Abstract

Ocular aberrations were measured in 71 eyes by using two reflectometric aberrometers, employing laser ray tracing (LRT) (60 eyes) and a Shack–Hartmann wave-front sensor (S–H) (11 eyes). In both techniques a point source is imaged on the retina (through different pupil positions in the LRT or a single position in the S–H). The aberrations are estimated by measuring the deviations of the retinal spot from the reference as the pupil is sampled (in LRT) or the deviations of a wave front as it emerges from the eye by means of a lenslet array (in the S–H). In this paper we studied the effect of different polarization configurations in the aberration measurements, including linearly polarized light and circularly polarized light in the illuminating channel and sampling light in the crossed or parallel orientations. In addition, completely depolarized light in the imaging channel was obtained from retinal lipofuscin autofluorescence. The intensity distribution of the retinal spots as a function of entry (for LRT) or exit pupil (for S–H) depends on the polarization configuration. These intensity patterns show bright corners and a dark area at the pupil center for crossed polarization, an approximately Gaussian distribution for parallel polarization and a homogeneous distribution for the autofluorescence case. However, the measured aberrations are independent of the polarization states. These results indicate that the differences in retardation across the pupil imposed by corneal birefringence do not produce significant phase delays compared with those produced by aberrations, at least within the accuracy of these techniques. In addition, differences in the recorded aerial images due to changes in polarization do not affect the aberration measurements in these reflectometric aberrometers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  2. L. Zhu, P. Sun, D. Bartsch, W. R. Freeman, Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999).
    [CrossRef]
  3. R. Navarro, E. Moreno-Barriuso, S. Bará, T. Mancebo, “Phase-plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000).
    [CrossRef]
  4. S. M. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, 230–235 (2000).
  5. H. Hofer, L. Chen, G. Yoon, B. Singer, Y. Yamauchi, D. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express8, 631–643 (2001). http://www.opticsexpress.org/oearchive/source/31887.htm .
    [CrossRef] [PubMed]
  6. E. J. Fernandez, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
    [CrossRef]
  7. J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
    [CrossRef]
  8. J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  9. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  10. G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
    [CrossRef] [PubMed]
  11. R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
    [CrossRef]
  12. P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “Measuring device for determining monochromatic aberration of the human eye,” Ophthalmologe 94, 441–445 (1997).
    [CrossRef] [PubMed]
  13. E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
    [CrossRef]
  14. T. Salmon, L. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998).
    [CrossRef]
  15. F. C. Delori, K. P. Pfibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [CrossRef] [PubMed]
  16. N. Lopez-Gil, H. Howland, “Measurement of the eye’s near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique,” Vision Res. 39, 2031–2037 (1999).
    [CrossRef]
  17. L. Llorente, S. Marcos, S. Barbero, R. Navarro, E. Moreno-Barriuso, “Ocular aberrations in infrared and visible light using a laser ray tracing technique,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S87 (2001).
  18. W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
    [CrossRef] [PubMed]
  19. S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
    [CrossRef]
  20. L. N. Thibos, M. Ye, X. X. Zhang, A. B. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
    [CrossRef] [PubMed]
  21. G. J. Van Blokland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987).
    [CrossRef] [PubMed]
  22. J. M. Bueno, M. C. W. Campbell, “Polarization properties for in vivo human lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S161 (2001).
  23. G. J. V. Blokland, D. V. Norren, “Intensity and polarization of light scattered at small angles from the human fovea.,” Vision Res. 26, 485–494 (1986).
    [CrossRef]
  24. G. J. V. Blokland, “The optics of the human eye with respect to polarized light,” Ph.D. thesis (University of Utrecht, Utrecht, The Netherlands, 1986).
  25. P. M. Prieto, F. Vargas-Martin, J. S. McLellan, S. A. Burns, “The effect of the polarization on ocular wave aberration measurements,” J. Opt. Soc. Am. A 19, 809–814 (2002).
    [CrossRef]
  26. J. M. Bueno, P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24, 64–66 (1999).
    [CrossRef]
  27. P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
    [CrossRef]
  28. R. Navarro, E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 1–3 (1999).
    [CrossRef]
  29. E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).
  30. E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000).
    [CrossRef]
  31. H. L. Diaz Santana, J. C. Dainty, “Single-pass measurements of the wave-front aberrations of the human eye by use of retinal lipofuscin autofluorescence,” Opt. Lett. 24, 61–63 (1999).
    [CrossRef]
  32. L. Diaz-Santana Haro, “Wavefront sensing in the human eye with a Shack–Hartmann sensor,” Ph.D. thesis (Imperial College of Science Technology and Medicine, London, 2000).
  33. F. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Visual Sci. 36, 718–729 (1995).
  34. J. Bueno, P. Artal, “Polarization and retinal image qual-ity estimates in the human eye,” J. Opt. Soc. Am. A 18, 489–496 (2001).
    [CrossRef]
  35. S. A. Burns, S. Wu, F. Delori, A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995).
    [CrossRef]
  36. A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthamol. 34, 201–211 (1950).
    [CrossRef]
  37. W. T. Cope, M. L. Wolbarsht, B. S. Yamanashi, “The corneal polarization cross,” J. Opt. Soc. Am. 68, 1139–1141 (1978).
    [CrossRef] [PubMed]
  38. B. F. Hocheimer, H. A. Kues, “Retinal polarization effects,” Appl. Opt. 21, 3811–3818 (1982).
    [CrossRef]
  39. S. Marcos, S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
    [CrossRef]
  40. S. Marcos, E. Moreno-Barriuso, R. Navarro, L. Llorente, “Retinal reflectivity in laser ray tracing measurements: What can we learn apart from ocular aberrations?” Presented at the OSA 2000 Annual Meeting, October 22–26, Providence, R.I., 2000.
  41. S. A. Burns, J. C. He, F. C. Delori, “Do the cones see light scattered from the deep retinal layers,” Vision Science and Its Applications, Vol. 1 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 94–97.
  42. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.
  43. J. Y. Wang, D. E. Silva, “Wave-front interpretation with Zernike polynomials,” Appl. Opt. 19, 1510–1518 (1980).
    [CrossRef] [PubMed]
  44. R. R. Sokal, F. J. Rohlf, Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed. (Freeman, New York, 1995).
  45. J. M. Gorrand, R. Alfieri, J. Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
    [CrossRef] [PubMed]
  46. J. Gorrand, “Diffusion of the human retina and quality of the optics of the eye on the fovea and the peripheral retina,” Vision Res. 19, 907–912 (1979).
    [CrossRef] [PubMed]
  47. R. A. Farrell, J. F. Wharam, D. Kim, R. L. McCally, “Polarized light propagation in corneal lamellae,” J. Refract. Surg. 15, 700–705 (1999).
    [PubMed]
  48. K. M. Meek, R. H. Newton, “Organization of collagen fibrils in the corneal stroma in relation to mechanical properties and surgical practice,” Refract. Surg. 15, 695–699 (1999).
  49. R. Brinkmann, B. Radt, C. Flamm, J. Kampmeier, N. Koop, R. Birngruber, “Influence of temperature and time on thermally induced forces in corneal collagen and the effect on laser thermokeratoplasty,” J. Cataract Refract. Surg. 26, 744–754 (2000).
    [CrossRef] [PubMed]

2002

2001

J. Bueno, P. Artal, “Polarization and retinal image qual-ity estimates in the human eye,” J. Opt. Soc. Am. A 18, 489–496 (2001).
[CrossRef]

E. J. Fernandez, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
[CrossRef]

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

L. Llorente, S. Marcos, S. Barbero, R. Navarro, E. Moreno-Barriuso, “Ocular aberrations in infrared and visible light using a laser ray tracing technique,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S87 (2001).

J. M. Bueno, M. C. W. Campbell, “Polarization properties for in vivo human lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S161 (2001).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

2000

R. Brinkmann, B. Radt, C. Flamm, J. Kampmeier, N. Koop, R. Birngruber, “Influence of temperature and time on thermally induced forces in corneal collagen and the effect on laser thermokeratoplasty,” J. Cataract Refract. Surg. 26, 744–754 (2000).
[CrossRef] [PubMed]

E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000).
[CrossRef]

R. Navarro, E. Moreno-Barriuso, S. Bará, T. Mancebo, “Phase-plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000).
[CrossRef]

S. M. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, 230–235 (2000).

1999

N. Lopez-Gil, H. Howland, “Measurement of the eye’s near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique,” Vision Res. 39, 2031–2037 (1999).
[CrossRef]

S. Marcos, S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
[CrossRef]

R. A. Farrell, J. F. Wharam, D. Kim, R. L. McCally, “Polarized light propagation in corneal lamellae,” J. Refract. Surg. 15, 700–705 (1999).
[PubMed]

K. M. Meek, R. H. Newton, “Organization of collagen fibrils in the corneal stroma in relation to mechanical properties and surgical practice,” Refract. Surg. 15, 695–699 (1999).

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

R. Navarro, E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 1–3 (1999).
[CrossRef]

H. L. Diaz Santana, J. C. Dainty, “Single-pass measurements of the wave-front aberrations of the human eye by use of retinal lipofuscin autofluorescence,” Opt. Lett. 24, 61–63 (1999).
[CrossRef]

J. M. Bueno, P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24, 64–66 (1999).
[CrossRef]

L. Zhu, P. Sun, D. Bartsch, W. R. Freeman, Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999).
[CrossRef]

1998

1997

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “Measuring device for determining monochromatic aberration of the human eye,” Ophthalmologe 94, 441–445 (1997).
[CrossRef] [PubMed]

1995

F. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Visual Sci. 36, 718–729 (1995).

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[CrossRef]

S. A. Burns, S. Wu, F. Delori, A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995).
[CrossRef]

1994

1992

1989

1987

1986

G. J. V. Blokland, D. V. Norren, “Intensity and polarization of light scattered at small angles from the human fovea.,” Vision Res. 26, 485–494 (1986).
[CrossRef]

1984

1982

1980

1979

J. Gorrand, “Diffusion of the human retina and quality of the optics of the eye on the fovea and the peripheral retina,” Vision Res. 19, 907–912 (1979).
[CrossRef] [PubMed]

1978

1976

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

1950

A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthamol. 34, 201–211 (1950).
[CrossRef]

Alfieri, R.

J. M. Gorrand, R. Alfieri, J. Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[CrossRef] [PubMed]

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Arend, O.

F. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Visual Sci. 36, 718–729 (1995).

Artal, P.

Bará, S.

Barbero, S.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

L. Llorente, S. Marcos, S. Barbero, R. Navarro, E. Moreno-Barriuso, “Ocular aberrations in infrared and visible light using a laser ray tracing technique,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S87 (2001).

Bartsch, D.

Bille, J. F.

Birngruber, R.

R. Brinkmann, B. Radt, C. Flamm, J. Kampmeier, N. Koop, R. Birngruber, “Influence of temperature and time on thermally induced forces in corneal collagen and the effect on laser thermokeratoplasty,” J. Cataract Refract. Surg. 26, 744–754 (2000).
[CrossRef] [PubMed]

Blokland, G. J. V.

G. J. V. Blokland, D. V. Norren, “Intensity and polarization of light scattered at small angles from the human fovea.,” Vision Res. 26, 485–494 (1986).
[CrossRef]

G. J. V. Blokland, “The optics of the human eye with respect to polarized light,” Ph.D. thesis (University of Utrecht, Utrecht, The Netherlands, 1986).

Boire, J. Y.

J. M. Gorrand, R. Alfieri, J. Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[CrossRef] [PubMed]

Bradley, A.

Bradley, A. B.

Brinkmann, R.

R. Brinkmann, B. Radt, C. Flamm, J. Kampmeier, N. Koop, R. Birngruber, “Influence of temperature and time on thermally induced forces in corneal collagen and the effect on laser thermokeratoplasty,” J. Cataract Refract. Surg. 26, 744–754 (2000).
[CrossRef] [PubMed]

Bueno, J.

Bueno, J. M.

J. M. Bueno, M. C. W. Campbell, “Polarization properties for in vivo human lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S161 (2001).

J. M. Bueno, P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24, 64–66 (1999).
[CrossRef]

Burns, S. A.

P. M. Prieto, F. Vargas-Martin, J. S. McLellan, S. A. Burns, “The effect of the polarization on ocular wave aberration measurements,” J. Opt. Soc. Am. A 19, 809–814 (2002).
[CrossRef]

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

S. Marcos, S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

S. A. Burns, S. Wu, F. Delori, A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995).
[CrossRef]

S. A. Burns, J. C. He, F. C. Delori, “Do the cones see light scattered from the deep retinal layers,” Vision Science and Its Applications, Vol. 1 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 94–97.

Campbell, M. C. W.

J. M. Bueno, M. C. W. Campbell, “Polarization properties for in vivo human lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S161 (2001).

Charman, W. N.

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

Cope, W. T.

Dainty, J. C.

Delori, F.

S. A. Burns, S. Wu, F. Delori, A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995).
[CrossRef]

F. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Visual Sci. 36, 718–729 (1995).

Delori, F. C.

F. C. Delori, K. P. Pfibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
[CrossRef] [PubMed]

S. A. Burns, J. C. He, F. C. Delori, “Do the cones see light scattered from the deep retinal layers,” Vision Science and Its Applications, Vol. 1 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 94–97.

Diaz Santana, H. L.

Diaz-Santana Haro, L.

L. Diaz-Santana Haro, “Wavefront sensing in the human eye with a Shack–Hartmann sensor,” Ph.D. thesis (Imperial College of Science Technology and Medicine, London, 2000).

Dorey, C. K.

F. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Visual Sci. 36, 718–729 (1995).

Elsner, A. E.

Fainman, Y.

Farrell, R. A.

R. A. Farrell, J. F. Wharam, D. Kim, R. L. McCally, “Polarized light propagation in corneal lamellae,” J. Refract. Surg. 15, 700–705 (1999).
[PubMed]

Fernandez, E. J.

Flamm, C.

R. Brinkmann, B. Radt, C. Flamm, J. Kampmeier, N. Koop, R. Birngruber, “Influence of temperature and time on thermally induced forces in corneal collagen and the effect on laser thermokeratoplasty,” J. Cataract Refract. Surg. 26, 744–754 (2000).
[CrossRef] [PubMed]

Freeman, W. R.

Goelz, S.

Goger, D. G.

F. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Visual Sci. 36, 718–729 (1995).

Gorrand, J.

J. Gorrand, “Diffusion of the human retina and quality of the optics of the eye on the fovea and the peripheral retina,” Vision Res. 19, 907–912 (1979).
[CrossRef] [PubMed]

Gorrand, J. M.

J. M. Gorrand, R. Alfieri, J. Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[CrossRef] [PubMed]

Grimm, B.

He, J. C.

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

S. A. Burns, J. C. He, F. C. Delori, “Do the cones see light scattered from the deep retinal layers,” Vision Science and Its Applications, Vol. 1 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 94–97.

Hocheimer, B. F.

Howland, H.

N. Lopez-Gil, H. Howland, “Measurement of the eye’s near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique,” Vision Res. 39, 2031–2037 (1999).
[CrossRef]

Howland, H. C.

Iglesias, I.

Jennings, J. A. M.

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

Kaemmerer, M.

P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “Measuring device for determining monochromatic aberration of the human eye,” Ophthalmologe 94, 441–445 (1997).
[CrossRef] [PubMed]

Kampmeier, J.

R. Brinkmann, B. Radt, C. Flamm, J. Kampmeier, N. Koop, R. Birngruber, “Influence of temperature and time on thermally induced forces in corneal collagen and the effect on laser thermokeratoplasty,” J. Cataract Refract. Surg. 26, 744–754 (2000).
[CrossRef] [PubMed]

Kim, D.

R. A. Farrell, J. F. Wharam, D. Kim, R. L. McCally, “Polarized light propagation in corneal lamellae,” J. Refract. Surg. 15, 700–705 (1999).
[PubMed]

Koop, N.

R. Brinkmann, B. Radt, C. Flamm, J. Kampmeier, N. Koop, R. Birngruber, “Influence of temperature and time on thermally induced forces in corneal collagen and the effect on laser thermokeratoplasty,” J. Cataract Refract. Surg. 26, 744–754 (2000).
[CrossRef] [PubMed]

Krinke, H. E.

P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “Measuring device for determining monochromatic aberration of the human eye,” Ophthalmologe 94, 441–445 (1997).
[CrossRef] [PubMed]

Kues, H. A.

Liang, J.

Llorente, L.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

L. Llorente, S. Marcos, S. Barbero, R. Navarro, E. Moreno-Barriuso, “Ocular aberrations in infrared and visible light using a laser ray tracing technique,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S87 (2001).

S. Marcos, E. Moreno-Barriuso, R. Navarro, L. Llorente, “Retinal reflectivity in laser ray tracing measurements: What can we learn apart from ocular aberrations?” Presented at the OSA 2000 Annual Meeting, October 22–26, Providence, R.I., 2000.

Lopez-Gil, N.

N. Lopez-Gil, H. Howland, “Measurement of the eye’s near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique,” Vision Res. 39, 2031–2037 (1999).
[CrossRef]

Losada, M. A.

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

MacRae, S. M.

S. M. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, 230–235 (2000).

Mancebo, T.

Marcos, S.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

L. Llorente, S. Marcos, S. Barbero, R. Navarro, E. Moreno-Barriuso, “Ocular aberrations in infrared and visible light using a laser ray tracing technique,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S87 (2001).

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

S. Marcos, S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[CrossRef]

S. Marcos, E. Moreno-Barriuso, R. Navarro, L. Llorente, “Retinal reflectivity in laser ray tracing measurements: What can we learn apart from ocular aberrations?” Presented at the OSA 2000 Annual Meeting, October 22–26, Providence, R.I., 2000.

McCally, R. L.

R. A. Farrell, J. F. Wharam, D. Kim, R. L. McCally, “Polarized light propagation in corneal lamellae,” J. Refract. Surg. 15, 700–705 (1999).
[PubMed]

McLellan, J. S.

Meek, K. M.

K. M. Meek, R. H. Newton, “Organization of collagen fibrils in the corneal stroma in relation to mechanical properties and surgical practice,” Refract. Surg. 15, 695–699 (1999).

Members, V. S. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Merayo-Lloves, J.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

Mierdel, P.

P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “Measuring device for determining monochromatic aberration of the human eye,” Ophthalmologe 94, 441–445 (1997).
[CrossRef] [PubMed]

Miller, D. T.

Moreno-Barriuso, E.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

L. Llorente, S. Marcos, S. Barbero, R. Navarro, E. Moreno-Barriuso, “Ocular aberrations in infrared and visible light using a laser ray tracing technique,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S87 (2001).

E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000).
[CrossRef]

R. Navarro, E. Moreno-Barriuso, S. Bará, T. Mancebo, “Phase-plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000).
[CrossRef]

R. Navarro, E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 1–3 (1999).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

S. Marcos, E. Moreno-Barriuso, R. Navarro, L. Llorente, “Retinal reflectivity in laser ray tracing measurements: What can we learn apart from ocular aberrations?” Presented at the OSA 2000 Annual Meeting, October 22–26, Providence, R.I., 2000.

Navarro, R.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

L. Llorente, S. Marcos, S. Barbero, R. Navarro, E. Moreno-Barriuso, “Ocular aberrations in infrared and visible light using a laser ray tracing technique,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S87 (2001).

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

R. Navarro, E. Moreno-Barriuso, S. Bará, T. Mancebo, “Phase-plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000).
[CrossRef]

E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000).
[CrossRef]

R. Navarro, E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 1–3 (1999).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[CrossRef]

S. Marcos, E. Moreno-Barriuso, R. Navarro, L. Llorente, “Retinal reflectivity in laser ray tracing measurements: What can we learn apart from ocular aberrations?” Presented at the OSA 2000 Annual Meeting, October 22–26, Providence, R.I., 2000.

Naylor, E. J.

A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthamol. 34, 201–211 (1950).
[CrossRef]

Newton, R. H.

K. M. Meek, R. H. Newton, “Organization of collagen fibrils in the corneal stroma in relation to mechanical properties and surgical practice,” Refract. Surg. 15, 695–699 (1999).

Norren, D. V.

G. J. V. Blokland, D. V. Norren, “Intensity and polarization of light scattered at small angles from the human fovea.,” Vision Res. 26, 485–494 (1986).
[CrossRef]

Pfibsen, K. P.

Prieto, P. M.

Radt, B.

R. Brinkmann, B. Radt, C. Flamm, J. Kampmeier, N. Koop, R. Birngruber, “Influence of temperature and time on thermally induced forces in corneal collagen and the effect on laser thermokeratoplasty,” J. Cataract Refract. Surg. 26, 744–754 (2000).
[CrossRef] [PubMed]

Rohlf, F. J.

R. R. Sokal, F. J. Rohlf, Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed. (Freeman, New York, 1995).

Salmon, T.

Schwiegerling, J.

S. M. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, 230–235 (2000).

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Seiler, T.

P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “Measuring device for determining monochromatic aberration of the human eye,” Ophthalmologe 94, 441–445 (1997).
[CrossRef] [PubMed]

Silva, D. E.

Snyder, R.

S. M. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, 230–235 (2000).

Sokal, R. R.

R. R. Sokal, F. J. Rohlf, Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed. (Freeman, New York, 1995).

Stanworth, A.

A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthamol. 34, 201–211 (1950).
[CrossRef]

Staurenghi, G.

F. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Visual Sci. 36, 718–729 (1995).

Sun, P.

Thibos, L.

Thibos, L. N.

L. N. Thibos, M. Ye, X. X. Zhang, A. B. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Van Blokland, G. J.

Vargas-Martin, F.

Verhelst, S. C.

Walsh, G.

Wang, J. Y.

Webb, R. H.

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Weiter, J. J.

F. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Visual Sci. 36, 718–729 (1995).

Wharam, J. F.

R. A. Farrell, J. F. Wharam, D. Kim, R. L. McCally, “Polarized light propagation in corneal lamellae,” J. Refract. Surg. 15, 700–705 (1999).
[PubMed]

Wiegand, W.

P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “Measuring device for determining monochromatic aberration of the human eye,” Ophthalmologe 94, 441–445 (1997).
[CrossRef] [PubMed]

Williams, D. R.

Wolbarsht, M. L.

Wu, S.

Yamanashi, B. S.

Ye, M.

Zhang, X. X.

Zhu, L.

Appl. Opt.

Br. J. Ophthamol.

A. Stanworth, E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthamol. 34, 201–211 (1950).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

F. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Visual Sci. 36, 718–729 (1995).

Invest. Ophthalmol. Visual Sci. Suppl.

L. Llorente, S. Marcos, S. Barbero, R. Navarro, E. Moreno-Barriuso, “Ocular aberrations in infrared and visible light using a laser ray tracing technique,” Invest. Ophthalmol. Visual Sci. Suppl. 41, S87 (2001).

J. M. Bueno, M. C. W. Campbell, “Polarization properties for in vivo human lenses,” Invest. Ophthalmol. Visual Sci. Suppl. 42, S161 (2001).

J. Cataract Refract. Surg.

R. Brinkmann, B. Radt, C. Flamm, J. Kampmeier, N. Koop, R. Birngruber, “Influence of temperature and time on thermally induced forces in corneal collagen and the effect on laser thermokeratoplasty,” J. Cataract Refract. Surg. 26, 744–754 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

P. M. Prieto, F. Vargas-Martin, J. S. McLellan, S. A. Burns, “The effect of the polarization on ocular wave aberration measurements,” J. Opt. Soc. Am. A 19, 809–814 (2002).
[CrossRef]

E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000).
[CrossRef]

J. Bueno, P. Artal, “Polarization and retinal image qual-ity estimates in the human eye,” J. Opt. Soc. Am. A 18, 489–496 (2001).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[CrossRef]

S. A. Burns, S. Wu, F. Delori, A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329–2338 (1995).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

T. Salmon, L. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

G. J. Van Blokland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987).
[CrossRef] [PubMed]

J. Refract. Surg.

R. A. Farrell, J. F. Wharam, D. Kim, R. L. McCally, “Polarized light propagation in corneal lamellae,” J. Refract. Surg. 15, 700–705 (1999).
[PubMed]

S. M. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, 230–235 (2000).

Ophthalmologe

P. Mierdel, H. E. Krinke, W. Wiegand, M. Kaemmerer, T. Seiler, “Measuring device for determining monochromatic aberration of the human eye,” Ophthalmologe 94, 441–445 (1997).
[CrossRef] [PubMed]

Opt. Lett.

Optom. Vision Sci.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

Refract. Surg.

K. M. Meek, R. H. Newton, “Organization of collagen fibrils in the corneal stroma in relation to mechanical properties and surgical practice,” Refract. Surg. 15, 695–699 (1999).

Vision Res.

J. M. Gorrand, R. Alfieri, J. Y. Boire, “Diffusion of the retinal layers of the living human eye,” Vision Res. 24, 1097–1106 (1984).
[CrossRef] [PubMed]

J. Gorrand, “Diffusion of the human retina and quality of the optics of the eye on the fovea and the peripheral retina,” Vision Res. 19, 907–912 (1979).
[CrossRef] [PubMed]

N. Lopez-Gil, H. Howland, “Measurement of the eye’s near infrared wave-front aberration using the objective crossed-cylinder aberroscope technique,” Vision Res. 39, 2031–2037 (1999).
[CrossRef]

G. J. V. Blokland, D. V. Norren, “Intensity and polarization of light scattered at small angles from the human fovea.,” Vision Res. 26, 485–494 (1986).
[CrossRef]

W. N. Charman, J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Other

G. J. V. Blokland, “The optics of the human eye with respect to polarized light,” Ph.D. thesis (University of Utrecht, Utrecht, The Netherlands, 1986).

H. Hofer, L. Chen, G. Yoon, B. Singer, Y. Yamauchi, D. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express8, 631–643 (2001). http://www.opticsexpress.org/oearchive/source/31887.htm .
[CrossRef] [PubMed]

L. Diaz-Santana Haro, “Wavefront sensing in the human eye with a Shack–Hartmann sensor,” Ph.D. thesis (Imperial College of Science Technology and Medicine, London, 2000).

S. Marcos, E. Moreno-Barriuso, R. Navarro, L. Llorente, “Retinal reflectivity in laser ray tracing measurements: What can we learn apart from ocular aberrations?” Presented at the OSA 2000 Annual Meeting, October 22–26, Providence, R.I., 2000.

S. A. Burns, J. C. He, F. C. Delori, “Do the cones see light scattered from the deep retinal layers,” Vision Science and Its Applications, Vol. 1 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 94–97.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

R. R. Sokal, F. J. Rohlf, Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed. (Freeman, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Wave aberration contour for control eyes measured in both the LRT setup in Madrid (left) and the S–H system in London (right). First- and second-order aberrations have been canceled. Pupil diameter was 6.5 mm for LRT and 6 mm for the S–H. Contour spacing was 0.3 μm.

Fig. 2
Fig. 2

Raw data as captured by LRT (panels a–c) and the S–H (panels d–f). In LRT a series of retinal images is captured sequentially as a function of entry pupil position. Examples are shown for eye #23 for circular parallel polarization (a) and linear crossed polarization (b). Each image is placed at the corresponding entry location (as looking at the subject’s pupil). Panel c shows the corresponding spot diagram (i.e., the joint plot of the centroids of the images shown in a and b). Circles stand for circular parallel polarization and crosses for linear crossed polarization. Panels d and e show S–H images for eye #63 for circular parallel polarization (d) and linear crossed polarization (e). Panel f plots the corresponding centroids of the S–H images; symbol notation is the same as for the spot diagrams in c.

Fig. 3
Fig. 3

Pupillary intensity maps computed from the intensity of the LRT aerial images for four eyes (#24, OS; #48, OD; #23, OS; #10, OD). Each square represents the total intensity (average of five runs) of the aerial image of the corresponding pupil position. Upper row, circular polarization in the illumination channel, analyzer in the same orientation. Lower row, linear polarization in the illumination channel, analyzer in the crossed orientation. Pupil position range from -3 to +3 mm. Positive horizontal positions indicate nasal positions in right eyes and temporal positions in left eyes, and positive vertical positions indicate superior pupil.

Fig. 4
Fig. 4

Pupillary intensity maps (computed from LRT aerial images, as in Fig. 3) for right (E#7) and left (E#15) eyes of the same subject, using linear polarization in the illumination channel and analyzer in the crossed orientation. The maps show a dark central area and bright nasal-superior corners, and they are bilaterally symmetric.

Fig. 5
Fig. 5

Shack–Hartmann spot image for eyes #67 (OS), #71 (OS), #63 (OS). The left panels compare linear polarization in the illumination channel and analyzer in the crossed orientation (top) with autofluorescence (totally depolarized) sampled light (bottom). The middle panels compare circular polarization in the illumination channel and analyzer in the parallel orientation (top) with autofluorescence (bottom). The right panels compare circular parallel (top) with linear crossed polarizations (bottom). Positive horizontal positions indicate temporal pupil positions, and positive vertical positions indicate superior pupil.

Fig. 6
Fig. 6

Wave aberration contour maps for eyes #24, #48, #23, and #10, measured with LRT. Lines are plotted every 1 μm. Upper and lower panels as in Fig. 3. Defocus has been canceled. Pupil diameter was 6.5 mm for all eyes.

Fig. 7
Fig. 7

Wave aberration contour maps for eyes #67, #71, and #70, measured with the S–H for polarization combinations as explained in Fig. 5. Lines are plotted every 0.2 μm. Defocus has been canceled. Pupil diameter was 6.5 mm for #67 and #71 and 6 mm for #70.

Fig. 8
Fig. 8

Zernike coefficients for eye #23 from Fig. 6(a) and the three eyes (#71, #67, #70) from Fig. 7(b)7(d), comparing different combinations of polarization conditions. Zernike order and normalization, following the OSA Standard Committee recommendations.42 Each symbol is the average of several measurements in the same conditions. Error bars stand for the mean standard deviation.

Fig. 9
Fig. 9

Zernike coefficients: a, Z20 (defocus); b, Z2-2 (astigmatism at 90 deg); c, Z31 (horizontal coma); d, Z40 (fourth-order spherical aberration) for all eyes of this study (E#1–60 measured with LRT and E#61–71 with the S–H), comparing at least two different polarization states (represented by different symbols). Error bars stand for the mean standard deviation.

Metrics