Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Differential theory of gratings made of anisotropic materials

Not Accessible

Your library or personal account may give you access

Abstract

Arbitrary profiled gratings made with anisotropic materials are discussed; the anisotropic character concerns electric and/or magnetic properties. Our aim is to avoid the use of the staircase approximation of the profile, whose convergence is questionable. A coupled first-order differential-equation set is derived by taking into account Li’s remarks about Fourier factorization [J. Opt. Soc. Am. A 13, 1870 (1996)], but the present formulation shows that, in return for a convenient form of the differential system, it is possible to use only the intuitive Laurent rule. Our method, when applied to the simpler case of isotropic gratings, is shown to be consistent with that of previous studies. Moreover, from the numerical point of view, the convergence of our formulation for an anisotropic grating is faster than that of the conventional differential method.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Numerical integration schemes used on the differential theory for anisotropic gratings

Koki Watanabe
J. Opt. Soc. Am. A 19(11) 2245-2252 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (139)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved