Abstract

A fully self-contained discrete framework with discrete equivalents of Stokes’s, Gauss’s, and Green’s theorems is presented. The formulation is analogous to that of continuous operators, but totally discrete in nature, and the exact relationships derived are shown to hold provided that a set of predefined rules is followed in building discrete contours and domains. The method allows for an analytical rigor that is not guaranteed if one translates the classical continuous formulations onto a discretized approximated framework. We clarify several issues related to the use of discrete operators, which may play a crucial role in specific applications such as the two-dimensional phase-unwrapping problem, chosen as our main application example, and we show that reconstruction on irregular domains and/or in the presence of undersampling and noise is better formulated in the discrete framework than in the continuous domain.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (58)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription