Abstract

There is growing interest in the use of near-infrared spectroscopy for the noninvasive determination of the oxygenation level within biological tissue. Stemming from this application, there has been further research in using this technique for obtaining tomographic images of the neonatal head, with the view of determining the level of oxygenated and deoxygenated blood within the brain. Because of computational complexity, methods used for numerical modeling of photon transfer within tissue have usually been limited to the diffusion approximation of the Boltzmann transport equation. The diffusion approximation, however, is not valid in regions of low scatter, such as the cerebrospinal fluid. Methods have been proposed for dealing with nonscattering regions within diffusing materials through the use of a radiosity-diffusion model. Currently, this new model assumes prior knowledge of the void region; therefore it is instructive to examine the errors introduced in applying a simple diffusion-based reconstruction scheme in cases where a nonscattering region exists. We present reconstructed images, using linear algorithms, of models that contain a nonscattering region within a diffusing material. The forward data are calculated by using the radiosity-diffusion model, and the inverse problem is solved by using either the radiosity-diffusion model or the diffusion-only model. When using data from a model containing a clear layer and reconstructing with the correct model, one can reconstruct the anomaly, but the qualitative accuracy and the position of the reconstructed anomaly depend on the size and the position of the clear regions. If the inverse model has no information about the clear regions (i.e., it is a purely diffusing model), an anomaly can be reconstructed, but the resulting image has very poor qualitative accuracy and poor localization of the anomaly. The errors in quantitative and localization accuracies depend on the size and location of the clear regions.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
    [CrossRef]
  2. B. W. Pogue, K. D. Paulsen, C. Abele, H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000).
    [CrossRef] [PubMed]
  3. S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet in real time,” Opt. Express 4, 308–314 (1999).
    [CrossRef] [PubMed]
  4. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
    [CrossRef]
  5. J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997).
    [CrossRef]
  6. J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
    [CrossRef] [PubMed]
  7. S. R. Arridge, “Topical review: optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  8. S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
    [CrossRef] [PubMed]
  9. V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. Treatment 3, 41–46 (2001).
    [CrossRef]
  10. C. H. Schmitz, H. L. Graber, H. B. Luo, I. Arif, J. Hira, Y. L. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. L. S. Barbour, R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
    [CrossRef]
  11. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express6, 49–57 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  12. D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
    [CrossRef] [PubMed]
  13. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [CrossRef] [PubMed]
  14. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]
  15. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
    [CrossRef]
  16. J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).
    [CrossRef]
  17. A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogenous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
    [CrossRef] [PubMed]
  18. S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
    [CrossRef] [PubMed]
  19. J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express7, 462–467 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  20. H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
    [CrossRef]
  21. J. Ripoll, S. R. Arridge, H. Dehghani, M. Nieto-Vesperinas, “Boundary conditions for light propagation in diffusive media with non-scattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000).
    [CrossRef]
  22. J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, “Effect of roughness in nondiffusive regions within diffusive media,” J. Opt. Soc. Am. A 18, 940–947 (2001).
    [CrossRef]
  23. A. D. Klose, A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
    [CrossRef] [PubMed]
  24. O. Dorn, “A transport–backtransport method for optical tomography,” Inverse Probl. 14, 1107–1130 (1998).
    [CrossRef]
  25. M. Vauhkonen, “Electrical impedance tomography and prioriinformation,” Ph.D. dissertation (University of Kuopio, Kuopio, Finland, 1997).
  26. Y. Pei, H. L. Graber, R. L. Barbour, “Normalized-constrained algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express9, 97–109 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  27. M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging (IPMI’97 Proceedings), Vol. 1230 of Lecture Notes in Computer Science, J. Duncan, G. Gindi, eds. (Springer-Verlag, Berlin, 1997).
  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).
  29. S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2:finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  30. M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
    [CrossRef] [PubMed]

2001

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. Treatment 3, 41–46 (2001).
[CrossRef]

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, “Effect of roughness in nondiffusive regions within diffusive media,” J. Opt. Soc. Am. A 18, 940–947 (2001).
[CrossRef]

2000

1999

A. D. Klose, A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

S. R. Arridge, “Topical review: optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

S. Fantini, M. A. Franceschini, E. Gratton, D. Hueber, W. Rosenfeld, D. Maulik, P. G. Stubblefield, M. R. Stankovic, “Non-invasive optical mapping of the piglet in real time,” Opt. Express 4, 308–314 (1999).
[CrossRef] [PubMed]

1998

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogenous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

O. Dorn, “A transport–backtransport method for optical tomography,” Inverse Probl. 14, 1107–1130 (1998).
[CrossRef]

1997

J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275–279 (1997).
[CrossRef]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

1996

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

1995

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2:finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

1993

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

1986

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).
[CrossRef]

Abele, C.

B. W. Pogue, K. D. Paulsen, C. Abele, H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000).
[CrossRef] [PubMed]

Alcouffe, R. E.

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogenous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

Andronica, R.

Arif, I.

Arridge, S. R.

J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, “Effect of roughness in nondiffusive regions within diffusive media,” J. Opt. Soc. Am. A 18, 940–947 (2001).
[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

J. Ripoll, S. R. Arridge, H. Dehghani, M. Nieto-Vesperinas, “Boundary conditions for light propagation in diffusive media with non-scattering regions,” J. Opt. Soc. Am. A 17, 1671–1681 (2000).
[CrossRef]

S. R. Arridge, “Topical review: optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2:finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging (IPMI’97 Proceedings), Vol. 1230 of Lecture Notes in Computer Science, J. Duncan, G. Gindi, eds. (Springer-Verlag, Berlin, 1997).

Barbour, R. L.

Barbour, S. L. S.

Bluestone, A.

Boas, D. A.

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Chance, B.

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. Treatment 3, 41–46 (2001).
[CrossRef]

Cheng, X. F.

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Cope, M.

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).
[CrossRef]

Dehghani, H.

Delpy, D. T.

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).
[CrossRef]

Dorn, O.

O. Dorn, “A transport–backtransport method for optical tomography,” Inverse Probl. 14, 1107–1130 (1998).
[CrossRef]

Eda, H.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Fantini, S.

Firbank, M.

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Franceschini, M. A.

Fry, M. E.

Gaudette, T.

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Graber, H. L.

Gratton, E.

Hebden, J. C.

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Hielscher, A. H.

A. D. Klose, A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogenous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

Hillman, E. M. C.

Hira, J.

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Hueber, D.

Ito, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Jiang, H.

Kaufman, H.

B. W. Pogue, K. D. Paulsen, C. Abele, H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000).
[CrossRef] [PubMed]

Klose, A. D.

A. D. Klose, A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

Luo, H. B.

Mandeville, J. B.

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Marota, J. J. A.

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Maulik, D.

Nieto-Vesperinas, M.

Ntziachristos, V.

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. Treatment 3, 41–46 (2001).
[CrossRef]

Oda, I.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Oda, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Oikawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Okada, E.

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

Osterberg, U. L.

Patterson, M. S.

Paulsen, K. D.

B. W. Pogue, K. D. Paulsen, C. Abele, H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

Pei, Y. L.

Pogue, B. W.

B. W. Pogue, K. D. Paulsen, C. Abele, H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Ramirez, N.

Reynolds, E. O. R.

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).
[CrossRef]

Ripoll, J.

Rosenfeld, W.

Sassaroli, A.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Schmidt, F. E. W.

Schmitz, C. H.

Schotland, J. C.

Schweiger, M.

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A 17, 1659–1670 (2000).
[CrossRef]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2:finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging (IPMI’97 Proceedings), Vol. 1230 of Lecture Notes in Computer Science, J. Duncan, G. Gindi, eds. (Springer-Verlag, Berlin, 1997).

Soller, I.

Stankovic, M. R.

Strangman, G.

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Stubblefield, P. G.

Tamaru, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Tsuchiya, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Tsunazawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Vauhkonen, M.

M. Vauhkonen, “Electrical impedance tomography and prioriinformation,” Ph.D. dissertation (University of Kuopio, Kuopio, Finland, 1997).

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Wada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Wray, S.

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).
[CrossRef]

Wyatt, J. S.

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).
[CrossRef]

Yamada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Yamashita, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Zhong, S.

Appl. Opt.

Breast Cancer Res. Treatment

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. Treatment 3, 41–46 (2001).
[CrossRef]

Inverse Probl.

S. R. Arridge, “Topical review: optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

O. Dorn, “A transport–backtransport method for optical tomography,” Inverse Probl. 14, 1107–1130 (1998).
[CrossRef]

J. Biomed. Opt.

B. W. Pogue, K. D. Paulsen, C. Abele, H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt. 5, 185–193 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Lancet

J. S. Wyatt, D. T. Delpy, M. Cope, S. Wray, E. O. R. Reynolds, “Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet ii, 1063–1066 (1986).
[CrossRef]

Med. Phys.

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, H. Dehghani, M. Schweiger, E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with non-scattering regions,” Med. Phys. 27, 252–264 (2000).
[CrossRef] [PubMed]

A. D. Klose, A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

Neuroimage

D. A. Boas, T. Gaudette, G. Strangman, X. F. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogenous tissue,” Phys. Med. Biol. 43, 1285–1302 (1998).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamaru, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3602 (1999).
[CrossRef]

Other

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express6, 49–57 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. Vauhkonen, “Electrical impedance tomography and prioriinformation,” Ph.D. dissertation (University of Kuopio, Kuopio, Finland, 1997).

Y. Pei, H. L. Graber, R. L. Barbour, “Normalized-constrained algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express9, 97–109 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging (IPMI’97 Proceedings), Vol. 1230 of Lecture Notes in Computer Science, J. Duncan, G. Gindi, eds. (Springer-Verlag, Berlin, 1997).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express7, 462–467 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Outline of the models used to generate the forward data as well as the image reconstruction. The background optical properties of the diffusing region were set as μs=1 mm-1 and μa=0.01 mm-1 with a refractive index of 1.4. The nonscattering regions had an absorption value of μa=0.005 mm-1 and a refractive index of 1.4. A Gaussian anomaly of full width at half-maximum 2 mm was placed 18.4 mm from the center of the model. The anomaly had the same scattering and refractive-index properties as those of the background and a peak absorption value of μa=0.05 mm-1. The dotted line indicates the axis along which μa profiles are plotted in Figs. 9, 10, and 12 below.

Fig. 2
Fig. 2

Singular values (a) Jacobian for intensity and μa and (b) Jacobian for mean time and μa, calculated for the purely diffusing model. The intersection of the straight lines shows the position of the truncation used.

Fig. 3
Fig. 3

Diffusion-only model. (a) Target image μa difference images reconstructed from (b) intensity and (c) mean-time data. Images reconstructed by normalizing the data with the reference measurement for (d) intensity and (e) mean-time data. Images reconstructed by normalizing the data with the rms of the reference measurement for (f) intensity and (g) mean-time data.

Fig. 4
Fig. 4

Diffusing model with a 1-mm-thick nonscattering ring placed 3 mm from the outer boundary. (a) Target image μa difference images from (b) intensity and (c) mean-time data and the correct Jacobian μa difference images from (d) intensity and (e) mean-time data but using the diffusion-only Jacobian.

Fig. 5
Fig. 5

Same as Fig. 4 but with a 2-mm-thick nonscattering ring placed 3 mm from the outer boundary.

Fig. 6
Fig. 6

Diffusing model with an irregular nonscattering ring placed 3 mm from the outer boundary. (a) Target image μa difference images from (b) intensity and (c) mean-time data and the correct Jacobian μa difference images from (d) intensity and (e) mean-time data but using the diffusion-only Jacobian.

Fig. 7
Fig. 7

Diffusing model with a 1-mm-thick nonscattering ring placed 3 mm from the outer boundary. Also, there are two nonscattering ellipse-shaped regions, with a major axis of 7 mm and a minor axis of 4 mm, centered 10 mm on either side of the model origin. (a) Target image μa difference images from (b) intensity and (c) mean-time data and the correct Jacobian μa difference images from (d) intensity and (e) mean-time data but using the diffusion-only Jacobian.

Fig. 8
Fig. 8

Same as Fig. 7 but with a 2-mm-thick nonscattering ring placed 3 mm from the outer boundary.

Fig. 9
Fig. 9

Cross-section plots through each reconstruction along the line indicated in Fig. 1 using the intensity difference data and (a) the correct Jacobian or (b) a Jacobian calculated assuming a purely diffusing model.

Fig. 10
Fig. 10

Same as Fig. 9 but using the mean-time difference data.

Fig. 11
Fig. 11

Photon measurement density functions for the purely diffusing model [(a) μa distribution and intensity and (b) μa distribution and mean time], the 2-mm-gap case [(c) μa distribution and intensity and (d) μa distribution and mean time], and the 2 mm-gap case with holes [(e) μa distribution and intensity and (f) μa distribution and mean time]. The arrows show the position of source and detectors. The shaded regions in images (c)–(f) represent clear nonscattering regions. Each image contains 16 contour lines, each representing an equal percentage drop in sensitivity from a maximum (under the optodes) to a minimum.

Fig. 12
Fig. 12

Cross-section plots through each reconstruction along the line indicated in Fig. 1 using the mean-time difference data (from 2-mm-gap model with clear holes) and the Jacobian calculated assuming a purely diffusing model but with varying numbers of singular values (S) included in the reconstruction.

Tables (2)

Tables Icon

Table 1 Reconstructed Parameters for Intensity Data

Tables Icon

Table 2 Reconstructed Parameters for Mean-Time Data

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y1M-y0M=JM[μa1(r)-μa0(r)],
μa1(r)-μa0(r)=JT(JJT)-1(y1M-y0M).

Metrics