Abstract

Convergent physiological and behavioral evidence indicates that the initial receptive fields responsible for motion detection are spatially localized. Consequently, the perception of global patterns of movement (such as expansion) requires that the output of these local mechanisms be integrated across visual space. We have differentiated local and global motion processes, with mixtures of coherent and incoherent moving patterns composed of bandpass filtered dots, and have measured their spatial-frequency selectivity. We report that local motion detectors show narrow-band spatial-frequency tuning (i.e., they respond only to a narrow range of spatial frequencies) but that global motion detectors show broadband spatial-frequency tuning (i.e., they integrate across a broad range of spatial frequencies), with a preference for low spatial frequencies.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).
  2. R. H. Wurtz, “Visual receptive fields of striate cortex neurons in awake monkeys,” J. Neurophysiol. 32, 727–742 (1969).
    [PubMed]
  3. P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1399 (1976).
    [PubMed]
  4. S. J. Anderson, D. C. Burr, “Receptive field size of human motion detection units,” Vision Res. 27, 621–635 (1987).
    [CrossRef] [PubMed]
  5. P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 35, 2811–2823 (1995).
    [CrossRef] [PubMed]
  6. P. Verghese, L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature (London) 381, 161–163 (1996).
    [CrossRef]
  7. D. Regan, K. I. Beverly, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–421 (1978).
    [CrossRef] [PubMed]
  8. T. C. A. Freeman, M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992).
    [CrossRef] [PubMed]
  9. M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
    [CrossRef]
  10. M. C. Morrone, D. C. Burr, S. Di Pietro, “Cardinal directions for visual optic flow,” Curr. Biol. 9, 763–766 (1999).
    [CrossRef] [PubMed]
  11. D. C. Burr, M. C. Morrone, L. M. Vaina, “Large receptive fields for optic flow detection in humans,” Vision Res. 38, 1731–1743 (1998).
    [CrossRef] [PubMed]
  12. K. Gurney, M. J. Wright, “Rotation and radial motion thresholds support a two-stage model of differential-motion analysis,” Perception 25, 5–26 (1996).
    [CrossRef]
  13. M. Lappe, J. P. Rauschecker, “An illusory transformation in a model of optic flow processing,” Vision Res. 35, 1619–1631 (1995).
    [CrossRef] [PubMed]
  14. R. J. Snowden, A. B. Milne, “Phantom motion aftereffects—evidence of detectors for the analysis of optic flow,” Curr. Biol. 7, 717–722 (1997).
    [CrossRef] [PubMed]
  15. P. J. Bex, A. B. Metha, W. Makous, “Psychophysical evidence for a functional hierarchy of motion processing mechanisms,” J. Opt. Soc. Am. A 15, 769–776 (1998).
    [CrossRef]
  16. P. J. Bex, W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997).
    [CrossRef]
  17. P. J. Bex, A. B. Metha, W. Makous, “Enhanced motion aftereffect for complex motions,” Vision Res. 39, 2229–2238 (1999).
    [CrossRef] [PubMed]
  18. H. A. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 61, 145–157 (1986).
  19. C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophysiol. 65, 1329–1345 (1991).
    [PubMed]
  20. G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
    [CrossRef] [PubMed]
  21. K. Tanaka, H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophysiol. 62, 626–641 (1989).
    [PubMed]
  22. M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
    [PubMed]
  23. J. Kim, K. Mulligan, H. Sherk, “Simulated optic flow and extrastriate cortex. I: optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997).
    [PubMed]
  24. K. Mulligan, J. Kim, H. Sherk, “Simulated optic flow and extrastriate cortex. II: responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997).
    [PubMed]
  25. H. G. Krapp, R. Hengstenberg, “Estimation of self motion by optic flow processing in single visual interneurons,” Nature (London) 384, 463–466 (1996).
    [CrossRef]
  26. O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
    [CrossRef] [PubMed]
  27. J. J. Chang, B. Julesz, “Displacement limits for spatial frequency filtered random dot cinematograms in apparent motion,” Vision Res. 23, 1379–1385 (1983).
    [CrossRef]
  28. J. J. Chang, B. Julesz, “Cooperative and non-cooperative processes of apparent movement of random-dot cinematograms,” Spatial Vision 1, 39–45 (1985).
    [CrossRef] [PubMed]
  29. R. Cleary, O. J. Braddick, “Masking of low frequency information in short-range apparent motion,” Vision Res. 30, 317–327 (1990).
    [CrossRef] [PubMed]
  30. R. Cleary, O. J. Braddick, “Direction discrimination for band-pass filtered random dot kinematograms,” Vision Res. 30, 303–316 (1990).
    [CrossRef] [PubMed]
  31. W. F. Bischof, V. Di Lollo, “Perception of directional sampled motion in relation to displacement and spatial frequency: evidence for a unitary motion system,” Vision Res. 30, 1341–1362 (1990).
    [CrossRef] [PubMed]
  32. M. J. Morgan, G. Mather, “Motion discrimination in two-frame sequences with differing spatial frequency content,” Vision Res. 34, 197–208 (1994).
    [CrossRef] [PubMed]
  33. P. J. Bex, N. Brady, R. E. Fredericksen, R. F. Hess, “Energetic motion detection,” Nature (London) 378, 670–672 (1995).
    [CrossRef]
  34. R. A. Eagle, B. J. Rogers, “Motion detection is limited by element density not spatial frequency,” Vision Res. 36, 545–558 (1996).
    [CrossRef] [PubMed]
  35. N. Brady, P. J. Bex, R. E. Fredericksen, “Independent coding across spatial scales in moving fractal images,” Vision Res. 37, 1873–1883 (1997).
    [CrossRef] [PubMed]
  36. T. Ledgeway, “How similar must the Fourier spectra of the frames of a random-dot kinematogram be to support motion perception?” Vision Res. 36, 2489–2495 (1996).
    [CrossRef] [PubMed]
  37. A. B. Watson, “Apparent motion occurs only between similar spatial frequencies,” Vision Res. 26, 1727–1730 (1986).
    [CrossRef] [PubMed]
  38. R. F. Hess, P. J. Bex, R. F. Fredericksen, N. Brady, “Is human motion detection subserved by a single or multiple channel mechanism?” Vision Res. 38, 259–266 (1998).
    [CrossRef] [PubMed]
  39. Y. D. Yang, R. Blake, “Broad tuning for spatial-frequency of neural mechanisms underlying visual-perception of coherent motion,” Nature (London) 371, 793–796 (1994).
    [CrossRef]
  40. R. Over, J. Broerse, B. Crassini, W. Lovegrove, “Spatial determinants of the aftereffect of seen movement,” Vision Res. 13, 1681–1690 (1973).
    [CrossRef] [PubMed]
  41. E. L. Cameron, C. L. Baker, J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992).
    [CrossRef] [PubMed]
  42. P. J. Bex, F. A. Verstraten, I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996).
    [CrossRef] [PubMed]
  43. I. Mareschal, H. Ashida, P. J. Bex, S. Nishida, F. A. J. Verstraten, “Temporal frequency tuning of the test pattern: the missing link between lower and higher stages of motion processing as revealed by the flicker motion aftereffect?” Vision Res. 37, 1755–1759 (1997).
    [CrossRef] [PubMed]
  44. H. Ashida, N. Osaka, “Difference of spatial-frequency selectivity between static and flicker motion aftereffects,” Perception 23, 1313–1320 (1994).
    [CrossRef]
  45. F. A. J. Verstraten, R. E. Fredericksen, R. J. A. van Wezel, M. J. M. Lankheet, W. A. van de Grind, “Recovery from adaptation for dynamic and static motion aftereffects: evidence for two mechanisms,” Vision Res. 36, 421–424 (1996).
    [CrossRef] [PubMed]
  46. S. Nishida, T. Sato, “Motion aftereffect with flickering test patterns reveals higher stages of motion processing,” Vision Res. 35, 477–490 (1995).
    [CrossRef] [PubMed]
  47. D. J. Heeger, “Model for the extraction of image flow,” J. Opt. Soc. Am. A 4, 1455–1471 (1987).
    [CrossRef] [PubMed]
  48. E. P. Simoncelli, D. J. Heeger, “A model of neuronal responses in visual area MT,” Vision Res. 38, 743–761 (1998).
    [CrossRef] [PubMed]
  49. O. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993).
    [CrossRef] [PubMed]
  50. J. J. Koenderink, “Optic flow,” Vision Res. 26, 161–179 (1986).
    [CrossRef] [PubMed]
  51. J. J. Koenderink, A. J. van Doorn, “How an ambulant observer can construct a model of the environment from the geometrical structure of the visual inflow,” in Kibernetic, G. Hauske, E. Butendant, eds. (Oldenbourg, Munich, 1977).
  52. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
    [CrossRef] [PubMed]
  53. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
    [CrossRef] [PubMed]
  54. W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
    [PubMed]
  55. A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
    [CrossRef] [PubMed]
  56. M. Edwards, D. R. Badcock, “Interactions of the ON and OFF pathway,” Vision Res. 34, 2849–2858 (1994).
    [CrossRef] [PubMed]
  57. R. J. Snowden, R. Edmunds, “Colour and polarity contributions to global motion perception,” Vision Res. 39, 1813–1822 (1999).
    [CrossRef] [PubMed]
  58. L. J. Croner, T. D. Albright, “Image segmentation enhances discrimination of motion in visual noise,” Vision Res. 37, 1415–1427 (1997).
    [CrossRef] [PubMed]
  59. P. B. Hibbard, M. F. Bradshaw, B. De Bruyn, “Is global motion tuned for binocular disparity?” Vision Res. 39, 961–974 (1999).
    [CrossRef] [PubMed]
  60. R. J. Snowden, M. C. Rossiter, “Stereoscopic depth cues can segment motion information,” Perception 28, 193–201 (1999).
    [CrossRef]
  61. E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [CrossRef] [PubMed]
  62. A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
    [CrossRef] [PubMed]
  63. J. P. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
    [CrossRef] [PubMed]
  64. M. A. Georgeson, G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627–656 (1975).
  65. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
    [CrossRef] [PubMed]
  66. Z. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
    [CrossRef] [PubMed]
  67. S. Ullman, The Interpretation of Visual Motion (MIT Press, Cambridge, Mass., 1979).
  68. H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
    [CrossRef]
  69. P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
    [CrossRef] [PubMed]
  70. P. Cavanagh, M. Arguin, M. von Grunau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
    [CrossRef] [PubMed]
  71. J. C. Boulton, C. L. Baker, “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993).
    [CrossRef] [PubMed]
  72. J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
    [CrossRef] [PubMed]
  73. C. L. J. Baker, R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998).
    [CrossRef] [PubMed]
  74. P. J. Bex, C. L. Baker, “Motion perception over long inter-stimulus intervals,” Percept. Psychophys. 61, 1066–1074 (1999).
    [CrossRef] [PubMed]

1999

M. C. Morrone, D. C. Burr, S. Di Pietro, “Cardinal directions for visual optic flow,” Curr. Biol. 9, 763–766 (1999).
[CrossRef] [PubMed]

P. J. Bex, A. B. Metha, W. Makous, “Enhanced motion aftereffect for complex motions,” Vision Res. 39, 2229–2238 (1999).
[CrossRef] [PubMed]

R. J. Snowden, R. Edmunds, “Colour and polarity contributions to global motion perception,” Vision Res. 39, 1813–1822 (1999).
[CrossRef] [PubMed]

P. B. Hibbard, M. F. Bradshaw, B. De Bruyn, “Is global motion tuned for binocular disparity?” Vision Res. 39, 961–974 (1999).
[CrossRef] [PubMed]

R. J. Snowden, M. C. Rossiter, “Stereoscopic depth cues can segment motion information,” Perception 28, 193–201 (1999).
[CrossRef]

P. J. Bex, C. L. Baker, “Motion perception over long inter-stimulus intervals,” Percept. Psychophys. 61, 1066–1074 (1999).
[CrossRef] [PubMed]

1998

C. L. J. Baker, R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998).
[CrossRef] [PubMed]

R. F. Hess, P. J. Bex, R. F. Fredericksen, N. Brady, “Is human motion detection subserved by a single or multiple channel mechanism?” Vision Res. 38, 259–266 (1998).
[CrossRef] [PubMed]

E. P. Simoncelli, D. J. Heeger, “A model of neuronal responses in visual area MT,” Vision Res. 38, 743–761 (1998).
[CrossRef] [PubMed]

D. C. Burr, M. C. Morrone, L. M. Vaina, “Large receptive fields for optic flow detection in humans,” Vision Res. 38, 1731–1743 (1998).
[CrossRef] [PubMed]

P. J. Bex, A. B. Metha, W. Makous, “Psychophysical evidence for a functional hierarchy of motion processing mechanisms,” J. Opt. Soc. Am. A 15, 769–776 (1998).
[CrossRef]

1997

P. J. Bex, W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997).
[CrossRef]

R. J. Snowden, A. B. Milne, “Phantom motion aftereffects—evidence of detectors for the analysis of optic flow,” Curr. Biol. 7, 717–722 (1997).
[CrossRef] [PubMed]

J. Kim, K. Mulligan, H. Sherk, “Simulated optic flow and extrastriate cortex. I: optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997).
[PubMed]

K. Mulligan, J. Kim, H. Sherk, “Simulated optic flow and extrastriate cortex. II: responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997).
[PubMed]

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef] [PubMed]

N. Brady, P. J. Bex, R. E. Fredericksen, “Independent coding across spatial scales in moving fractal images,” Vision Res. 37, 1873–1883 (1997).
[CrossRef] [PubMed]

I. Mareschal, H. Ashida, P. J. Bex, S. Nishida, F. A. J. Verstraten, “Temporal frequency tuning of the test pattern: the missing link between lower and higher stages of motion processing as revealed by the flicker motion aftereffect?” Vision Res. 37, 1755–1759 (1997).
[CrossRef] [PubMed]

L. J. Croner, T. D. Albright, “Image segmentation enhances discrimination of motion in visual noise,” Vision Res. 37, 1415–1427 (1997).
[CrossRef] [PubMed]

1996

P. J. Bex, F. A. Verstraten, I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996).
[CrossRef] [PubMed]

R. A. Eagle, B. J. Rogers, “Motion detection is limited by element density not spatial frequency,” Vision Res. 36, 545–558 (1996).
[CrossRef] [PubMed]

T. Ledgeway, “How similar must the Fourier spectra of the frames of a random-dot kinematogram be to support motion perception?” Vision Res. 36, 2489–2495 (1996).
[CrossRef] [PubMed]

F. A. J. Verstraten, R. E. Fredericksen, R. J. A. van Wezel, M. J. M. Lankheet, W. A. van de Grind, “Recovery from adaptation for dynamic and static motion aftereffects: evidence for two mechanisms,” Vision Res. 36, 421–424 (1996).
[CrossRef] [PubMed]

H. G. Krapp, R. Hengstenberg, “Estimation of self motion by optic flow processing in single visual interneurons,” Nature (London) 384, 463–466 (1996).
[CrossRef]

K. Gurney, M. J. Wright, “Rotation and radial motion thresholds support a two-stage model of differential-motion analysis,” Perception 25, 5–26 (1996).
[CrossRef]

P. Verghese, L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature (London) 381, 161–163 (1996).
[CrossRef]

1995

P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 35, 2811–2823 (1995).
[CrossRef] [PubMed]

M. Lappe, J. P. Rauschecker, “An illusory transformation in a model of optic flow processing,” Vision Res. 35, 1619–1631 (1995).
[CrossRef] [PubMed]

M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

P. J. Bex, N. Brady, R. E. Fredericksen, R. F. Hess, “Energetic motion detection,” Nature (London) 378, 670–672 (1995).
[CrossRef]

S. Nishida, T. Sato, “Motion aftereffect with flickering test patterns reveals higher stages of motion processing,” Vision Res. 35, 477–490 (1995).
[CrossRef] [PubMed]

Z. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

1994

M. Edwards, D. R. Badcock, “Interactions of the ON and OFF pathway,” Vision Res. 34, 2849–2858 (1994).
[CrossRef] [PubMed]

Y. D. Yang, R. Blake, “Broad tuning for spatial-frequency of neural mechanisms underlying visual-perception of coherent motion,” Nature (London) 371, 793–796 (1994).
[CrossRef]

H. Ashida, N. Osaka, “Difference of spatial-frequency selectivity between static and flicker motion aftereffects,” Perception 23, 1313–1320 (1994).
[CrossRef]

M. J. Morgan, G. Mather, “Motion discrimination in two-frame sequences with differing spatial frequency content,” Vision Res. 34, 197–208 (1994).
[CrossRef] [PubMed]

M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
[PubMed]

1993

O. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993).
[CrossRef] [PubMed]

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
[CrossRef] [PubMed]

1992

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

E. L. Cameron, C. L. Baker, J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992).
[CrossRef] [PubMed]

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

T. C. A. Freeman, M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992).
[CrossRef] [PubMed]

1991

C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophysiol. 65, 1329–1345 (1991).
[PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

1990

R. Cleary, O. J. Braddick, “Masking of low frequency information in short-range apparent motion,” Vision Res. 30, 317–327 (1990).
[CrossRef] [PubMed]

R. Cleary, O. J. Braddick, “Direction discrimination for band-pass filtered random dot kinematograms,” Vision Res. 30, 303–316 (1990).
[CrossRef] [PubMed]

W. F. Bischof, V. Di Lollo, “Perception of directional sampled motion in relation to displacement and spatial frequency: evidence for a unitary motion system,” Vision Res. 30, 1341–1362 (1990).
[CrossRef] [PubMed]

1989

K. Tanaka, H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophysiol. 62, 626–641 (1989).
[PubMed]

P. Cavanagh, M. Arguin, M. von Grunau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

1988

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
[CrossRef] [PubMed]

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

1987

D. J. Heeger, “Model for the extraction of image flow,” J. Opt. Soc. Am. A 4, 1455–1471 (1987).
[CrossRef] [PubMed]

S. J. Anderson, D. C. Burr, “Receptive field size of human motion detection units,” Vision Res. 27, 621–635 (1987).
[CrossRef] [PubMed]

1986

H. A. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 61, 145–157 (1986).

J. J. Koenderink, “Optic flow,” Vision Res. 26, 161–179 (1986).
[CrossRef] [PubMed]

A. B. Watson, “Apparent motion occurs only between similar spatial frequencies,” Vision Res. 26, 1727–1730 (1986).
[CrossRef] [PubMed]

1985

1983

J. J. Chang, B. Julesz, “Displacement limits for spatial frequency filtered random dot cinematograms in apparent motion,” Vision Res. 23, 1379–1385 (1983).
[CrossRef]

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

1978

D. Regan, K. I. Beverly, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–421 (1978).
[CrossRef] [PubMed]

1976

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1399 (1976).
[PubMed]

1975

M. A. Georgeson, G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627–656 (1975).

1974

O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
[CrossRef] [PubMed]

1973

R. Over, J. Broerse, B. Crassini, W. Lovegrove, “Spatial determinants of the aftereffect of seen movement,” Vision Res. 13, 1681–1690 (1973).
[CrossRef] [PubMed]

1969

R. H. Wurtz, “Visual receptive fields of striate cortex neurons in awake monkeys,” J. Neurophysiol. 32, 727–742 (1969).
[PubMed]

1968

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

Adelson, E. H.

Ahumada, A. J.

Albright, T. D.

L. J. Croner, T. D. Albright, “Image segmentation enhances discrimination of motion in visual noise,” Vision Res. 37, 1415–1427 (1997).
[CrossRef] [PubMed]

Andersen, R. A.

M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
[PubMed]

Anderson, S. J.

S. J. Anderson, D. C. Burr, “Receptive field size of human motion detection units,” Vision Res. 27, 621–635 (1987).
[CrossRef] [PubMed]

Arguin, M.

P. Cavanagh, M. Arguin, M. von Grunau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

Ashida, H.

I. Mareschal, H. Ashida, P. J. Bex, S. Nishida, F. A. J. Verstraten, “Temporal frequency tuning of the test pattern: the missing link between lower and higher stages of motion processing as revealed by the flicker motion aftereffect?” Vision Res. 37, 1755–1759 (1997).
[CrossRef] [PubMed]

H. Ashida, N. Osaka, “Difference of spatial-frequency selectivity between static and flicker motion aftereffects,” Perception 23, 1313–1320 (1994).
[CrossRef]

Badcock, D. R.

M. Edwards, D. R. Badcock, “Interactions of the ON and OFF pathway,” Vision Res. 34, 2849–2858 (1994).
[CrossRef] [PubMed]

Baker, C. L.

P. J. Bex, C. L. Baker, “Motion perception over long inter-stimulus intervals,” Percept. Psychophys. 61, 1066–1074 (1999).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993).
[CrossRef] [PubMed]

E. L. Cameron, C. L. Baker, J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992).
[CrossRef] [PubMed]

Baker, C. L. J.

C. L. J. Baker, R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998).
[CrossRef] [PubMed]

Bergen, J. R.

Beverly, K. I.

D. Regan, K. I. Beverly, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–421 (1978).
[CrossRef] [PubMed]

Bex, P. J.

P. J. Bex, A. B. Metha, W. Makous, “Enhanced motion aftereffect for complex motions,” Vision Res. 39, 2229–2238 (1999).
[CrossRef] [PubMed]

P. J. Bex, C. L. Baker, “Motion perception over long inter-stimulus intervals,” Percept. Psychophys. 61, 1066–1074 (1999).
[CrossRef] [PubMed]

P. J. Bex, A. B. Metha, W. Makous, “Psychophysical evidence for a functional hierarchy of motion processing mechanisms,” J. Opt. Soc. Am. A 15, 769–776 (1998).
[CrossRef]

R. F. Hess, P. J. Bex, R. F. Fredericksen, N. Brady, “Is human motion detection subserved by a single or multiple channel mechanism?” Vision Res. 38, 259–266 (1998).
[CrossRef] [PubMed]

N. Brady, P. J. Bex, R. E. Fredericksen, “Independent coding across spatial scales in moving fractal images,” Vision Res. 37, 1873–1883 (1997).
[CrossRef] [PubMed]

I. Mareschal, H. Ashida, P. J. Bex, S. Nishida, F. A. J. Verstraten, “Temporal frequency tuning of the test pattern: the missing link between lower and higher stages of motion processing as revealed by the flicker motion aftereffect?” Vision Res. 37, 1755–1759 (1997).
[CrossRef] [PubMed]

P. J. Bex, W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997).
[CrossRef]

P. J. Bex, F. A. Verstraten, I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996).
[CrossRef] [PubMed]

P. J. Bex, N. Brady, R. E. Fredericksen, R. F. Hess, “Energetic motion detection,” Nature (London) 378, 670–672 (1995).
[CrossRef]

Bischof, W. F.

W. F. Bischof, V. Di Lollo, “Perception of directional sampled motion in relation to displacement and spatial frequency: evidence for a unitary motion system,” Vision Res. 30, 1341–1362 (1990).
[CrossRef] [PubMed]

Blake, R.

Y. D. Yang, R. Blake, “Broad tuning for spatial-frequency of neural mechanisms underlying visual-perception of coherent motion,” Nature (London) 371, 793–796 (1994).
[CrossRef]

Boulton, J. C.

J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993).
[CrossRef] [PubMed]

E. L. Cameron, C. L. Baker, J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992).
[CrossRef] [PubMed]

Braddick, O.

O. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993).
[CrossRef] [PubMed]

Braddick, O. J.

R. Cleary, O. J. Braddick, “Masking of low frequency information in short-range apparent motion,” Vision Res. 30, 317–327 (1990).
[CrossRef] [PubMed]

R. Cleary, O. J. Braddick, “Direction discrimination for band-pass filtered random dot kinematograms,” Vision Res. 30, 303–316 (1990).
[CrossRef] [PubMed]

O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
[CrossRef] [PubMed]

Bradshaw, M. F.

P. B. Hibbard, M. F. Bradshaw, B. De Bruyn, “Is global motion tuned for binocular disparity?” Vision Res. 39, 961–974 (1999).
[CrossRef] [PubMed]

Brady, N.

R. F. Hess, P. J. Bex, R. F. Fredericksen, N. Brady, “Is human motion detection subserved by a single or multiple channel mechanism?” Vision Res. 38, 259–266 (1998).
[CrossRef] [PubMed]

N. Brady, P. J. Bex, R. E. Fredericksen, “Independent coding across spatial scales in moving fractal images,” Vision Res. 37, 1873–1883 (1997).
[CrossRef] [PubMed]

P. J. Bex, N. Brady, R. E. Fredericksen, R. F. Hess, “Energetic motion detection,” Nature (London) 378, 670–672 (1995).
[CrossRef]

Broerse, J.

R. Over, J. Broerse, B. Crassini, W. Lovegrove, “Spatial determinants of the aftereffect of seen movement,” Vision Res. 13, 1681–1690 (1973).
[CrossRef] [PubMed]

Burr, D. C.

M. C. Morrone, D. C. Burr, S. Di Pietro, “Cardinal directions for visual optic flow,” Curr. Biol. 9, 763–766 (1999).
[CrossRef] [PubMed]

D. C. Burr, M. C. Morrone, L. M. Vaina, “Large receptive fields for optic flow detection in humans,” Vision Res. 38, 1731–1743 (1998).
[CrossRef] [PubMed]

M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

S. J. Anderson, D. C. Burr, “Receptive field size of human motion detection units,” Vision Res. 27, 621–635 (1987).
[CrossRef] [PubMed]

Cameron, E. L.

E. L. Cameron, C. L. Baker, J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992).
[CrossRef] [PubMed]

Cavanagh, P.

P. Cavanagh, M. Arguin, M. von Grunau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

Chang, J. J.

J. J. Chang, B. Julesz, “Cooperative and non-cooperative processes of apparent movement of random-dot cinematograms,” Spatial Vision 1, 39–45 (1985).
[CrossRef] [PubMed]

J. J. Chang, B. Julesz, “Displacement limits for spatial frequency filtered random dot cinematograms in apparent motion,” Vision Res. 23, 1379–1385 (1983).
[CrossRef]

Chubb, C.

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
[CrossRef] [PubMed]

Cleary, R.

R. Cleary, O. J. Braddick, “Masking of low frequency information in short-range apparent motion,” Vision Res. 30, 317–327 (1990).
[CrossRef] [PubMed]

R. Cleary, O. J. Braddick, “Direction discrimination for band-pass filtered random dot kinematograms,” Vision Res. 30, 303–316 (1990).
[CrossRef] [PubMed]

Crassini, B.

R. Over, J. Broerse, B. Crassini, W. Lovegrove, “Spatial determinants of the aftereffect of seen movement,” Vision Res. 13, 1681–1690 (1973).
[CrossRef] [PubMed]

Croner, L. J.

L. J. Croner, T. D. Albright, “Image segmentation enhances discrimination of motion in visual noise,” Vision Res. 37, 1415–1427 (1997).
[CrossRef] [PubMed]

De Bruyn, B.

P. B. Hibbard, M. F. Bradshaw, B. De Bruyn, “Is global motion tuned for binocular disparity?” Vision Res. 39, 961–974 (1999).
[CrossRef] [PubMed]

Di Lollo, V.

W. F. Bischof, V. Di Lollo, “Perception of directional sampled motion in relation to displacement and spatial frequency: evidence for a unitary motion system,” Vision Res. 30, 1341–1362 (1990).
[CrossRef] [PubMed]

Di Pietro, S.

M. C. Morrone, D. C. Burr, S. Di Pietro, “Cardinal directions for visual optic flow,” Curr. Biol. 9, 763–766 (1999).
[CrossRef] [PubMed]

Duffy, C. J.

C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophysiol. 65, 1329–1345 (1991).
[PubMed]

Eagle, R. A.

R. A. Eagle, B. J. Rogers, “Motion detection is limited by element density not spatial frequency,” Vision Res. 36, 545–558 (1996).
[CrossRef] [PubMed]

Edmunds, R.

R. J. Snowden, R. Edmunds, “Colour and polarity contributions to global motion perception,” Vision Res. 39, 1813–1822 (1999).
[CrossRef] [PubMed]

Edwards, M.

M. Edwards, D. R. Badcock, “Interactions of the ON and OFF pathway,” Vision Res. 34, 2849–2858 (1994).
[CrossRef] [PubMed]

Ferrera, V. P.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Finlay, B. L.

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1399 (1976).
[PubMed]

Fredericksen, R. E.

N. Brady, P. J. Bex, R. E. Fredericksen, “Independent coding across spatial scales in moving fractal images,” Vision Res. 37, 1873–1883 (1997).
[CrossRef] [PubMed]

F. A. J. Verstraten, R. E. Fredericksen, R. J. A. van Wezel, M. J. M. Lankheet, W. A. van de Grind, “Recovery from adaptation for dynamic and static motion aftereffects: evidence for two mechanisms,” Vision Res. 36, 421–424 (1996).
[CrossRef] [PubMed]

P. J. Bex, N. Brady, R. E. Fredericksen, R. F. Hess, “Energetic motion detection,” Nature (London) 378, 670–672 (1995).
[CrossRef]

Fredericksen, R. F.

R. F. Hess, P. J. Bex, R. F. Fredericksen, N. Brady, “Is human motion detection subserved by a single or multiple channel mechanism?” Vision Res. 38, 259–266 (1998).
[CrossRef] [PubMed]

Freeman, T. C. A.

T. C. A. Freeman, M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992).
[CrossRef] [PubMed]

Georgeson, M. A.

M. A. Georgeson, G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627–656 (1975).

Graziano, M. S.

M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
[PubMed]

Gurney, K.

K. Gurney, M. J. Wright, “Rotation and radial motion thresholds support a two-stage model of differential-motion analysis,” Perception 25, 5–26 (1996).
[CrossRef]

Harris, M. G.

T. C. A. Freeman, M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992).
[CrossRef] [PubMed]

Heeger, D. J.

E. P. Simoncelli, D. J. Heeger, “A model of neuronal responses in visual area MT,” Vision Res. 38, 743–761 (1998).
[CrossRef] [PubMed]

D. J. Heeger, “Model for the extraction of image flow,” J. Opt. Soc. Am. A 4, 1455–1471 (1987).
[CrossRef] [PubMed]

Hengstenberg, R.

H. G. Krapp, R. Hengstenberg, “Estimation of self motion by optic flow processing in single visual interneurons,” Nature (London) 384, 463–466 (1996).
[CrossRef]

Hess, R. F.

R. F. Hess, P. J. Bex, R. F. Fredericksen, N. Brady, “Is human motion detection subserved by a single or multiple channel mechanism?” Vision Res. 38, 259–266 (1998).
[CrossRef] [PubMed]

C. L. J. Baker, R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998).
[CrossRef] [PubMed]

P. J. Bex, N. Brady, R. E. Fredericksen, R. F. Hess, “Energetic motion detection,” Nature (London) 378, 670–672 (1995).
[CrossRef]

Hibbard, P. B.

P. B. Hibbard, M. F. Bradshaw, B. De Bruyn, “Is global motion tuned for binocular disparity?” Vision Res. 39, 961–974 (1999).
[CrossRef] [PubMed]

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

Isono, H.

H. A. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 61, 145–157 (1986).

Julesz, B.

J. J. Chang, B. Julesz, “Cooperative and non-cooperative processes of apparent movement of random-dot cinematograms,” Spatial Vision 1, 39–45 (1985).
[CrossRef] [PubMed]

J. J. Chang, B. Julesz, “Displacement limits for spatial frequency filtered random dot cinematograms in apparent motion,” Vision Res. 23, 1379–1385 (1983).
[CrossRef]

Kim, J.

K. Mulligan, J. Kim, H. Sherk, “Simulated optic flow and extrastriate cortex. II: responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997).
[PubMed]

J. Kim, K. Mulligan, H. Sherk, “Simulated optic flow and extrastriate cortex. I: optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997).
[PubMed]

Koenderink, J. J.

J. J. Koenderink, “Optic flow,” Vision Res. 26, 161–179 (1986).
[CrossRef] [PubMed]

J. J. Koenderink, A. J. van Doorn, “How an ambulant observer can construct a model of the environment from the geometrical structure of the visual inflow,” in Kibernetic, G. Hauske, E. Butendant, eds. (Oldenbourg, Munich, 1977).

Krapp, H. G.

H. G. Krapp, R. Hengstenberg, “Estimation of self motion by optic flow processing in single visual interneurons,” Nature (London) 384, 463–466 (1996).
[CrossRef]

Lagae, L.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Lankheet, M. J. M.

F. A. J. Verstraten, R. E. Fredericksen, R. J. A. van Wezel, M. J. M. Lankheet, W. A. van de Grind, “Recovery from adaptation for dynamic and static motion aftereffects: evidence for two mechanisms,” Vision Res. 36, 421–424 (1996).
[CrossRef] [PubMed]

Lappe, M.

M. Lappe, J. P. Rauschecker, “An illusory transformation in a model of optic flow processing,” Vision Res. 35, 1619–1631 (1995).
[CrossRef] [PubMed]

Ledgeway, T.

T. Ledgeway, “How similar must the Fourier spectra of the frames of a random-dot kinematogram be to support motion perception?” Vision Res. 36, 2489–2495 (1996).
[CrossRef] [PubMed]

Lovegrove, W.

R. Over, J. Broerse, B. Crassini, W. Lovegrove, “Spatial determinants of the aftereffect of seen movement,” Vision Res. 13, 1681–1690 (1973).
[CrossRef] [PubMed]

Lu, Z.

Z. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

Maes, H.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Makous, W.

P. J. Bex, A. B. Metha, W. Makous, “Enhanced motion aftereffect for complex motions,” Vision Res. 39, 2229–2238 (1999).
[CrossRef] [PubMed]

P. J. Bex, A. B. Metha, W. Makous, “Psychophysical evidence for a functional hierarchy of motion processing mechanisms,” J. Opt. Soc. Am. A 15, 769–776 (1998).
[CrossRef]

P. J. Bex, W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997).
[CrossRef]

Mareschal, I.

I. Mareschal, H. Ashida, P. J. Bex, S. Nishida, F. A. J. Verstraten, “Temporal frequency tuning of the test pattern: the missing link between lower and higher stages of motion processing as revealed by the flicker motion aftereffect?” Vision Res. 37, 1755–1759 (1997).
[CrossRef] [PubMed]

P. J. Bex, F. A. Verstraten, I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996).
[CrossRef] [PubMed]

Mather, G.

M. J. Morgan, G. Mather, “Motion discrimination in two-frame sequences with differing spatial frequency content,” Vision Res. 34, 197–208 (1994).
[CrossRef] [PubMed]

Metha, A. B.

Mikami, A.

H. A. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 61, 145–157 (1986).

Milne, A. B.

R. J. Snowden, A. B. Milne, “Phantom motion aftereffects—evidence of detectors for the analysis of optic flow,” Curr. Biol. 7, 717–722 (1997).
[CrossRef] [PubMed]

Morgan, M. J.

M. J. Morgan, G. Mather, “Motion discrimination in two-frame sequences with differing spatial frequency content,” Vision Res. 34, 197–208 (1994).
[CrossRef] [PubMed]

Morrone, M. C.

M. C. Morrone, D. C. Burr, S. Di Pietro, “Cardinal directions for visual optic flow,” Curr. Biol. 9, 763–766 (1999).
[CrossRef] [PubMed]

D. C. Burr, M. C. Morrone, L. M. Vaina, “Large receptive fields for optic flow detection in humans,” Vision Res. 38, 1731–1743 (1998).
[CrossRef] [PubMed]

M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

Mulligan, K.

J. Kim, K. Mulligan, H. Sherk, “Simulated optic flow and extrastriate cortex. I: optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997).
[PubMed]

K. Mulligan, J. Kim, H. Sherk, “Simulated optic flow and extrastriate cortex. II: responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997).
[PubMed]

Newsome, W. T.

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

Nishida, S.

I. Mareschal, H. Ashida, P. J. Bex, S. Nishida, F. A. J. Verstraten, “Temporal frequency tuning of the test pattern: the missing link between lower and higher stages of motion processing as revealed by the flicker motion aftereffect?” Vision Res. 37, 1755–1759 (1997).
[CrossRef] [PubMed]

S. Nishida, T. Sato, “Motion aftereffect with flickering test patterns reveals higher stages of motion processing,” Vision Res. 35, 477–490 (1995).
[CrossRef] [PubMed]

Orban, G. A.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Osaka, N.

H. Ashida, N. Osaka, “Difference of spatial-frequency selectivity between static and flicker motion aftereffects,” Perception 23, 1313–1320 (1994).
[CrossRef]

Over, R.

R. Over, J. Broerse, B. Crassini, W. Lovegrove, “Spatial determinants of the aftereffect of seen movement,” Vision Res. 13, 1681–1690 (1973).
[CrossRef] [PubMed]

Pare, E. B.

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

Pelli, D. G.

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Raiguel, S.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Rauschecker, J. P.

M. Lappe, J. P. Rauschecker, “An illusory transformation in a model of optic flow processing,” Vision Res. 35, 1619–1631 (1995).
[CrossRef] [PubMed]

Regan, D.

D. Regan, K. I. Beverly, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–421 (1978).
[CrossRef] [PubMed]

Rogers, B. J.

R. A. Eagle, B. J. Rogers, “Motion detection is limited by element density not spatial frequency,” Vision Res. 36, 545–558 (1996).
[CrossRef] [PubMed]

Rossiter, M. C.

R. J. Snowden, M. C. Rossiter, “Stereoscopic depth cues can segment motion information,” Perception 28, 193–201 (1999).
[CrossRef]

Saito, H.

K. Tanaka, H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophysiol. 62, 626–641 (1989).
[PubMed]

Saito, H. A.

H. A. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 61, 145–157 (1986).

Sato, T.

S. Nishida, T. Sato, “Motion aftereffect with flickering test patterns reveals higher stages of motion processing,” Vision Res. 35, 477–490 (1995).
[CrossRef] [PubMed]

Schiller, P. H.

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1399 (1976).
[PubMed]

Sherk, H.

J. Kim, K. Mulligan, H. Sherk, “Simulated optic flow and extrastriate cortex. I: optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997).
[PubMed]

K. Mulligan, J. Kim, H. Sherk, “Simulated optic flow and extrastriate cortex. II: responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997).
[PubMed]

Simoncelli, E. P.

E. P. Simoncelli, D. J. Heeger, “A model of neuronal responses in visual area MT,” Vision Res. 38, 743–761 (1998).
[CrossRef] [PubMed]

Snowden, R. J.

R. J. Snowden, R. Edmunds, “Colour and polarity contributions to global motion perception,” Vision Res. 39, 1813–1822 (1999).
[CrossRef] [PubMed]

R. J. Snowden, M. C. Rossiter, “Stereoscopic depth cues can segment motion information,” Perception 28, 193–201 (1999).
[CrossRef]

R. J. Snowden, A. B. Milne, “Phantom motion aftereffects—evidence of detectors for the analysis of optic flow,” Curr. Biol. 7, 717–722 (1997).
[CrossRef] [PubMed]

M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
[PubMed]

Sperling, G.

Z. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
[CrossRef] [PubMed]

J. P. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
[CrossRef] [PubMed]

Stone, L. S.

P. Verghese, L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature (London) 381, 161–163 (1996).
[CrossRef]

P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 35, 2811–2823 (1995).
[CrossRef] [PubMed]

Sullivan, G. D.

M. A. Georgeson, G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627–656 (1975).

Tanaka, K.

K. Tanaka, H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophysiol. 62, 626–641 (1989).
[PubMed]

H. A. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 61, 145–157 (1986).

Torre, V.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Ullman, S.

S. Ullman, The Interpretation of Visual Motion (MIT Press, Cambridge, Mass., 1979).

Vaina, L. M.

D. C. Burr, M. C. Morrone, L. M. Vaina, “Large receptive fields for optic flow detection in humans,” Vision Res. 38, 1731–1743 (1998).
[CrossRef] [PubMed]

M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

van de Grind, W. A.

F. A. J. Verstraten, R. E. Fredericksen, R. J. A. van Wezel, M. J. M. Lankheet, W. A. van de Grind, “Recovery from adaptation for dynamic and static motion aftereffects: evidence for two mechanisms,” Vision Res. 36, 421–424 (1996).
[CrossRef] [PubMed]

van Doorn, A. J.

J. J. Koenderink, A. J. van Doorn, “How an ambulant observer can construct a model of the environment from the geometrical structure of the visual inflow,” in Kibernetic, G. Hauske, E. Butendant, eds. (Oldenbourg, Munich, 1977).

van Santen, J. P.

van Wezel, R. J. A.

F. A. J. Verstraten, R. E. Fredericksen, R. J. A. van Wezel, M. J. M. Lankheet, W. A. van de Grind, “Recovery from adaptation for dynamic and static motion aftereffects: evidence for two mechanisms,” Vision Res. 36, 421–424 (1996).
[CrossRef] [PubMed]

Verghese, P.

P. Verghese, L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature (London) 381, 161–163 (1996).
[CrossRef]

P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 35, 2811–2823 (1995).
[CrossRef] [PubMed]

Verri, A.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Verstraten, F. A.

P. J. Bex, F. A. Verstraten, I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996).
[CrossRef] [PubMed]

Verstraten, F. A. J.

I. Mareschal, H. Ashida, P. J. Bex, S. Nishida, F. A. J. Verstraten, “Temporal frequency tuning of the test pattern: the missing link between lower and higher stages of motion processing as revealed by the flicker motion aftereffect?” Vision Res. 37, 1755–1759 (1997).
[CrossRef] [PubMed]

F. A. J. Verstraten, R. E. Fredericksen, R. J. A. van Wezel, M. J. M. Lankheet, W. A. van de Grind, “Recovery from adaptation for dynamic and static motion aftereffects: evidence for two mechanisms,” Vision Res. 36, 421–424 (1996).
[CrossRef] [PubMed]

Volman, S. F.

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1399 (1976).
[PubMed]

von Grunau, M.

P. Cavanagh, M. Arguin, M. von Grunau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

Watson, A. B.

A. B. Watson, “Apparent motion occurs only between similar spatial frequencies,” Vision Res. 26, 1727–1730 (1986).
[CrossRef] [PubMed]

A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
[CrossRef] [PubMed]

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Werkhoven, P.

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

Wilson, H. R.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Wright, M. J.

K. Gurney, M. J. Wright, “Rotation and radial motion thresholds support a two-stage model of differential-motion analysis,” Perception 25, 5–26 (1996).
[CrossRef]

Wurtz, R. H.

C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophysiol. 65, 1329–1345 (1991).
[PubMed]

R. H. Wurtz, “Visual receptive fields of striate cortex neurons in awake monkeys,” J. Neurophysiol. 32, 727–742 (1969).
[PubMed]

Xiao, D.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Yang, Y. D.

Y. D. Yang, R. Blake, “Broad tuning for spatial-frequency of neural mechanisms underlying visual-perception of coherent motion,” Nature (London) 371, 793–796 (1994).
[CrossRef]

Yasuda, M.

H. A. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 61, 145–157 (1986).

Yo, C.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Zhang, L.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Curr. Biol.

M. C. Morrone, D. C. Burr, S. Di Pietro, “Cardinal directions for visual optic flow,” Curr. Biol. 9, 763–766 (1999).
[CrossRef] [PubMed]

R. J. Snowden, A. B. Milne, “Phantom motion aftereffects—evidence of detectors for the analysis of optic flow,” Curr. Biol. 7, 717–722 (1997).
[CrossRef] [PubMed]

J. Neurophysiol.

R. H. Wurtz, “Visual receptive fields of striate cortex neurons in awake monkeys,” J. Neurophysiol. 32, 727–742 (1969).
[PubMed]

P. H. Schiller, B. L. Finlay, S. F. Volman, “Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields,” J. Neurophysiol. 39, 1288–1399 (1976).
[PubMed]

C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophysiol. 65, 1329–1345 (1991).
[PubMed]

K. Tanaka, H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophysiol. 62, 626–641 (1989).
[PubMed]

J. Kim, K. Mulligan, H. Sherk, “Simulated optic flow and extrastriate cortex. I: optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997).
[PubMed]

K. Mulligan, J. Kim, H. Sherk, “Simulated optic flow and extrastriate cortex. II: responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997).
[PubMed]

J. Neurosci.

M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
[PubMed]

W. T. Newsome, E. B. Pare, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

H. A. Saito, K. Tanaka, H. Isono, M. Yasuda, A. Mikami, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 61, 145–157 (1986).

J. Opt. Soc. Am. A

J. Physiol. (London)

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

M. A. Georgeson, G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627–656 (1975).

Nature (London)

Y. D. Yang, R. Blake, “Broad tuning for spatial-frequency of neural mechanisms underlying visual-perception of coherent motion,” Nature (London) 371, 793–796 (1994).
[CrossRef]

M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

P. Verghese, L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature (London) 381, 161–163 (1996).
[CrossRef]

H. G. Krapp, R. Hengstenberg, “Estimation of self motion by optic flow processing in single visual interneurons,” Nature (London) 384, 463–466 (1996).
[CrossRef]

P. J. Bex, N. Brady, R. E. Fredericksen, R. F. Hess, “Energetic motion detection,” Nature (London) 378, 670–672 (1995).
[CrossRef]

Percept. Psychophys.

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

P. J. Bex, C. L. Baker, “Motion perception over long inter-stimulus intervals,” Percept. Psychophys. 61, 1066–1074 (1999).
[CrossRef] [PubMed]

Perception

R. J. Snowden, M. C. Rossiter, “Stereoscopic depth cues can segment motion information,” Perception 28, 193–201 (1999).
[CrossRef]

H. Ashida, N. Osaka, “Difference of spatial-frequency selectivity between static and flicker motion aftereffects,” Perception 23, 1313–1320 (1994).
[CrossRef]

K. Gurney, M. J. Wright, “Rotation and radial motion thresholds support a two-stage model of differential-motion analysis,” Perception 25, 5–26 (1996).
[CrossRef]

Proc. Natl. Acad. Sci. USA

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Spatial Vision

J. J. Chang, B. Julesz, “Cooperative and non-cooperative processes of apparent movement of random-dot cinematograms,” Spatial Vision 1, 39–45 (1985).
[CrossRef] [PubMed]

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vision 10, 437–442 (1997).
[CrossRef] [PubMed]

Trends Neurosci.

O. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993).
[CrossRef] [PubMed]

Vision Res.

J. J. Koenderink, “Optic flow,” Vision Res. 26, 161–179 (1986).
[CrossRef] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

M. Edwards, D. R. Badcock, “Interactions of the ON and OFF pathway,” Vision Res. 34, 2849–2858 (1994).
[CrossRef] [PubMed]

R. J. Snowden, R. Edmunds, “Colour and polarity contributions to global motion perception,” Vision Res. 39, 1813–1822 (1999).
[CrossRef] [PubMed]

L. J. Croner, T. D. Albright, “Image segmentation enhances discrimination of motion in visual noise,” Vision Res. 37, 1415–1427 (1997).
[CrossRef] [PubMed]

P. B. Hibbard, M. F. Bradshaw, B. De Bruyn, “Is global motion tuned for binocular disparity?” Vision Res. 39, 961–974 (1999).
[CrossRef] [PubMed]

F. A. J. Verstraten, R. E. Fredericksen, R. J. A. van Wezel, M. J. M. Lankheet, W. A. van de Grind, “Recovery from adaptation for dynamic and static motion aftereffects: evidence for two mechanisms,” Vision Res. 36, 421–424 (1996).
[CrossRef] [PubMed]

S. Nishida, T. Sato, “Motion aftereffect with flickering test patterns reveals higher stages of motion processing,” Vision Res. 35, 477–490 (1995).
[CrossRef] [PubMed]

E. P. Simoncelli, D. J. Heeger, “A model of neuronal responses in visual area MT,” Vision Res. 38, 743–761 (1998).
[CrossRef] [PubMed]

R. Over, J. Broerse, B. Crassini, W. Lovegrove, “Spatial determinants of the aftereffect of seen movement,” Vision Res. 13, 1681–1690 (1973).
[CrossRef] [PubMed]

E. L. Cameron, C. L. Baker, J. C. Boulton, “Spatial frequency selective mechanisms underlying the motion aftereffect,” Vision Res. 32, 561–568 (1992).
[CrossRef] [PubMed]

P. J. Bex, F. A. Verstraten, I. Mareschal, “Temporal and spatial frequency tuning of the flicker motion aftereffect,” Vision Res. 36, 2721–2727 (1996).
[CrossRef] [PubMed]

I. Mareschal, H. Ashida, P. J. Bex, S. Nishida, F. A. J. Verstraten, “Temporal frequency tuning of the test pattern: the missing link between lower and higher stages of motion processing as revealed by the flicker motion aftereffect?” Vision Res. 37, 1755–1759 (1997).
[CrossRef] [PubMed]

Z. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

P. Cavanagh, M. Arguin, M. von Grunau, “Interattribute apparent motion,” Vision Res. 29, 1197–1204 (1989).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Different parameters control motion perception above and below a critical density,” Vision Res. 33, 1803–1811 (1993).
[CrossRef] [PubMed]

J. C. Boulton, C. L. Baker, “Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms,” Vision Res. 33, 2013–2019 (1993).
[CrossRef] [PubMed]

C. L. J. Baker, R. F. Hess, “Two mechanisms underlie processing of stochastic motion stimuli,” Vision Res. 38, 1211–1222 (1998).
[CrossRef] [PubMed]

R. Cleary, O. J. Braddick, “Masking of low frequency information in short-range apparent motion,” Vision Res. 30, 317–327 (1990).
[CrossRef] [PubMed]

R. Cleary, O. J. Braddick, “Direction discrimination for band-pass filtered random dot kinematograms,” Vision Res. 30, 303–316 (1990).
[CrossRef] [PubMed]

W. F. Bischof, V. Di Lollo, “Perception of directional sampled motion in relation to displacement and spatial frequency: evidence for a unitary motion system,” Vision Res. 30, 1341–1362 (1990).
[CrossRef] [PubMed]

M. J. Morgan, G. Mather, “Motion discrimination in two-frame sequences with differing spatial frequency content,” Vision Res. 34, 197–208 (1994).
[CrossRef] [PubMed]

R. A. Eagle, B. J. Rogers, “Motion detection is limited by element density not spatial frequency,” Vision Res. 36, 545–558 (1996).
[CrossRef] [PubMed]

N. Brady, P. J. Bex, R. E. Fredericksen, “Independent coding across spatial scales in moving fractal images,” Vision Res. 37, 1873–1883 (1997).
[CrossRef] [PubMed]

T. Ledgeway, “How similar must the Fourier spectra of the frames of a random-dot kinematogram be to support motion perception?” Vision Res. 36, 2489–2495 (1996).
[CrossRef] [PubMed]

A. B. Watson, “Apparent motion occurs only between similar spatial frequencies,” Vision Res. 26, 1727–1730 (1986).
[CrossRef] [PubMed]

R. F. Hess, P. J. Bex, R. F. Fredericksen, N. Brady, “Is human motion detection subserved by a single or multiple channel mechanism?” Vision Res. 38, 259–266 (1998).
[CrossRef] [PubMed]

O. J. Braddick, “A short-range process in apparent motion,” Vision Res. 14, 519–527 (1974).
[CrossRef] [PubMed]

J. J. Chang, B. Julesz, “Displacement limits for spatial frequency filtered random dot cinematograms in apparent motion,” Vision Res. 23, 1379–1385 (1983).
[CrossRef]

M. Lappe, J. P. Rauschecker, “An illusory transformation in a model of optic flow processing,” Vision Res. 35, 1619–1631 (1995).
[CrossRef] [PubMed]

D. C. Burr, M. C. Morrone, L. M. Vaina, “Large receptive fields for optic flow detection in humans,” Vision Res. 38, 1731–1743 (1998).
[CrossRef] [PubMed]

P. J. Bex, W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997).
[CrossRef]

P. J. Bex, A. B. Metha, W. Makous, “Enhanced motion aftereffect for complex motions,” Vision Res. 39, 2229–2238 (1999).
[CrossRef] [PubMed]

D. Regan, K. I. Beverly, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–421 (1978).
[CrossRef] [PubMed]

T. C. A. Freeman, M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992).
[CrossRef] [PubMed]

S. J. Anderson, D. C. Burr, “Receptive field size of human motion detection units,” Vision Res. 27, 621–635 (1987).
[CrossRef] [PubMed]

P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 35, 2811–2823 (1995).
[CrossRef] [PubMed]

Visual Neurosci.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Other

S. Ullman, The Interpretation of Visual Motion (MIT Press, Cambridge, Mass., 1979).

J. J. Koenderink, A. J. van Doorn, “How an ambulant observer can construct a model of the environment from the geometrical structure of the visual inflow,” in Kibernetic, G. Hauske, E. Butendant, eds. (Oldenbourg, Munich, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of the measurement of the spatial-frequency selectivity of local motion analyzers. Bilocal motion detectors respond only when the first and second instances of the element are within the spatial-frequency bandpass of the detector, e.g., diagram (a). Changes in motion sensitivity when the spatial frequency of one instance is (b) lower or (c) higher can be used to infer the selectivity of the unit. See the text for a detailed explanation.

Fig. 2
Fig. 2

Schematic illustration of the measurement of the spatial-frequency selectivity of global motion analyzers. The left image represents four local moving dots forming part of a global pattern of clockwise rotation. These local motions are integrated by a global motion detector, represented by the central collector unit. The right image shows the same four motions in the presence of noise elements (ringed in white) that move in random directions. The degree to which the noise elements of various spatial frequencies mask the coherent motion of the target elements can be used to infer the selectivity of the global unit. See the text for a detailed explanation.

Fig. 3
Fig. 3

Illustration of typical single frames from our movies, representing both local and global conditions: (a) 200 elements with the same peak spatial frequency (medium), (b) 100 elements at medium frequency and 100 at high frequency, (c) 100 elements at medium frequency and 100 at low frequency. Under local conditions, every element changed spatial frequency with each displacement. Under global conditions, target and noise elements did not change spatial frequency.

Fig. 4
Fig. 4

Bandpass spatial-frequency selectivity of local motion analyzers. The plots show the results of experiment 1 for two observers (PB and SD) for global patterns of translation (squares), rotation (triangles), and radiation (circles). Each time that an element was displaced, its center frequency was swapped between a target frequency (2 c/deg) and a fellow frequency (1, 1.4, 2, 2.8, or 4 c/deg), illustrated by the diagrams below the x axis. Motion sensitivity (inverse of detection threshold) is shown as a function of center frequency of the fellow element. Error bars show 95% confidence intervals. The data have been fitted with log-Gaussian functions (PB: μ=2.18 c/deg, σ=1.8 octaves; SD: μ=1.96 c/deg, σ=1.8 octaves). The functions have been vertically shifted because of the differing sensitivity to the three classes of motion (PB: radiation 2.2 times and rotation 3.7 times less sensitive than translation; SD: radiation 1.4 times and rotation 1.9 times less sensitive than translation).

Fig. 5
Fig. 5

Broadband spatial-frequency selectivity of global motion integrators. The plots show the results of experiment 2 for two observers (PB and SD) for global patterns of translation (squares), rotation (triangles), and radiation (circles). Motion coherence thresholds were measured for 100 elements of target center frequency (2 c/deg) in the presence of 100 masking elements of fellow center frequency (1, 1.4, 2, 2.8, or 4 c/deg), illustrated by the diagrams below the x axis. The filled symbols on the left show detection thresholds for 100 elements at the target frequency (2 c/deg) with no masking elements present. Motion coherence thresholds are shown as a function of fellow center frequency. Error bars show 95% confidence intervals. The data have been fitted with exponential functions (PB: t=2.31, SD: t=2.95). The functions have been vertically shifted because of the differing sensitivity to the three classes of motion (PB: radiation 1.5 times and rotation 1.9 times less sensitive than translation; SD: radiation 1.7 times and rotation 2.1 times less sensitive than translation).

Fig. 6
Fig. 6

Broadband spatial-frequency selectivity of global motion integrators. The results are the same as those in Fig. 5, except that the contrast of each element was adjusted for contrast sensitivity to be 5 times the detection threshold for each spatial frequency and the curves show the best-fitting log-Gaussian functions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

oi-eiσi2,
L(x, y)=12πσc exp-x22σc2 12πσc exp-y22σc2-12πσs exp-x22σs2 12πσs exp-y22σs2,

Metrics