Abstract

The off-axis and on-axis spectra in the far zone of an aperture for the case in which a particular class of partially coherent light with a broad spectrum is diffracted by an aperture are studied. It is shown that the spectrum in the far zone is generally different from that at the aperture; i.e., the spectrum is split into two or more peaks. Moreover, the spectrum varies with the diffractive angle. For a fixed diffractive angle, the spectral shift, defined as the difference between the frequencies at which the observed spectrum and the spectrum at the aperture take their maximum, shows a gradual change with the change in the coherence at the aperture. However, as the coherence reaches some critical values, the spectral shift exhibits a rapid transition; i.e., spectral switch occurs. The coherence that causes the spectral switch to take place is different for different diffractive angles. Therefore we propose a new kind of 1×N spectral switch, where N detectors (output ports) are placed at different diffractive angles in the far zone, and the spectral shifts at different detectors are measured. By adjusting the coherence of the aperture (input port) to the desired values, we obtain a rapid transition of the spectral shift in the desired output ports.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56, 1370–1372 (1986).
    [CrossRef] [PubMed]
  2. E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326, 363–365 (1987).
    [CrossRef]
  3. H. C. Kandpal, J. S. Vaishya, K. Saxena, D. S. Mehta, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
    [CrossRef]
  4. H. C. Kandpal, J. S. Vaishya, K. C. Joshi, “Wolf shift and its application in spectroradiometry,” Opt. Commun. 73, 169–172 (1989).
    [CrossRef]
  5. E. Wolf, “Correlation-induced Doppler-like frequency shifts of spectral lines,” Phys. Rev. Lett. 63, 2220–2223 (1989).
    [CrossRef] [PubMed]
  6. D. Faklis, G. M. Morris, “Spectral shifts produced by source correlations,” Opt. Lett. 13, 4–6 (1988).
    [CrossRef] [PubMed]
  7. Z. Dacic, E. Wolf, “Changes in the spectrum of a partially coherent light beam propagating in free space,” J. Opt. Soc. Am. A 5, 1118–1126 (1988).
    [CrossRef]
  8. G. M. Morris, D. Faklis, “Effects of source correlation on the spectrum of light,” Opt. Commun. 62, 5–11 (1987).
    [CrossRef]
  9. F. Gori, G. Guattari, C. Palma, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Commun. 67, 1–4 (1988).
    [CrossRef]
  10. G. Indebetouw, “Synthesis of polychromatic light sources with arbitrary degrees of coherence: some experiments,” J. Mod. Opt. 36, 251–259 (1989).
    [CrossRef]
  11. C. Palma, G. Cincotti, G. Guattari, “Spectral shift of a Gaussian Schell-model beam beyond a thin lens,” IEEE J. Quantum Electron. 34, 378–383 (1998).
    [CrossRef]
  12. C. Palma, G. Cincotti, G. Guattari, “Spectral changes in Gaussian cavity lasers,” IEEE J. Quantum Electron. 34, 1082–1088 (1998).
    [CrossRef]
  13. C. Palma, G. Cincotti, “Spectral shifts of a partially coherent field after passing through a lens,” Opt. Lett. 22, 671–672 (1997).
    [CrossRef] [PubMed]
  14. E. Wolf, D. F. V. James, “Correlation-induced spectral changes,” Rep. Prog. Phys. 59, 771–818 (1996).
    [CrossRef]
  15. J. T. Foley, “The effect of an aperture on the spectrum of partially coherent light,” Opt. Commun. 75, 347–352 (1990).
    [CrossRef]
  16. J. T. Foley, “The effect of an aperture on the spectrum of partially coherent light,” J. Opt. Soc. Am. A 8, 1099–1105 (1991).
    [CrossRef]
  17. A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
    [CrossRef]
  18. T. Yatagai, S. Kawai, H. Huang, “Optical computing and interconnects,” Proc. IEEE 84, 828–852 (1996).
    [CrossRef]
  19. M. Mitchell, Z. Chen, M. Shih, M. Segev, “Self-trapping of partially spatially incoherent Light,” Phys. Rev. Lett. 77, 490–493 (1996).
    [CrossRef] [PubMed]
  20. M. Mitchell, M. Segev, “Self-trapping of incoherent white light,” Nature 387, 880–883 (1997).
    [CrossRef]
  21. E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).
  22. T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1998).
    [CrossRef]
  23. J. Pu, H. Zhang, S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57–63 (1999).
    [CrossRef]
  24. J. Pu, S. Nemoto, “Spectral shifts and spectral switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407–1411 (2000).
    [CrossRef]
  25. H. C. Kandpal, “Experimental observation of the phenomenon of spectral switch,” J. Opt. A Pure Appl. Opt. 3, 296–299 (2001).
    [CrossRef]
  26. E. W. Marchand, E. Wolf, “Radiometry with sources of any state of coherence,” J. Opt. Soc. Am. 64, 1219–1226 (1974).
    [CrossRef]
  27. W. Hwang, J. Kim, S. Jung, T. Zyung, “A 1×N thermo-optic space switch in a polymeric planar waveguide,” Opt. Commun. 109, 249–252 (1994).
    [CrossRef]

2001 (1)

H. C. Kandpal, “Experimental observation of the phenomenon of spectral switch,” J. Opt. A Pure Appl. Opt. 3, 296–299 (2001).
[CrossRef]

2000 (1)

J. Pu, S. Nemoto, “Spectral shifts and spectral switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407–1411 (2000).
[CrossRef]

1999 (1)

J. Pu, H. Zhang, S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57–63 (1999).
[CrossRef]

1998 (3)

T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1998).
[CrossRef]

C. Palma, G. Cincotti, G. Guattari, “Spectral shift of a Gaussian Schell-model beam beyond a thin lens,” IEEE J. Quantum Electron. 34, 378–383 (1998).
[CrossRef]

C. Palma, G. Cincotti, G. Guattari, “Spectral changes in Gaussian cavity lasers,” IEEE J. Quantum Electron. 34, 1082–1088 (1998).
[CrossRef]

1997 (3)

M. Mitchell, M. Segev, “Self-trapping of incoherent white light,” Nature 387, 880–883 (1997).
[CrossRef]

E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).

C. Palma, G. Cincotti, “Spectral shifts of a partially coherent field after passing through a lens,” Opt. Lett. 22, 671–672 (1997).
[CrossRef] [PubMed]

1996 (3)

E. Wolf, D. F. V. James, “Correlation-induced spectral changes,” Rep. Prog. Phys. 59, 771–818 (1996).
[CrossRef]

T. Yatagai, S. Kawai, H. Huang, “Optical computing and interconnects,” Proc. IEEE 84, 828–852 (1996).
[CrossRef]

M. Mitchell, Z. Chen, M. Shih, M. Segev, “Self-trapping of partially spatially incoherent Light,” Phys. Rev. Lett. 77, 490–493 (1996).
[CrossRef] [PubMed]

1995 (2)

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. Saxena, D. S. Mehta, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

1994 (1)

W. Hwang, J. Kim, S. Jung, T. Zyung, “A 1×N thermo-optic space switch in a polymeric planar waveguide,” Opt. Commun. 109, 249–252 (1994).
[CrossRef]

1991 (1)

1990 (1)

J. T. Foley, “The effect of an aperture on the spectrum of partially coherent light,” Opt. Commun. 75, 347–352 (1990).
[CrossRef]

1989 (3)

H. C. Kandpal, J. S. Vaishya, K. C. Joshi, “Wolf shift and its application in spectroradiometry,” Opt. Commun. 73, 169–172 (1989).
[CrossRef]

E. Wolf, “Correlation-induced Doppler-like frequency shifts of spectral lines,” Phys. Rev. Lett. 63, 2220–2223 (1989).
[CrossRef] [PubMed]

G. Indebetouw, “Synthesis of polychromatic light sources with arbitrary degrees of coherence: some experiments,” J. Mod. Opt. 36, 251–259 (1989).
[CrossRef]

1988 (3)

1987 (2)

E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326, 363–365 (1987).
[CrossRef]

G. M. Morris, D. Faklis, “Effects of source correlation on the spectrum of light,” Opt. Commun. 62, 5–11 (1987).
[CrossRef]

1986 (1)

E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56, 1370–1372 (1986).
[CrossRef] [PubMed]

1974 (1)

Chen, H.

T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1998).
[CrossRef]

E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).

Chen, Z.

M. Mitchell, Z. Chen, M. Shih, M. Segev, “Self-trapping of partially spatially incoherent Light,” Phys. Rev. Lett. 77, 490–493 (1996).
[CrossRef] [PubMed]

Cincotti, G.

C. Palma, G. Cincotti, G. Guattari, “Spectral shift of a Gaussian Schell-model beam beyond a thin lens,” IEEE J. Quantum Electron. 34, 378–383 (1998).
[CrossRef]

C. Palma, G. Cincotti, G. Guattari, “Spectral changes in Gaussian cavity lasers,” IEEE J. Quantum Electron. 34, 1082–1088 (1998).
[CrossRef]

C. Palma, G. Cincotti, “Spectral shifts of a partially coherent field after passing through a lens,” Opt. Lett. 22, 671–672 (1997).
[CrossRef] [PubMed]

Dacic, Z.

Faklis, D.

D. Faklis, G. M. Morris, “Spectral shifts produced by source correlations,” Opt. Lett. 13, 4–6 (1988).
[CrossRef] [PubMed]

G. M. Morris, D. Faklis, “Effects of source correlation on the spectrum of light,” Opt. Commun. 62, 5–11 (1987).
[CrossRef]

Foley, J. T.

J. T. Foley, “The effect of an aperture on the spectrum of partially coherent light,” J. Opt. Soc. Am. A 8, 1099–1105 (1991).
[CrossRef]

J. T. Foley, “The effect of an aperture on the spectrum of partially coherent light,” Opt. Commun. 75, 347–352 (1990).
[CrossRef]

Gori, F.

F. Gori, G. Guattari, C. Palma, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Commun. 67, 1–4 (1988).
[CrossRef]

Guattari, G.

C. Palma, G. Cincotti, G. Guattari, “Spectral changes in Gaussian cavity lasers,” IEEE J. Quantum Electron. 34, 1082–1088 (1998).
[CrossRef]

C. Palma, G. Cincotti, G. Guattari, “Spectral shift of a Gaussian Schell-model beam beyond a thin lens,” IEEE J. Quantum Electron. 34, 378–383 (1998).
[CrossRef]

F. Gori, G. Guattari, C. Palma, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Commun. 67, 1–4 (1988).
[CrossRef]

Huang, H.

T. Yatagai, S. Kawai, H. Huang, “Optical computing and interconnects,” Proc. IEEE 84, 828–852 (1996).
[CrossRef]

Hwang, W.

W. Hwang, J. Kim, S. Jung, T. Zyung, “A 1×N thermo-optic space switch in a polymeric planar waveguide,” Opt. Commun. 109, 249–252 (1994).
[CrossRef]

Indebetouw, G.

G. Indebetouw, “Synthesis of polychromatic light sources with arbitrary degrees of coherence: some experiments,” J. Mod. Opt. 36, 251–259 (1989).
[CrossRef]

James, D. F. V.

E. Wolf, D. F. V. James, “Correlation-induced spectral changes,” Rep. Prog. Phys. 59, 771–818 (1996).
[CrossRef]

Joshi, K. C.

H. C. Kandpal, J. S. Vaishya, K. Saxena, D. S. Mehta, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. C. Joshi, “Wolf shift and its application in spectroradiometry,” Opt. Commun. 73, 169–172 (1989).
[CrossRef]

Jung, S.

W. Hwang, J. Kim, S. Jung, T. Zyung, “A 1×N thermo-optic space switch in a polymeric planar waveguide,” Opt. Commun. 109, 249–252 (1994).
[CrossRef]

Kandpal, H. C.

H. C. Kandpal, “Experimental observation of the phenomenon of spectral switch,” J. Opt. A Pure Appl. Opt. 3, 296–299 (2001).
[CrossRef]

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. Saxena, D. S. Mehta, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. C. Joshi, “Wolf shift and its application in spectroradiometry,” Opt. Commun. 73, 169–172 (1989).
[CrossRef]

Kawai, S.

T. Yatagai, S. Kawai, H. Huang, “Optical computing and interconnects,” Proc. IEEE 84, 828–852 (1996).
[CrossRef]

Kim, J.

W. Hwang, J. Kim, S. Jung, T. Zyung, “A 1×N thermo-optic space switch in a polymeric planar waveguide,” Opt. Commun. 109, 249–252 (1994).
[CrossRef]

Marchand, E. W.

Mehta, D. S.

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. Saxena, D. S. Mehta, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

Mitchell, M.

M. Mitchell, M. Segev, “Self-trapping of incoherent white light,” Nature 387, 880–883 (1997).
[CrossRef]

M. Mitchell, Z. Chen, M. Shih, M. Segev, “Self-trapping of partially spatially incoherent Light,” Phys. Rev. Lett. 77, 490–493 (1996).
[CrossRef] [PubMed]

Morris, G. M.

D. Faklis, G. M. Morris, “Spectral shifts produced by source correlations,” Opt. Lett. 13, 4–6 (1988).
[CrossRef] [PubMed]

G. M. Morris, D. Faklis, “Effects of source correlation on the spectrum of light,” Opt. Commun. 62, 5–11 (1987).
[CrossRef]

Nemoto, S.

J. Pu, S. Nemoto, “Spectral shifts and spectral switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407–1411 (2000).
[CrossRef]

J. Pu, H. Zhang, S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57–63 (1999).
[CrossRef]

Palma, C.

C. Palma, G. Cincotti, G. Guattari, “Spectral changes in Gaussian cavity lasers,” IEEE J. Quantum Electron. 34, 1082–1088 (1998).
[CrossRef]

C. Palma, G. Cincotti, G. Guattari, “Spectral shift of a Gaussian Schell-model beam beyond a thin lens,” IEEE J. Quantum Electron. 34, 378–383 (1998).
[CrossRef]

C. Palma, G. Cincotti, “Spectral shifts of a partially coherent field after passing through a lens,” Opt. Lett. 22, 671–672 (1997).
[CrossRef] [PubMed]

F. Gori, G. Guattari, C. Palma, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Commun. 67, 1–4 (1988).
[CrossRef]

Pu, J.

J. Pu, S. Nemoto, “Spectral shifts and spectral switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407–1411 (2000).
[CrossRef]

J. Pu, H. Zhang, S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57–63 (1999).
[CrossRef]

Saxena, K.

H. C. Kandpal, J. S. Vaishya, K. Saxena, D. S. Mehta, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

Segev, M.

M. Mitchell, M. Segev, “Self-trapping of incoherent white light,” Nature 387, 880–883 (1997).
[CrossRef]

M. Mitchell, Z. Chen, M. Shih, M. Segev, “Self-trapping of partially spatially incoherent Light,” Phys. Rev. Lett. 77, 490–493 (1996).
[CrossRef] [PubMed]

Shih, M.

M. Mitchell, Z. Chen, M. Shih, M. Segev, “Self-trapping of partially spatially incoherent Light,” Phys. Rev. Lett. 77, 490–493 (1996).
[CrossRef] [PubMed]

Shirai, T.

T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1998).
[CrossRef]

E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).

Vaishya, J. S.

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. Saxena, D. S. Mehta, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. C. Joshi, “Wolf shift and its application in spectroradiometry,” Opt. Commun. 73, 169–172 (1989).
[CrossRef]

Wang, W.

T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1998).
[CrossRef]

E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).

Wasan, A.

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

Wolf, E.

T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1998).
[CrossRef]

E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).

E. Wolf, D. F. V. James, “Correlation-induced spectral changes,” Rep. Prog. Phys. 59, 771–818 (1996).
[CrossRef]

E. Wolf, “Correlation-induced Doppler-like frequency shifts of spectral lines,” Phys. Rev. Lett. 63, 2220–2223 (1989).
[CrossRef] [PubMed]

Z. Dacic, E. Wolf, “Changes in the spectrum of a partially coherent light beam propagating in free space,” J. Opt. Soc. Am. A 5, 1118–1126 (1988).
[CrossRef]

E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326, 363–365 (1987).
[CrossRef]

E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56, 1370–1372 (1986).
[CrossRef] [PubMed]

E. W. Marchand, E. Wolf, “Radiometry with sources of any state of coherence,” J. Opt. Soc. Am. 64, 1219–1226 (1974).
[CrossRef]

Yatagai, T.

T. Yatagai, S. Kawai, H. Huang, “Optical computing and interconnects,” Proc. IEEE 84, 828–852 (1996).
[CrossRef]

Zhang, H.

J. Pu, H. Zhang, S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57–63 (1999).
[CrossRef]

Zyung, T.

W. Hwang, J. Kim, S. Jung, T. Zyung, “A 1×N thermo-optic space switch in a polymeric planar waveguide,” Opt. Commun. 109, 249–252 (1994).
[CrossRef]

IEEE J. Quantum Electron. (3)

C. Palma, G. Cincotti, G. Guattari, “Spectral shift of a Gaussian Schell-model beam beyond a thin lens,” IEEE J. Quantum Electron. 34, 378–383 (1998).
[CrossRef]

C. Palma, G. Cincotti, G. Guattari, “Spectral changes in Gaussian cavity lasers,” IEEE J. Quantum Electron. 34, 1082–1088 (1998).
[CrossRef]

J. Pu, S. Nemoto, “Spectral shifts and spectral switches in diffraction of partially coherent light by a circular aperture,” IEEE J. Quantum Electron. 36, 1407–1411 (2000).
[CrossRef]

J. Mod. Opt. (4)

E. Wolf, T. Shirai, H. Chen, W. Wang, “Coherence filters and their uses: 1. Basic theory and examples,” J. Mod. Opt. 44, 1345–1353 (1997).

T. Shirai, E. Wolf, H. Chen, W. Wang, “Coherence filters and their uses: 2. One-dimensional realizations,” J. Mod. Opt. 45, 799–816 (1998).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. Saxena, D. S. Mehta, K. C. Joshi, “Intensity distribution across a source from spectral measurements,” J. Mod. Opt. 42, 455–464 (1995).
[CrossRef]

G. Indebetouw, “Synthesis of polychromatic light sources with arbitrary degrees of coherence: some experiments,” J. Mod. Opt. 36, 251–259 (1989).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

H. C. Kandpal, “Experimental observation of the phenomenon of spectral switch,” J. Opt. A Pure Appl. Opt. 3, 296–299 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Nature (2)

E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326, 363–365 (1987).
[CrossRef]

M. Mitchell, M. Segev, “Self-trapping of incoherent white light,” Nature 387, 880–883 (1997).
[CrossRef]

Opt. Commun. (7)

J. Pu, H. Zhang, S. Nemoto, “Spectral shifts and spectral switches of partially coherent light passing through an aperture,” Opt. Commun. 162, 57–63 (1999).
[CrossRef]

W. Hwang, J. Kim, S. Jung, T. Zyung, “A 1×N thermo-optic space switch in a polymeric planar waveguide,” Opt. Commun. 109, 249–252 (1994).
[CrossRef]

H. C. Kandpal, J. S. Vaishya, K. C. Joshi, “Wolf shift and its application in spectroradiometry,” Opt. Commun. 73, 169–172 (1989).
[CrossRef]

G. M. Morris, D. Faklis, “Effects of source correlation on the spectrum of light,” Opt. Commun. 62, 5–11 (1987).
[CrossRef]

F. Gori, G. Guattari, C. Palma, “Observation of optical redshifts and blueshifts produced by source correlation,” Opt. Commun. 67, 1–4 (1988).
[CrossRef]

A. Wasan, H. C. Kandpal, D. S. Mehta, J. S. Vaishya, K. C. Joshi, “Correlation-induced spectral changes on passing partially coherent light through an annular aperture,” Opt. Commun. 121, 89–94 (1995).
[CrossRef]

J. T. Foley, “The effect of an aperture on the spectrum of partially coherent light,” Opt. Commun. 75, 347–352 (1990).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (3)

E. Wolf, “Correlation-induced Doppler-like frequency shifts of spectral lines,” Phys. Rev. Lett. 63, 2220–2223 (1989).
[CrossRef] [PubMed]

E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56, 1370–1372 (1986).
[CrossRef] [PubMed]

M. Mitchell, Z. Chen, M. Shih, M. Segev, “Self-trapping of partially spatially incoherent Light,” Phys. Rev. Lett. 77, 490–493 (1996).
[CrossRef] [PubMed]

Proc. IEEE (1)

T. Yatagai, S. Kawai, H. Huang, “Optical computing and interconnects,” Proc. IEEE 84, 828–852 (1996).
[CrossRef]

Rep. Prog. Phys. (1)

E. Wolf, D. F. V. James, “Correlation-induced spectral changes,” Rep. Prog. Phys. 59, 771–818 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of the geometry and notation used in this paper.

Fig. 2
Fig. 2

(a) Far-zone spectrum S(v, ω) with ω¯=3.2×1015 s-1, Γ=0.4×1015 s-1, s=0.95, and a/L¯=4.4. The units of S(v, ω) are arbitrary units; the units of ω are 1015 s-1, and the range of axis ω is from 2.2 to 4.2. (b) Far-zone spectrum S(v, ω) with a/L¯=4.5. Other parameters are the same as in (a).

Fig. 3
Fig. 3

Change in the normalized far-field spectrum at v=0.2 with coherence a/L¯, showing the evolution from a gradual spectral shift to a rapid spectral switch. The solid circles indicate the positions of the maximum peak of the spectrum. The dotted curves are the normalized source spectra. The units of ω are 1015 s-1, and the spectra are normalized to have the maximum to be unity. (a) a/L¯=4.35, (b) a/L¯=4.4, (c) a/L¯=4.45, (d) a/L¯=4.501, (e) a/L¯=4.55, (f) a/L¯=4.6, (g) a/L¯=4.65. The other parameters are the same as in Fig. 2.

Fig. 4
Fig. 4

(a) Relative spectral shifts in the far field as a function of a/L¯. The positions at which the spectral shifts show rapid transition are the spectral switches. v=0 (solid curve) and v=0.2 (dotted curve). Other parameters are the same as in Fig. 2. (b) Relative spectral shifts in the far field as a function of a/L¯. The positions at which the spectral shifts show rapid transition are the spectral switches. v=0 (solid curve) and v=0.5 (dotted curve). Other parameters are the same as in Fig. 2.

Fig. 5
Fig. 5

(a) Parameter of the spectral switches (a/L¯)s as a function of v. Other parameters are the same as in Fig. 2. (b) Parameter of the spectral switches (a/L¯)s near 4.5 as a function of v. Other parameters are the same as in Fig. 2.

Tables (1)

Tables Icon

Table 1 Spectral Parameters Corresponding to Fig. 3 a

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

h(r, ρ, ω)=-i k2πfexp-i kfr  ρ,
W(0)(r1, r2, ω)=Ws(ρ1, ρ2, ω)×h(r1, ρ1, ω)h*(r2, ρ2, ω)dρ1dρ2,
W(0)(r1, r2, ω)=S(0)(ω)μ(0)(r1, r2, ω),
S(0)(ω)=κS(s)(ω),
μ(0)(r1, r2, ω)=11-s2besinc(k|r1-r2|as/f)-s21-s2besinc(k|r1-r2|ass/f),
besinc(u)=2 J1(u)u,
L(ω)=3.832f/kas=3.832cf/ωas
S(r, z, ω)=(k/2πz)2Adr1Adr2W(0)(r1, r2, ω)×exp[-ik(r2-r1)  r/z].
S(r, z, ω)
 =S(0)(ω)1-s2k2πzAdr1Adr2besinc(k|r1-r2|as/f)×exp[-ik(r2-r1)  r/z]-S(0)(ω)s21-s2k2πzAdr1Adr2besinc(k|r1-r2|ass/f)exp[-ik(r2-r1)  r/z].
S(r, z, ω)=2S(0)(ω)ka2z211-s201C(u)×besinc2kaasf uJ02karz uudu-s21-s201C(u)besinc2kaassf u×J02karz uudu,
C(u)=(2/π)[cos-1(u)-u(1-u2)1/2].
S(0)(ω)=S0Γ2(ω-ω¯)2+Γ2,
S(v, ω)=2S(0)(ω)ka2z2×11-s201C(u)besinc7.664aL¯ωω¯u×J07.664ωω¯uvudu-s21-s201C(u)×besinc7.664aL¯ωω¯su×J07.664ωω¯uvudu,
v=r/a¯1,
a¯1=3.832(z/ka¯).
δωω¯=ωm-ω¯ω¯,

Metrics