, 573–578 (1998).
    [CrossRef] [PubMed]
  20. N. Wade, L. Spillmann, M. T. Swanston, “Visual motion aftereffects: critical adaptation and test conditions,” Vision Res. 36, 2167–2175 (1996).
    [CrossRef] [PubMed]
  21. N. Weisstein, W. Maguire, K. Berbaoum, “A phantom-motion aftereffect,” Science 198, 955–958 (1977).
    [CrossRef] [PubMed]
  22. B. Frost, “Neural mechanisms for detecting object motion and figure-ground boundaries, constructed with self-motion detecting system,” in Brain Mechanism and Spatial Vision, D. Ingle, M. Jannerod, D. Lee, ed. (Martinus Nijioff, Dordrecht, The Netherlands, 1985), pp. 415–448.
  23. B. Frost, K. Nakayama, “Single visual neurons code opposing motion independent of direction,” Science 220, 744–745 (1983).
    [CrossRef] [PubMed]
  24. W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
    [PubMed]
  25. M. C. Morrone, C. D. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
    [CrossRef]
  26. A. T. Smith, N. E. Scott-Samuel, K. D. Singh, “Global motion adaptation,” Vision Res. 40, 1069–1075 (2000).
    [CrossRef] [PubMed]
  27. D. W. Williams, R. Sekular, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
    [CrossRef] [PubMed]
  28. S. Nishida, H. Ashida, T. Sato, “Contrast dependencies of two types of motion aftereffect,” Vision Res. 37, 553–563 (1997).
    [CrossRef] [PubMed]
  29. S. Shioiri, S. Ito, K. Sakurai, H. Yaguchi, “Detection of relative and uniform motion,” J. Opt. Soc. Am. A (to be published).
  30. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer display,” Vision Res. 31, 1337–1350 (1991).
    [CrossRef]
  31. K. Tanaka, K. Hikosaka, H. Saito, M. Yukie, Y. Fukada, E. Iwai, “Analysis of local and wide-field movements in the superior temporal visual area of macaque monkey,” J. Neurosci. 6, 134–144 (1986).
    [PubMed]
  32. J. Allman, F. Miezin, E. McGuinness, “Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT),” Perception 14, 105–126 (1985).
    [CrossRef]
  33. C. A. Johnston, H. W. Leibowitz, “Velocity–time reciprocity in the perception of motion: foveal and peripheral determinations,” Vision Res. 16, 177–180 (1976).
    [CrossRef]
  34. R. P. Scobey, C. A. Johnson, “Displacement thresholds for unidirectional and oscillatory movement,” Vision Res. 21, 1297–1302 (1981).
    [CrossRef] [PubMed]
  35. J. Yangand, S. B. Stevenson, “Effects of spatial frequency, duration, and contrast on discriminating motion directions,” J. Opt. Soc. Am. A 14, 2041–2048 (1997).
    [CrossRef]
  36. W. L. Sachtler, Q. Zaidi, “Effect of spatial configuration on motion aftereffects,” J. Opt. Soc. Am. A 10, 1433–1449 (1993).
    [CrossRef] [PubMed]
  37. G. Mather, “The movement aftereffect and a distribution-shift model for coding the direction of visual movement,” Perception 9, 379–392 (1980).
    [CrossRef] [PubMed]
  38. J. Raymond, “Responses to opposed direction directions of motion: continuum or independent mechanisms,” Vision Res. 36, 1931–1937 (1996).
    [CrossRef] [PubMed]
  39. V. A. F. Lamme, B. W. van Dijk, H. Spekreijse, “Contour from motion processing occurs in primary visual cortex,” Nature (London) 363, 541–543 (1993).
    [CrossRef]
  40. J. B. Reppas, S. Niyogi, A. M. Dale, M. I. Sereno, R. B. Tootell, “Representation of motion boundaries in retinotopic human visual cortical areas,” Nature (London) 388, 175–179 (1997).
    [CrossRef]
  41. L. A. Symons, P. M. Pearson, B. Timney, “The aftereffect to relative motion does not show interocular transfer,” Perception 25, 651–660 (1996).
    [CrossRef] [PubMed]

2001

J. S. Lappin, M. P. Donnelly, H. Kojima, “Coherence of early motion signals,” Vision Res. 41, 1631–1644 (2001).
[CrossRef] [PubMed]

2000

A. T. Smith, N. E. Scott-Samuel, K. D. Singh, “Global motion adaptation,” Vision Res. 40, 1069–1075 (2000).
[CrossRef] [PubMed]

1998

N. Wade, V. Silvano-Pardieu, “Visual motion aftereffects: differential adaptation and test stimulation,” Vision Res. 38, 573–578 (1998).
[CrossRef] [PubMed]

1997

S. Nishida, H. Ashida, T. Sato, “Contrast dependencies of two types of motion aftereffect,” Vision Res. 37, 553–563 (1997).
[CrossRef] [PubMed]

J. Yangand, S. B. Stevenson, “Effects of spatial frequency, duration, and contrast on discriminating motion directions,” J. Opt. Soc. Am. A 14, 2041–2048 (1997).
[CrossRef]

H. Ashida, K. Susami, “Linear motion aftereffect induced by pure relative motion,” Perception 26, 7–16 (1997).
[CrossRef] [PubMed]

J. B. Reppas, S. Niyogi, A. M. Dale, M. I. Sereno, R. B. Tootell, “Representation of motion boundaries in retinotopic human visual cortical areas,” Nature (London) 388, 175–179 (1997).
[CrossRef]

1996

L. A. Symons, P. M. Pearson, B. Timney, “The aftereffect to relative motion does not show interocular transfer,” Perception 25, 651–660 (1996).
[CrossRef] [PubMed]

J. Raymond, “Responses to opposed direction directions of motion: continuum or independent mechanisms,” Vision Res. 36, 1931–1937 (1996).
[CrossRef] [PubMed]

H. Ashida, K. Susami, N. Osaka, “Re-evaluation of local adaptation for motion aftereffect,” Perception 25, 1391–1394 (1996).
[CrossRef]

N. Wade, L. Spillmann, M. T. Swanston, “Visual motion aftereffects: critical adaptation and test conditions,” Vision Res. 36, 2167–2175 (1996).
[CrossRef] [PubMed]

1995

M. C. Morrone, C. D. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

I. Murakami, “Motion aftereffect after monocular adaptation to filled-in motion at the blind spot,” Vision Res. 35, 1041–1045 (1995).
[CrossRef] [PubMed]

1994

1993

W. L. Sachtler, Q. Zaidi, “Effect of spatial configuration on motion aftereffects,” J. Opt. Soc. Am. A 10, 1433–1449 (1993).
[CrossRef] [PubMed]

I. Murakami, S. Shimojo, “Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes,” Vision Res. 33, 2091–2107 (1993).
[CrossRef] [PubMed]

V. A. F. Lamme, B. W. van Dijk, H. Spekreijse, “Contour from motion processing occurs in primary visual cortex,” Nature (London) 363, 541–543 (1993).
[CrossRef]

1992

R. J. Snowden, “Sensitivity to relative and absolute motion,” Perception 21, 563–568 (1992).
[CrossRef] [PubMed]

M. T. Swanston, N. J. Wade, “Motion over the retina and motion aftereffect,” Perception 21, 569–582 (1992).
[CrossRef]

1991

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer display,” Vision Res. 31, 1337–1350 (1991).
[CrossRef]

1990

M. Nawrot, R. Sekuler, “Assimilation and contrast in motion perception: explorations in cooperatively,” Vision Res. 30, 1439–1451 (1990).
[CrossRef]

1988

A. H. Reinhardt-Rutland, “Aftereffect of visual movement—the role of relative movement: a review,” Curr. Psychol. Res. Rev. 6, 275–288 (1988).
[CrossRef]

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

1986

K. Tanaka, K. Hikosaka, H. Saito, M. Yukie, Y. Fukada, E. Iwai, “Analysis of local and wide-field movements in the superior temporal visual area of macaque monkey,” J. Neurosci. 6, 134–144 (1986).
[PubMed]

1985

J. Allman, F. Miezin, E. McGuinness, “Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT),” Perception 14, 105–126 (1985).
[CrossRef]

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[CrossRef] [PubMed]

1984

A. T. Smith, M. J. Musselwhite, P. Hammond, “The influence of background motion on the motion aftereffect,” Vision Res. 24, 1075–1082 (1984).
[CrossRef] [PubMed]

D. W. Williams, R. Sekular, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
[CrossRef] [PubMed]

1983

B. Frost, K. Nakayama, “Single visual neurons code opposing motion independent of direction,” Science 220, 744–745 (1983).
[CrossRef] [PubMed]

1981

R. P. Scobey, C. A. Johnson, “Displacement thresholds for unidirectional and oscillatory movement,” Vision Res. 21, 1297–1302 (1981).
[CrossRef] [PubMed]

1980

G. Mather, “The movement aftereffect and a distribution-shift model for coding the direction of visual movement,” Perception 9, 379–392 (1980).
[CrossRef] [PubMed]

1977

N. Weisstein, W. Maguire, K. Berbaoum, “A phantom-motion aftereffect,” Science 198, 955–958 (1977).
[CrossRef] [PubMed]

1976

C. A. Johnston, H. W. Leibowitz, “Velocity–time reciprocity in the perception of motion: foveal and peripheral determinations,” Vision Res. 16, 177–180 (1976).
[CrossRef]

H. H. Bell, S. W. Lehmkuhle, D. H. Westendorf, “On the relation between visual surround and motion aftereffect velocity,” Percept. Psychophys. 20, 13–16 (1976).
[CrossRef]

1975

E. R. Strelow, R. H. Day, “Visual movement aftereffect: evidence for independent adaptation to moving target and stationary surround,” Vision Res. 15, 117–121 (1975).
[CrossRef] [PubMed]

1974

P. Walker, D. J. Powell, “Lateral interaction between neural channels sensitive to velocity in the human visual system,” Nature (London) 252, 732–733 (1974).
[CrossRef]

1973

J. M. Loomis, K. Nakayama, “A velocity analogue of brightness contrast,” Perception 2, 425–427 (1973).
[CrossRef] [PubMed]

1971

R. H. Day, E. R. Strelow, “Reduction or disappearance of visual aftereffect of movement in the absence of patterned surround,” Nature (London) 230, 55–56 (1971).
[CrossRef]

Allman, J.

J. Allman, F. Miezin, E. McGuinness, “Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT),” Perception 14, 105–126 (1985).
[CrossRef]

Andersen, R. A.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[CrossRef] [PubMed]

Ashida, H.

H. Ashida, K. Susami, “Linear motion aftereffect induced by pure relative motion,” Perception 26, 7–16 (1997).
[CrossRef] [PubMed]

S. Nishida, H. Ashida, T. Sato, “Contrast dependencies of two types of motion aftereffect,” Vision Res. 37, 553–563 (1997).
[CrossRef] [PubMed]

H. Ashida, K. Susami, N. Osaka, “Re-evaluation of local adaptation for motion aftereffect,” Perception 25, 1391–1394 (1996).
[CrossRef]

Bell, H. H.

H. H. Bell, S. W. Lehmkuhle, D. H. Westendorf, “On the relation between visual surround and motion aftereffect velocity,” Percept. Psychophys. 20, 13–16 (1976).
[CrossRef]

Berbaoum, K.

N. Weisstein, W. Maguire, K. Berbaoum, “A phantom-motion aftereffect,” Science 198, 955–958 (1977).
[CrossRef] [PubMed]

Burr, C. D.

M. C. Morrone, C. D. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

Dale, A. M.

J. B. Reppas, S. Niyogi, A. M. Dale, M. I. Sereno, R. B. Tootell, “Representation of motion boundaries in retinotopic human visual cortical areas,” Nature (London) 388, 175–179 (1997).
[CrossRef]

Day, R. H.

E. R. Strelow, R. H. Day, “Visual movement aftereffect: evidence for independent adaptation to moving target and stationary surround,” Vision Res. 15, 117–121 (1975).
[CrossRef] [PubMed]

R. H. Day, E. R. Strelow, “Reduction or disappearance of visual aftereffect of movement in the absence of patterned surround,” Nature (London) 230, 55–56 (1971).
[CrossRef]

Donnelly, M. P.

J. S. Lappin, M. P. Donnelly, H. Kojima, “Coherence of early motion signals,” Vision Res. 41, 1631–1644 (2001).
[CrossRef] [PubMed]

Eckert, M. P.

Frost, B.

B. Frost, K. Nakayama, “Single visual neurons code opposing motion independent of direction,” Science 220, 744–745 (1983).
[CrossRef] [PubMed]

B. Frost, “Neural mechanisms for detecting object motion and figure-ground boundaries, constructed with self-motion detecting system,” in Brain Mechanism and Spatial Vision, D. Ingle, M. Jannerod, D. Lee, ed. (Martinus Nijioff, Dordrecht, The Netherlands, 1985), pp. 415–448.

Fukada, Y.

K. Tanaka, K. Hikosaka, H. Saito, M. Yukie, Y. Fukada, E. Iwai, “Analysis of local and wide-field movements in the superior temporal visual area of macaque monkey,” J. Neurosci. 6, 134–144 (1986).
[PubMed]

Golomb, B.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[CrossRef] [PubMed]

Hammond, P.

A. T. Smith, M. J. Musselwhite, P. Hammond, “The influence of background motion on the motion aftereffect,” Vision Res. 24, 1075–1082 (1984).
[CrossRef] [PubMed]

Hikosaka, K.

K. Tanaka, K. Hikosaka, H. Saito, M. Yukie, Y. Fukada, E. Iwai, “Analysis of local and wide-field movements in the superior temporal visual area of macaque monkey,” J. Neurosci. 6, 134–144 (1986).
[PubMed]

Ito, S.

S. Shioiri, S. Ito, K. Sakurai, H. Yaguchi, “Detection of relative and uniform motion,” J. Opt. Soc. Am. A (to be published).

Iwai, E.

K. Tanaka, K. Hikosaka, H. Saito, M. Yukie, Y. Fukada, E. Iwai, “Analysis of local and wide-field movements in the superior temporal visual area of macaque monkey,” J. Neurosci. 6, 134–144 (1986).
[PubMed]

Johnson, C. A.

R. P. Scobey, C. A. Johnson, “Displacement thresholds for unidirectional and oscillatory movement,” Vision Res. 21, 1297–1302 (1981).
[CrossRef] [PubMed]

Johnston, C. A.

C. A. Johnston, H. W. Leibowitz, “Velocity–time reciprocity in the perception of motion: foveal and peripheral determinations,” Vision Res. 16, 177–180 (1976).
[CrossRef]

Kojima, H.

J. S. Lappin, M. P. Donnelly, H. Kojima, “Coherence of early motion signals,” Vision Res. 41, 1631–1644 (2001).
[CrossRef] [PubMed]

Lamme, V. A. F.

V. A. F. Lamme, B. W. van Dijk, H. Spekreijse, “Contour from motion processing occurs in primary visual cortex,” Nature (London) 363, 541–543 (1993).
[CrossRef]

Lappin, J. S.

J. S. Lappin, M. P. Donnelly, H. Kojima, “Coherence of early motion signals,” Vision Res. 41, 1631–1644 (2001).
[CrossRef] [PubMed]

Lehmkuhle, S. W.

H. H. Bell, S. W. Lehmkuhle, D. H. Westendorf, “On the relation between visual surround and motion aftereffect velocity,” Percept. Psychophys. 20, 13–16 (1976).
[CrossRef]

Leibowitz, H. W.

C. A. Johnston, H. W. Leibowitz, “Velocity–time reciprocity in the perception of motion: foveal and peripheral determinations,” Vision Res. 16, 177–180 (1976).
[CrossRef]

Loomis, J. M.

J. M. Loomis, K. Nakayama, “A velocity analogue of brightness contrast,” Perception 2, 425–427 (1973).
[CrossRef] [PubMed]

MacLeod, D. I.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[CrossRef] [PubMed]

Maguire, W.

N. Weisstein, W. Maguire, K. Berbaoum, “A phantom-motion aftereffect,” Science 198, 955–958 (1977).
[CrossRef] [PubMed]

Mather, G.

G. Mather, “The movement aftereffect and a distribution-shift model for coding the direction of visual movement,” Perception 9, 379–392 (1980).
[CrossRef] [PubMed]

McGuinness, E.

J. Allman, F. Miezin, E. McGuinness, “Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT),” Perception 14, 105–126 (1985).
[CrossRef]

Miezin, F.

J. Allman, F. Miezin, E. McGuinness, “Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT),” Perception 14, 105–126 (1985).
[CrossRef]

Morrone, M. C.

M. C. Morrone, C. D. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

Murakami, I.

I. Murakami, “Motion aftereffect after monocular adaptation to filled-in motion at the blind spot,” Vision Res. 35, 1041–1045 (1995).
[CrossRef] [PubMed]

I. Murakami, S. Shimojo, “Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes,” Vision Res. 33, 2091–2107 (1993).
[CrossRef] [PubMed]

Musselwhite, M. J.

A. T. Smith, M. J. Musselwhite, P. Hammond, “The influence of background motion on the motion aftereffect,” Vision Res. 24, 1075–1082 (1984).
[CrossRef] [PubMed]

Nakayama, K.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[CrossRef] [PubMed]

B. Frost, K. Nakayama, “Single visual neurons code opposing motion independent of direction,” Science 220, 744–745 (1983).
[CrossRef] [PubMed]

J. M. Loomis, K. Nakayama, “A velocity analogue of brightness contrast,” Perception 2, 425–427 (1973).
[CrossRef] [PubMed]

Nawrot, M.

M. Nawrot, R. Sekuler, “Assimilation and contrast in motion perception: explorations in cooperatively,” Vision Res. 30, 1439–1451 (1990).
[CrossRef]

Newsome, W. T.

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

Nishida, S.

S. Nishida, H. Ashida, T. Sato, “Contrast dependencies of two types of motion aftereffect,” Vision Res. 37, 553–563 (1997).
[CrossRef] [PubMed]

Niyogi, S.

J. B. Reppas, S. Niyogi, A. M. Dale, M. I. Sereno, R. B. Tootell, “Representation of motion boundaries in retinotopic human visual cortical areas,” Nature (London) 388, 175–179 (1997).
[CrossRef]

Osaka, N.

H. Ashida, K. Susami, N. Osaka, “Re-evaluation of local adaptation for motion aftereffect,” Perception 25, 1391–1394 (1996).
[CrossRef]

Pare, E. B.

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

Pearson, P. M.

L. A. Symons, P. M. Pearson, B. Timney, “The aftereffect to relative motion does not show interocular transfer,” Perception 25, 651–660 (1996).
[CrossRef] [PubMed]

Pelli, D. G.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer display,” Vision Res. 31, 1337–1350 (1991).
[CrossRef]

Powell, D. J.

P. Walker, D. J. Powell, “Lateral interaction between neural channels sensitive to velocity in the human visual system,” Nature (London) 252, 732–733 (1974).
[CrossRef]

Raymond, J.

J. Raymond, “Responses to opposed direction directions of motion: continuum or independent mechanisms,” Vision Res. 36, 1931–1937 (1996).
[CrossRef] [PubMed]

Reinhardt-Rutland, A. H.

A. H. Reinhardt-Rutland, “Aftereffect of visual movement—the role of relative movement: a review,” Curr. Psychol. Res. Rev. 6, 275–288 (1988).
[CrossRef]

Reppas, J. B.

J. B. Reppas, S. Niyogi, A. M. Dale, M. I. Sereno, R. B. Tootell, “Representation of motion boundaries in retinotopic human visual cortical areas,” Nature (London) 388, 175–179 (1997).
[CrossRef]

Sachtler, W. L.

Saito, H.

K. Tanaka, K. Hikosaka, H. Saito, M. Yukie, Y. Fukada, E. Iwai, “Analysis of local and wide-field movements in the superior temporal visual area of macaque monkey,” J. Neurosci. 6, 134–144 (1986).
[PubMed]

Sakurai, K.

S. Shioiri, S. Ito, K. Sakurai, H. Yaguchi, “Detection of relative and uniform motion,” J. Opt. Soc. Am. A (to be published).

Sato, T.

S. Nishida, H. Ashida, T. Sato, “Contrast dependencies of two types of motion aftereffect,” Vision Res. 37, 553–563 (1997).
[CrossRef] [PubMed]

Scobey, R. P.

R. P. Scobey, C. A. Johnson, “Displacement thresholds for unidirectional and oscillatory movement,” Vision Res. 21, 1297–1302 (1981).
[CrossRef] [PubMed]

Scott-Samuel, N. E.

A. T. Smith, N. E. Scott-Samuel, K. D. Singh, “Global motion adaptation,” Vision Res. 40, 1069–1075 (2000).
[CrossRef] [PubMed]

Sekular, R.

D. W. Williams, R. Sekular, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
[CrossRef] [PubMed]

Sekuler, R.

M. Nawrot, R. Sekuler, “Assimilation and contrast in motion perception: explorations in cooperatively,” Vision Res. 30, 1439–1451 (1990).
[CrossRef]

Sereno, M. I.

J. B. Reppas, S. Niyogi, A. M. Dale, M. I. Sereno, R. B. Tootell, “Representation of motion boundaries in retinotopic human visual cortical areas,” Nature (London) 388, 175–179 (1997).
[CrossRef]

Shimojo, S.

I. Murakami, S. Shimojo, “Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes,” Vision Res. 33, 2091–2107 (1993).
[CrossRef] [PubMed]

Shioiri, S.

S. Shioiri, S. Ito, K. Sakurai, H. Yaguchi, “Detection of relative and uniform motion,” J. Opt. Soc. Am. A (to be published).

Silvano-Pardieu, V.

N. Wade, V. Silvano-Pardieu, “Visual motion aftereffects: differential adaptation and test stimulation,” Vision Res. 38, 573–578 (1998).
[CrossRef] [PubMed]

Singh, K. D.

A. T. Smith, N. E. Scott-Samuel, K. D. Singh, “Global motion adaptation,” Vision Res. 40, 1069–1075 (2000).
[CrossRef] [PubMed]

Smith, A. T.

A. T. Smith, N. E. Scott-Samuel, K. D. Singh, “Global motion adaptation,” Vision Res. 40, 1069–1075 (2000).
[CrossRef] [PubMed]

A. T. Smith, M. J. Musselwhite, P. Hammond, “The influence of background motion on the motion aftereffect,” Vision Res. 24, 1075–1082 (1984).
[CrossRef] [PubMed]

Snowden, R. J.

R. J. Snowden, “Sensitivity to relative and absolute motion,” Perception 21, 563–568 (1992).
[CrossRef] [PubMed]

Spekreijse, H.

V. A. F. Lamme, B. W. van Dijk, H. Spekreijse, “Contour from motion processing occurs in primary visual cortex,” Nature (London) 363, 541–543 (1993).
[CrossRef]

Spillmann, L.

N. Wade, L. Spillmann, M. T. Swanston, “Visual motion aftereffects: critical adaptation and test conditions,” Vision Res. 36, 2167–2175 (1996).
[CrossRef] [PubMed]

Stevenson, S. B.

Strelow, E. R.

E. R. Strelow, R. H. Day, “Visual movement aftereffect: evidence for independent adaptation to moving target and stationary surround,” Vision Res. 15, 117–121 (1975).
[CrossRef] [PubMed]

R. H. Day, E. R. Strelow, “Reduction or disappearance of visual aftereffect of movement in the absence of patterned surround,” Nature (London) 230, 55–56 (1971).
[CrossRef]

Susami, K.

H. Ashida, K. Susami, “Linear motion aftereffect induced by pure relative motion,” Perception 26, 7–16 (1997).
[CrossRef] [PubMed]

H. Ashida, K. Susami, N. Osaka, “Re-evaluation of local adaptation for motion aftereffect,” Perception 25, 1391–1394 (1996).
[CrossRef]

Swanston, M. T.

N. Wade, L. Spillmann, M. T. Swanston, “Visual motion aftereffects: critical adaptation and test conditions,” Vision Res. 36, 2167–2175 (1996).
[CrossRef] [PubMed]

M. T. Swanston, “Frames of reference and motion aftereffects,” Perception 23, 1257–1264 (1994).
[CrossRef] [PubMed]

M. T. Swanston, N. J. Wade, “Motion over the retina and motion aftereffect,” Perception 21, 569–582 (1992).
[CrossRef]

Symons, L. A.

L. A. Symons, P. M. Pearson, B. Timney, “The aftereffect to relative motion does not show interocular transfer,” Perception 25, 651–660 (1996).
[CrossRef] [PubMed]

Tanaka, K.

K. Tanaka, K. Hikosaka, H. Saito, M. Yukie, Y. Fukada, E. Iwai, “Analysis of local and wide-field movements in the superior temporal visual area of macaque monkey,” J. Neurosci. 6, 134–144 (1986).
[PubMed]

Timney, B.

L. A. Symons, P. M. Pearson, B. Timney, “The aftereffect to relative motion does not show interocular transfer,” Perception 25, 651–660 (1996).
[CrossRef] [PubMed]

Tootell, R. B.

J. B. Reppas, S. Niyogi, A. M. Dale, M. I. Sereno, R. B. Tootell, “Representation of motion boundaries in retinotopic human visual cortical areas,” Nature (London) 388, 175–179 (1997).
[CrossRef]

Vaina, L. M.

M. C. Morrone, C. D. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

van Dijk, B. W.

V. A. F. Lamme, B. W. van Dijk, H. Spekreijse, “Contour from motion processing occurs in primary visual cortex,” Nature (London) 363, 541–543 (1993).
[CrossRef]

Wade, N.

N. Wade, V. Silvano-Pardieu, “Visual motion aftereffects: differential adaptation and test stimulation,” Vision Res. 38, 573–578 (1998).
[CrossRef] [PubMed]

N. Wade, L. Spillmann, M. T. Swanston, “Visual motion aftereffects: critical adaptation and test conditions,” Vision Res. 36, 2167–2175 (1996).
[CrossRef] [PubMed]

Wade, N. J.

M. T. Swanston, N. J. Wade, “Motion over the retina and motion aftereffect,” Perception 21, 569–582 (1992).
[CrossRef]

Walker, P.

P. Walker, D. J. Powell, “Lateral interaction between neural channels sensitive to velocity in the human visual system,” Nature (London) 252, 732–733 (1974).
[CrossRef]

Watson, A. B.

Weisstein, N.

N. Weisstein, W. Maguire, K. Berbaoum, “A phantom-motion aftereffect,” Science 198, 955–958 (1977).
[CrossRef] [PubMed]

Westendorf, D. H.

H. H. Bell, S. W. Lehmkuhle, D. H. Westendorf, “On the relation between visual surround and motion aftereffect velocity,” Percept. Psychophys. 20, 13–16 (1976).
[CrossRef]

Williams, D. W.

D. W. Williams, R. Sekular, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
[CrossRef] [PubMed]

Wong, A.

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[CrossRef] [PubMed]

Yaguchi, H.

S. Shioiri, S. Ito, K. Sakurai, H. Yaguchi, “Detection of relative and uniform motion,” J. Opt. Soc. Am. A (to be published).

Yangand, J.

Yukie, M.

K. Tanaka, K. Hikosaka, H. Saito, M. Yukie, Y. Fukada, E. Iwai, “Analysis of local and wide-field movements in the superior temporal visual area of macaque monkey,” J. Neurosci. 6, 134–144 (1986).
[PubMed]

Zaidi, Q.

Zhang, L.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer display,” Vision Res. 31, 1337–1350 (1991).
[CrossRef]

Curr. Psychol. Res. Rev.

A. H. Reinhardt-Rutland, “Aftereffect of visual movement—the role of relative movement: a review,” Curr. Psychol. Res. Rev. 6, 275–288 (1988).
[CrossRef]

J. Neurosci.

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

K. Tanaka, K. Hikosaka, H. Saito, M. Yukie, Y. Fukada, E. Iwai, “Analysis of local and wide-field movements in the superior temporal visual area of macaque monkey,” J. Neurosci. 6, 134–144 (1986).
[PubMed]

J. Opt. Soc. Am. A

Nature (London)

P. Walker, D. J. Powell, “Lateral interaction between neural channels sensitive to velocity in the human visual system,” Nature (London) 252, 732–733 (1974).
[CrossRef]

R. H. Day, E. R. Strelow, “Reduction or disappearance of visual aftereffect of movement in the absence of patterned surround,” Nature (London) 230, 55–56 (1971).
[CrossRef]

M. C. Morrone, C. D. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

V. A. F. Lamme, B. W. van Dijk, H. Spekreijse, “Contour from motion processing occurs in primary visual cortex,” Nature (London) 363, 541–543 (1993).
[CrossRef]

J. B. Reppas, S. Niyogi, A. M. Dale, M. I. Sereno, R. B. Tootell, “Representation of motion boundaries in retinotopic human visual cortical areas,” Nature (London) 388, 175–179 (1997).
[CrossRef]

Percept. Psychophys.

H. H. Bell, S. W. Lehmkuhle, D. H. Westendorf, “On the relation between visual surround and motion aftereffect velocity,” Percept. Psychophys. 20, 13–16 (1976).
[CrossRef]

Perception

R. J. Snowden, “Sensitivity to relative and absolute motion,” Perception 21, 563–568 (1992).
[CrossRef] [PubMed]

M. T. Swanston, “Frames of reference and motion aftereffects,” Perception 23, 1257–1264 (1994).
[CrossRef] [PubMed]

M. T. Swanston, N. J. Wade, “Motion over the retina and motion aftereffect,” Perception 21, 569–582 (1992).
[CrossRef]

H. Ashida, K. Susami, “Linear motion aftereffect induced by pure relative motion,” Perception 26, 7–16 (1997).
[CrossRef] [PubMed]

H. Ashida, K. Susami, N. Osaka, “Re-evaluation of local adaptation for motion aftereffect,” Perception 25, 1391–1394 (1996).
[CrossRef]

J. M. Loomis, K. Nakayama, “A velocity analogue of brightness contrast,” Perception 2, 425–427 (1973).
[CrossRef] [PubMed]

G. Mather, “The movement aftereffect and a distribution-shift model for coding the direction of visual movement,” Perception 9, 379–392 (1980).
[CrossRef] [PubMed]

J. Allman, F. Miezin, E. McGuinness, “Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT),” Perception 14, 105–126 (1985).
[CrossRef]

L. A. Symons, P. M. Pearson, B. Timney, “The aftereffect to relative motion does not show interocular transfer,” Perception 25, 651–660 (1996).
[CrossRef] [PubMed]

Science

B. Frost, K. Nakayama, “Single visual neurons code opposing motion independent of direction,” Science 220, 744–745 (1983).
[CrossRef] [PubMed]

N. Weisstein, W. Maguire, K. Berbaoum, “A phantom-motion aftereffect,” Science 198, 955–958 (1977).
[CrossRef] [PubMed]

Vision Res.

A. T. Smith, M. J. Musselwhite, P. Hammond, “The influence of background motion on the motion aftereffect,” Vision Res. 24, 1075–1082 (1984).
[CrossRef] [PubMed]

E. R. Strelow, R. H. Day, “Visual movement aftereffect: evidence for independent adaptation to moving target and stationary surround,” Vision Res. 15, 117–121 (1975).
[CrossRef] [PubMed]

A. T. Smith, N. E. Scott-Samuel, K. D. Singh, “Global motion adaptation,” Vision Res. 40, 1069–1075 (2000).
[CrossRef] [PubMed]

D. W. Williams, R. Sekular, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
[CrossRef] [PubMed]

S. Nishida, H. Ashida, T. Sato, “Contrast dependencies of two types of motion aftereffect,” Vision Res. 37, 553–563 (1997).
[CrossRef] [PubMed]

C. A. Johnston, H. W. Leibowitz, “Velocity–time reciprocity in the perception of motion: foveal and peripheral determinations,” Vision Res. 16, 177–180 (1976).
[CrossRef]

R. P. Scobey, C. A. Johnson, “Displacement thresholds for unidirectional and oscillatory movement,” Vision Res. 21, 1297–1302 (1981).
[CrossRef] [PubMed]

J. Raymond, “Responses to opposed direction directions of motion: continuum or independent mechanisms,” Vision Res. 36, 1931–1937 (1996).
[CrossRef] [PubMed]

I. Murakami, S. Shimojo, “Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes,” Vision Res. 33, 2091–2107 (1993).
[CrossRef] [PubMed]

M. Nawrot, R. Sekuler, “Assimilation and contrast in motion perception: explorations in cooperatively,” Vision Res. 30, 1439–1451 (1990).
[CrossRef]

B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813–820 (1985).
[CrossRef] [PubMed]

J. S. Lappin, M. P. Donnelly, H. Kojima, “Coherence of early motion signals,” Vision Res. 41, 1631–1644 (2001).
[CrossRef] [PubMed]

N. Wade, V. Silvano-Pardieu, “Visual motion aftereffects: differential adaptation and test stimulation,” Vision Res. 38, 573–578 (1998).
[CrossRef] [PubMed]

N. Wade, L. Spillmann, M. T. Swanston, “Visual motion aftereffects: critical adaptation and test conditions,” Vision Res. 36, 2167–2175 (1996).
[CrossRef] [PubMed]

I. Murakami, “Motion aftereffect after monocular adaptation to filled-in motion at the blind spot,” Vision Res. 35, 1041–1045 (1995).
[CrossRef] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer display,” Vision Res. 31, 1337–1350 (1991).
[CrossRef]

Other

S. Shioiri, S. Ito, K. Sakurai, H. Yaguchi, “Detection of relative and uniform motion,” J. Opt. Soc. Am. A (to be published).

B. Frost, “Neural mechanisms for detecting object motion and figure-ground boundaries, constructed with self-motion detecting system,” in Brain Mechanism and Spatial Vision, D. Ingle, M. Jannerod, D. Lee, ed. (Martinus Nijioff, Dordrecht, The Netherlands, 1985), pp. 415–448.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Models of two parallel motion pathways. There are detectors of local motion signals at the first stage, and their outputs are combined to analyze relative or uniform/global motion at the next stage. A small circle with an arrow represents a local motion detector, and the arrow indicates the preferred direction. The sign above the arrow indicates whether the signal of the local motion detector is excitatory (plus) or inhibitory (minus) to the detector in the next stage. (a) Motion detector specialized in relative motion by inhibition from motion signals in the same direction in the surround, (b) motion detector specialized in uniform/global motion by adding motion signals in the surround.

Fig. 2
Fig. 2

Combinations of adaptation and test stimuli in experiment 1. Arrows in the adaptation stimulus show the motion of each grating. The motion was in opposite directions between the upper and lower gratings in the relative motion condition, and they were the same in the uniform motion condition. The direction of motion was periodically changed during the adaptation.

Fig. 3
Fig. 3

Percentages of rightward responses as a function of stimulus velocity in the relative and uniform adaptation conditions. The data for the relative motion test of observer NH are shown as examples. Open symbols represent the data in the U-adapt/R-test condition, and solid symbols represent the data in the R-adapt/R-test condition.

Fig. 4
Fig. 4

(a) Velocity threshold as a function of contrast of adaptation gratings. Squares represent the results of the relative motion test, and circles represent the results of the uniform motion test. Open symbols represent the results in the relative motion adaptation conditions, and solid symbols represent the results in the uniform motion adaptation condition. The asterisks above or below the data indicate that the threshold value was significantly different from that measured without adaptation. One asterisk indicates a significance level of 5% ( z > 1.96 ,   p < 0.05 ) , and two asterisks indicate that of 1% ( z > 2.58 ,   p < 0.01 ) . (b) Ratio of velocity thresholds between the two adaptation conditions as a function of the contrast of the adaptation stimulus. The asterisks above the data indicate that the thresholds between the relative and uniform motion conditions were significantly different. One asterisk indicates a significance level of 5% ( z > 1.96 ,   p < 0.05 ) , and two asterisks indicate that of 1% ( z > 2.58 ,   p < 0.01 ) .

Fig. 5
Fig. 5

Relative motion detectors at different locations. The relative motion detector at the center shows the highest sensitivity to the relative motion stimulus. The relative motion detector located near the upper edge of the upper band shows the highest sensitivity to uniform motion, and the influence of relative and uniform motion adaptations is the same.

Fig. 6
Fig. 6

Models of the relative motion detector. The plus above an arrow indicates excitatory responses for the stimulation in the direction, and the minus above an arrow indicates inhibitory responses in the direction. (a) Opponent-type interactions exist in both the central and surround of the receptive field, (b) opponent-type interaction exists only in the surround of the receptive field, (c) only inhibitory interaction exists between the center and the surround of the visual field, (d) only facilitative interaction exists between the center and the surround of the visual field.

Tables (2)

Tables Icon

Table 1 Threshold Velocities and the Ratios between Relative and Uniform Adaptation Conditions of Experiment 1 (arc min/s)

Tables Icon

Table 2 Threshold Velocities and the Ratios between Relative and Uniform Adaptation Conditions of Experiment 2 (arc min/s)

Metrics