Abstract

We describe a postgrowth method to produce passband filters with different center wavelengths from a single growth run by irreversibly changing the refractive index of a layer or a series of layers within the filter. This leads to a new type of filter, the passband-shifting filter, whose center wavelength can be irreversibly shifted from λ0 to λ0-Δλ after the filter has been grown. The passband shift can be controlled exactly by proper design of the multilayer. We present the theory behind passband-shifting-filter design along with transfer-matrix simulations and preliminary experimental results for a two-cavity filter, using lateral oxidation of AlxGa1-xAs-based materials to effect the passband shift.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Toyoda, N. Ooba, A. Kaneko, M. Hikita, T. Kurihara, T. Maruno, “Wideband polymer thermo-optic wavelength tunable filter with fast response for WDM systems,” Electron. Lett. 36, 658–660 (2000).
    [CrossRef]
  2. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  3. R. H. Doremus, “Exchange and diffusion of ions in glass,” J. Phys. Chem. 68, 2212–2218 (1964).
    [CrossRef]
  4. B. E. Deal, A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36, 3770–3778 (1965).
    [CrossRef]
  5. J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs–AlAs-GaAs quantum well heterostructures and super lattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
    [CrossRef]
  6. A. Herpin, “Calcul du pouvoir réflecteur d’un système stratifié quelconque,” C. R. Acad. Sci. 225, 182–183 (1947).
  7. L. I. Epstein, “The design of optical filters,” J. Opt. Soc. Am. 42, 806–810 (1952).
    [CrossRef]
  8. A. Thelen, “Equivalent layers in multilayer filters,” J. Opt. Soc. Am. 56, 533–538 (1966).
    [CrossRef]
  9. M. C. Ohmer, “Design of three-layer equivalent films,” J. Opt. Soc. Am. 68, 137–139 (1978).
    [CrossRef]
  10. R. D. Twesten, D. M. Follstaedt, K. D. Choquette, R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69, 19–21 (1996).
    [CrossRef]
  11. A. R. Sugg, E. I. Chen, N. Holonyak, K. C. Hsieh, J. E. Baker, N. Finnegan, “Effects of low-temperature an-nealing on the native oxide of AlxGa1-xAs,” J. Appl. Phys. 74, 3880–3885 (1993).
    [CrossRef]
  12. K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, R. Hull, “Selective oxidation of AlGaAs versus AlAs,” Appl. Phys. Lett. 69, 1385–1387 (1996).
    [CrossRef]
  13. R. S. Burton, T. E. Schlesinger, “Wet thermal oxidation of AlxGa1-xAs compounds,” J. Appl. Phys. 76, 5503–5507 (1994).
    [CrossRef]
  14. M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68, 1898–1900 (1996).
    [CrossRef]
  15. C. I. H. Ashby, M. M. Bridges, A. A. Allerman, B. E. Hammons, H. Q. Hong, “Origin of the time dependence of wet oxidation of AlGaAs,” Appl. Phys. Lett. 75, 73–75 (1999).
    [CrossRef]
  16. J. M. Dallesasse, N. Holonyak, “Native-oxide stripe-geometry AlxGa1-xAs–GaAs quantum well heterostructure lasers,” Appl. Phys. Lett. 58, 394–396 (1991).
    [CrossRef]
  17. D. L. Huffaker, D. G. Deppe, K. Kumar, T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
    [CrossRef]
  18. K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, J. J. Figiel, R. Hull, “Wavelength insensitive performance of robust selectively oxidized vertical-cavity lasers,” IEEE Photonics Technol. Lett. 7, 1237–1239 (1995).
    [CrossRef]
  19. A. Fiore, A. Akulova, J. Ko, E. R. Hegblom, L. A. Coldren, “Multiple-wavelength ertical-cavity laser arrays based on post-growth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
    [CrossRef]
  20. M. H. MacDougal, P. D. Dapkus, “Wavelength shift of selectively oxidized AlxOy–AlGaAs–GaAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett. 9, 884–886 (1997).
    [CrossRef]
  21. K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, E. B. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
    [CrossRef]
  22. J. H. Kim, D. H. Lim, K. S. Kim, G. M. Yang, K. Y. Lim, H. J. Lee, “Lateral wet oxidation of AlxGa1-xAs depending on its structures,” Appl. Phys. Lett. 69, 3357–3359 (1996).
    [CrossRef]
  23. S. Guha, F. Agahi, B. Pezeshki, J. A. Kash, D. W. Kisker, N. A. Bojarczuk, “Microstructure of AlGaAs-oxide heterolayers formed by wet oxidation,” Appl. Phys. Lett. 68, 906–908 (1996).
    [CrossRef]
  24. R. L. Naone, L. A. Coldren, “Surface energy model for the thickness dependence of the lateral oxidation of AlAs,” J. Appl. Phys. 82, 2277–2280 (1997).
    [CrossRef]
  25. R. J. Deri, M. A. Emanuel, “Consistent formula for the refractive index of AlxGa1-xAs below the band edge,” J. Appl. Phys. 77, 4667–4672 (1995).
    [CrossRef]
  26. R. J. Deri, TeraWave Communications, Inc., 30680 Huntwood Avenue, Hayward, Calif. 94544 (personal communication, 1999).
  27. R. R. Patel, “Development of components for wavelength division multiplexing over parallel optical interconnects,” Ph.D. dissertation (University of California, Davis, Calif., 2001).
  28. O. Blum, C. I. H. Ashby, H. Q. Hou, “Barrier-layer-thickness control of selective wet oxidation of AlGaAs for embedded optical elements,” Appl. Phys. Lett. 70, 2870–2872 (1997).
    [CrossRef]

2000 (1)

S. Toyoda, N. Ooba, A. Kaneko, M. Hikita, T. Kurihara, T. Maruno, “Wideband polymer thermo-optic wavelength tunable filter with fast response for WDM systems,” Electron. Lett. 36, 658–660 (2000).
[CrossRef]

1999 (1)

C. I. H. Ashby, M. M. Bridges, A. A. Allerman, B. E. Hammons, H. Q. Hong, “Origin of the time dependence of wet oxidation of AlGaAs,” Appl. Phys. Lett. 75, 73–75 (1999).
[CrossRef]

1998 (1)

A. Fiore, A. Akulova, J. Ko, E. R. Hegblom, L. A. Coldren, “Multiple-wavelength ertical-cavity laser arrays based on post-growth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
[CrossRef]

1997 (4)

M. H. MacDougal, P. D. Dapkus, “Wavelength shift of selectively oxidized AlxOy–AlGaAs–GaAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett. 9, 884–886 (1997).
[CrossRef]

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, E. B. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[CrossRef]

R. L. Naone, L. A. Coldren, “Surface energy model for the thickness dependence of the lateral oxidation of AlAs,” J. Appl. Phys. 82, 2277–2280 (1997).
[CrossRef]

O. Blum, C. I. H. Ashby, H. Q. Hou, “Barrier-layer-thickness control of selective wet oxidation of AlGaAs for embedded optical elements,” Appl. Phys. Lett. 70, 2870–2872 (1997).
[CrossRef]

1996 (5)

J. H. Kim, D. H. Lim, K. S. Kim, G. M. Yang, K. Y. Lim, H. J. Lee, “Lateral wet oxidation of AlxGa1-xAs depending on its structures,” Appl. Phys. Lett. 69, 3357–3359 (1996).
[CrossRef]

S. Guha, F. Agahi, B. Pezeshki, J. A. Kash, D. W. Kisker, N. A. Bojarczuk, “Microstructure of AlGaAs-oxide heterolayers formed by wet oxidation,” Appl. Phys. Lett. 68, 906–908 (1996).
[CrossRef]

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68, 1898–1900 (1996).
[CrossRef]

R. D. Twesten, D. M. Follstaedt, K. D. Choquette, R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69, 19–21 (1996).
[CrossRef]

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, R. Hull, “Selective oxidation of AlGaAs versus AlAs,” Appl. Phys. Lett. 69, 1385–1387 (1996).
[CrossRef]

1995 (2)

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, J. J. Figiel, R. Hull, “Wavelength insensitive performance of robust selectively oxidized vertical-cavity lasers,” IEEE Photonics Technol. Lett. 7, 1237–1239 (1995).
[CrossRef]

R. J. Deri, M. A. Emanuel, “Consistent formula for the refractive index of AlxGa1-xAs below the band edge,” J. Appl. Phys. 77, 4667–4672 (1995).
[CrossRef]

1994 (2)

R. S. Burton, T. E. Schlesinger, “Wet thermal oxidation of AlxGa1-xAs compounds,” J. Appl. Phys. 76, 5503–5507 (1994).
[CrossRef]

D. L. Huffaker, D. G. Deppe, K. Kumar, T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
[CrossRef]

1993 (1)

A. R. Sugg, E. I. Chen, N. Holonyak, K. C. Hsieh, J. E. Baker, N. Finnegan, “Effects of low-temperature an-nealing on the native oxide of AlxGa1-xAs,” J. Appl. Phys. 74, 3880–3885 (1993).
[CrossRef]

1991 (1)

J. M. Dallesasse, N. Holonyak, “Native-oxide stripe-geometry AlxGa1-xAs–GaAs quantum well heterostructure lasers,” Appl. Phys. Lett. 58, 394–396 (1991).
[CrossRef]

1990 (1)

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs–AlAs-GaAs quantum well heterostructures and super lattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[CrossRef]

1978 (1)

1966 (1)

A. Thelen, “Equivalent layers in multilayer filters,” J. Opt. Soc. Am. 56, 533–538 (1966).
[CrossRef]

1965 (1)

B. E. Deal, A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36, 3770–3778 (1965).
[CrossRef]

1964 (1)

R. H. Doremus, “Exchange and diffusion of ions in glass,” J. Phys. Chem. 68, 2212–2218 (1964).
[CrossRef]

1952 (1)

1947 (1)

A. Herpin, “Calcul du pouvoir réflecteur d’un système stratifié quelconque,” C. R. Acad. Sci. 225, 182–183 (1947).

Agahi, F.

S. Guha, F. Agahi, B. Pezeshki, J. A. Kash, D. W. Kisker, N. A. Bojarczuk, “Microstructure of AlGaAs-oxide heterolayers formed by wet oxidation,” Appl. Phys. Lett. 68, 906–908 (1996).
[CrossRef]

Akulova, A.

A. Fiore, A. Akulova, J. Ko, E. R. Hegblom, L. A. Coldren, “Multiple-wavelength ertical-cavity laser arrays based on post-growth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
[CrossRef]

Allerman, A. A.

C. I. H. Ashby, M. M. Bridges, A. A. Allerman, B. E. Hammons, H. Q. Hong, “Origin of the time dependence of wet oxidation of AlGaAs,” Appl. Phys. Lett. 75, 73–75 (1999).
[CrossRef]

Ashby, C. I. H.

C. I. H. Ashby, M. M. Bridges, A. A. Allerman, B. E. Hammons, H. Q. Hong, “Origin of the time dependence of wet oxidation of AlGaAs,” Appl. Phys. Lett. 75, 73–75 (1999).
[CrossRef]

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, E. B. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[CrossRef]

O. Blum, C. I. H. Ashby, H. Q. Hou, “Barrier-layer-thickness control of selective wet oxidation of AlGaAs for embedded optical elements,” Appl. Phys. Lett. 70, 2870–2872 (1997).
[CrossRef]

Baker, J. E.

A. R. Sugg, E. I. Chen, N. Holonyak, K. C. Hsieh, J. E. Baker, N. Finnegan, “Effects of low-temperature an-nealing on the native oxide of AlxGa1-xAs,” J. Appl. Phys. 74, 3880–3885 (1993).
[CrossRef]

Blum, O.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, E. B. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[CrossRef]

O. Blum, C. I. H. Ashby, H. Q. Hou, “Barrier-layer-thickness control of selective wet oxidation of AlGaAs for embedded optical elements,” Appl. Phys. Lett. 70, 2870–2872 (1997).
[CrossRef]

Bojarczuk, N. A.

S. Guha, F. Agahi, B. Pezeshki, J. A. Kash, D. W. Kisker, N. A. Bojarczuk, “Microstructure of AlGaAs-oxide heterolayers formed by wet oxidation,” Appl. Phys. Lett. 68, 906–908 (1996).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

Bridges, M. M.

C. I. H. Ashby, M. M. Bridges, A. A. Allerman, B. E. Hammons, H. Q. Hong, “Origin of the time dependence of wet oxidation of AlGaAs,” Appl. Phys. Lett. 75, 73–75 (1999).
[CrossRef]

Burton, R. S.

R. S. Burton, T. E. Schlesinger, “Wet thermal oxidation of AlxGa1-xAs compounds,” J. Appl. Phys. 76, 5503–5507 (1994).
[CrossRef]

Chen, E. I.

A. R. Sugg, E. I. Chen, N. Holonyak, K. C. Hsieh, J. E. Baker, N. Finnegan, “Effects of low-temperature an-nealing on the native oxide of AlxGa1-xAs,” J. Appl. Phys. 74, 3880–3885 (1993).
[CrossRef]

Choquette, K. D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, E. B. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[CrossRef]

R. D. Twesten, D. M. Follstaedt, K. D. Choquette, R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69, 19–21 (1996).
[CrossRef]

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, R. Hull, “Selective oxidation of AlGaAs versus AlAs,” Appl. Phys. Lett. 69, 1385–1387 (1996).
[CrossRef]

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, J. J. Figiel, R. Hull, “Wavelength insensitive performance of robust selectively oxidized vertical-cavity lasers,” IEEE Photonics Technol. Lett. 7, 1237–1239 (1995).
[CrossRef]

Chui, H. C.

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, R. Hull, “Selective oxidation of AlGaAs versus AlAs,” Appl. Phys. Lett. 69, 1385–1387 (1996).
[CrossRef]

Cockerill, T. M.

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68, 1898–1900 (1996).
[CrossRef]

Coldren, L. A.

A. Fiore, A. Akulova, J. Ko, E. R. Hegblom, L. A. Coldren, “Multiple-wavelength ertical-cavity laser arrays based on post-growth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
[CrossRef]

R. L. Naone, L. A. Coldren, “Surface energy model for the thickness dependence of the lateral oxidation of AlAs,” J. Appl. Phys. 82, 2277–2280 (1997).
[CrossRef]

Dallesasse, J. M.

J. M. Dallesasse, N. Holonyak, “Native-oxide stripe-geometry AlxGa1-xAs–GaAs quantum well heterostructure lasers,” Appl. Phys. Lett. 58, 394–396 (1991).
[CrossRef]

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs–AlAs-GaAs quantum well heterostructures and super lattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[CrossRef]

Dapkus, P. D.

M. H. MacDougal, P. D. Dapkus, “Wavelength shift of selectively oxidized AlxOy–AlGaAs–GaAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett. 9, 884–886 (1997).
[CrossRef]

Deal, B. E.

B. E. Deal, A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36, 3770–3778 (1965).
[CrossRef]

Deppe, D. G.

D. L. Huffaker, D. G. Deppe, K. Kumar, T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
[CrossRef]

Deri, R. J.

R. J. Deri, M. A. Emanuel, “Consistent formula for the refractive index of AlxGa1-xAs below the band edge,” J. Appl. Phys. 77, 4667–4672 (1995).
[CrossRef]

R. J. Deri, TeraWave Communications, Inc., 30680 Huntwood Avenue, Hayward, Calif. 94544 (personal communication, 1999).

Doremus, R. H.

R. H. Doremus, “Exchange and diffusion of ions in glass,” J. Phys. Chem. 68, 2212–2218 (1964).
[CrossRef]

Drummond, T. J.

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, R. Hull, “Selective oxidation of AlGaAs versus AlAs,” Appl. Phys. Lett. 69, 1385–1387 (1996).
[CrossRef]

El-Zein, N.

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs–AlAs-GaAs quantum well heterostructures and super lattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[CrossRef]

Emanuel, M. A.

R. J. Deri, M. A. Emanuel, “Consistent formula for the refractive index of AlxGa1-xAs below the band edge,” J. Appl. Phys. 77, 4667–4672 (1995).
[CrossRef]

Epstein, L. I.

Figiel, J. J.

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, J. J. Figiel, R. Hull, “Wavelength insensitive performance of robust selectively oxidized vertical-cavity lasers,” IEEE Photonics Technol. Lett. 7, 1237–1239 (1995).
[CrossRef]

Finnegan, N.

A. R. Sugg, E. I. Chen, N. Holonyak, K. C. Hsieh, J. E. Baker, N. Finnegan, “Effects of low-temperature an-nealing on the native oxide of AlxGa1-xAs,” J. Appl. Phys. 74, 3880–3885 (1993).
[CrossRef]

Fiore, A.

A. Fiore, A. Akulova, J. Ko, E. R. Hegblom, L. A. Coldren, “Multiple-wavelength ertical-cavity laser arrays based on post-growth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
[CrossRef]

Follstaedt, D. M.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, E. B. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[CrossRef]

R. D. Twesten, D. M. Follstaedt, K. D. Choquette, R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69, 19–21 (1996).
[CrossRef]

Geib, K. M.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, E. B. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[CrossRef]

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, R. Hull, “Selective oxidation of AlGaAs versus AlAs,” Appl. Phys. Lett. 69, 1385–1387 (1996).
[CrossRef]

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, J. J. Figiel, R. Hull, “Wavelength insensitive performance of robust selectively oxidized vertical-cavity lasers,” IEEE Photonics Technol. Lett. 7, 1237–1239 (1995).
[CrossRef]

Giudice, G. E.

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68, 1898–1900 (1996).
[CrossRef]

Grove, A. S.

B. E. Deal, A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36, 3770–3778 (1965).
[CrossRef]

Guha, S.

S. Guha, F. Agahi, B. Pezeshki, J. A. Kash, D. W. Kisker, N. A. Bojarczuk, “Microstructure of AlGaAs-oxide heterolayers formed by wet oxidation,” Appl. Phys. Lett. 68, 906–908 (1996).
[CrossRef]

Hammons, B. E.

C. I. H. Ashby, M. M. Bridges, A. A. Allerman, B. E. Hammons, H. Q. Hong, “Origin of the time dependence of wet oxidation of AlGaAs,” Appl. Phys. Lett. 75, 73–75 (1999).
[CrossRef]

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, R. Hull, “Selective oxidation of AlGaAs versus AlAs,” Appl. Phys. Lett. 69, 1385–1387 (1996).
[CrossRef]

Hammons, E. B.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, E. B. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[CrossRef]

Hegblom, E. R.

A. Fiore, A. Akulova, J. Ko, E. R. Hegblom, L. A. Coldren, “Multiple-wavelength ertical-cavity laser arrays based on post-growth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
[CrossRef]

Herpin, A.

A. Herpin, “Calcul du pouvoir réflecteur d’un système stratifié quelconque,” C. R. Acad. Sci. 225, 182–183 (1947).

Hikita, M.

S. Toyoda, N. Ooba, A. Kaneko, M. Hikita, T. Kurihara, T. Maruno, “Wideband polymer thermo-optic wavelength tunable filter with fast response for WDM systems,” Electron. Lett. 36, 658–660 (2000).
[CrossRef]

Holonyak, N.

A. R. Sugg, E. I. Chen, N. Holonyak, K. C. Hsieh, J. E. Baker, N. Finnegan, “Effects of low-temperature an-nealing on the native oxide of AlxGa1-xAs,” J. Appl. Phys. 74, 3880–3885 (1993).
[CrossRef]

J. M. Dallesasse, N. Holonyak, “Native-oxide stripe-geometry AlxGa1-xAs–GaAs quantum well heterostructure lasers,” Appl. Phys. Lett. 58, 394–396 (1991).
[CrossRef]

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs–AlAs-GaAs quantum well heterostructures and super lattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[CrossRef]

Hong, H. Q.

C. I. H. Ashby, M. M. Bridges, A. A. Allerman, B. E. Hammons, H. Q. Hong, “Origin of the time dependence of wet oxidation of AlGaAs,” Appl. Phys. Lett. 75, 73–75 (1999).
[CrossRef]

Hou, H. Q.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, E. B. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[CrossRef]

O. Blum, C. I. H. Ashby, H. Q. Hou, “Barrier-layer-thickness control of selective wet oxidation of AlGaAs for embedded optical elements,” Appl. Phys. Lett. 70, 2870–2872 (1997).
[CrossRef]

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, R. Hull, “Selective oxidation of AlGaAs versus AlAs,” Appl. Phys. Lett. 69, 1385–1387 (1996).
[CrossRef]

Hsieh, K. C.

A. R. Sugg, E. I. Chen, N. Holonyak, K. C. Hsieh, J. E. Baker, N. Finnegan, “Effects of low-temperature an-nealing on the native oxide of AlxGa1-xAs,” J. Appl. Phys. 74, 3880–3885 (1993).
[CrossRef]

Huffaker, D. L.

D. L. Huffaker, D. G. Deppe, K. Kumar, T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
[CrossRef]

Hull, R.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, E. B. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[CrossRef]

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, R. Hull, “Selective oxidation of AlGaAs versus AlAs,” Appl. Phys. Lett. 69, 1385–1387 (1996).
[CrossRef]

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, J. J. Figiel, R. Hull, “Wavelength insensitive performance of robust selectively oxidized vertical-cavity lasers,” IEEE Photonics Technol. Lett. 7, 1237–1239 (1995).
[CrossRef]

Kaneko, A.

S. Toyoda, N. Ooba, A. Kaneko, M. Hikita, T. Kurihara, T. Maruno, “Wideband polymer thermo-optic wavelength tunable filter with fast response for WDM systems,” Electron. Lett. 36, 658–660 (2000).
[CrossRef]

Kash, J. A.

S. Guha, F. Agahi, B. Pezeshki, J. A. Kash, D. W. Kisker, N. A. Bojarczuk, “Microstructure of AlGaAs-oxide heterolayers formed by wet oxidation,” Appl. Phys. Lett. 68, 906–908 (1996).
[CrossRef]

Kim, J. H.

J. H. Kim, D. H. Lim, K. S. Kim, G. M. Yang, K. Y. Lim, H. J. Lee, “Lateral wet oxidation of AlxGa1-xAs depending on its structures,” Appl. Phys. Lett. 69, 3357–3359 (1996).
[CrossRef]

Kim, K. S.

J. H. Kim, D. H. Lim, K. S. Kim, G. M. Yang, K. Y. Lim, H. J. Lee, “Lateral wet oxidation of AlxGa1-xAs depending on its structures,” Appl. Phys. Lett. 69, 3357–3359 (1996).
[CrossRef]

Kisker, D. W.

S. Guha, F. Agahi, B. Pezeshki, J. A. Kash, D. W. Kisker, N. A. Bojarczuk, “Microstructure of AlGaAs-oxide heterolayers formed by wet oxidation,” Appl. Phys. Lett. 68, 906–908 (1996).
[CrossRef]

Ko, J.

A. Fiore, A. Akulova, J. Ko, E. R. Hegblom, L. A. Coldren, “Multiple-wavelength ertical-cavity laser arrays based on post-growth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
[CrossRef]

Kumar, K.

D. L. Huffaker, D. G. Deppe, K. Kumar, T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
[CrossRef]

Kurihara, T.

S. Toyoda, N. Ooba, A. Kaneko, M. Hikita, T. Kurihara, T. Maruno, “Wideband polymer thermo-optic wavelength tunable filter with fast response for WDM systems,” Electron. Lett. 36, 658–660 (2000).
[CrossRef]

Lear, K. L.

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, J. J. Figiel, R. Hull, “Wavelength insensitive performance of robust selectively oxidized vertical-cavity lasers,” IEEE Photonics Technol. Lett. 7, 1237–1239 (1995).
[CrossRef]

Lee, H. J.

J. H. Kim, D. H. Lim, K. S. Kim, G. M. Yang, K. Y. Lim, H. J. Lee, “Lateral wet oxidation of AlxGa1-xAs depending on its structures,” Appl. Phys. Lett. 69, 3357–3359 (1996).
[CrossRef]

Lim, D. H.

J. H. Kim, D. H. Lim, K. S. Kim, G. M. Yang, K. Y. Lim, H. J. Lee, “Lateral wet oxidation of AlxGa1-xAs depending on its structures,” Appl. Phys. Lett. 69, 3357–3359 (1996).
[CrossRef]

Lim, K. Y.

J. H. Kim, D. H. Lim, K. S. Kim, G. M. Yang, K. Y. Lim, H. J. Lee, “Lateral wet oxidation of AlxGa1-xAs depending on its structures,” Appl. Phys. Lett. 69, 3357–3359 (1996).
[CrossRef]

MacDougal, M. H.

M. H. MacDougal, P. D. Dapkus, “Wavelength shift of selectively oxidized AlxOy–AlGaAs–GaAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett. 9, 884–886 (1997).
[CrossRef]

Maruno, T.

S. Toyoda, N. Ooba, A. Kaneko, M. Hikita, T. Kurihara, T. Maruno, “Wideband polymer thermo-optic wavelength tunable filter with fast response for WDM systems,” Electron. Lett. 36, 658–660 (2000).
[CrossRef]

Mathes, D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, E. B. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[CrossRef]

Naone, R. L.

R. L. Naone, L. A. Coldren, “Surface energy model for the thickness dependence of the lateral oxidation of AlAs,” J. Appl. Phys. 82, 2277–2280 (1997).
[CrossRef]

Ochiai, M.

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68, 1898–1900 (1996).
[CrossRef]

Ohmer, M. C.

Ooba, N.

S. Toyoda, N. Ooba, A. Kaneko, M. Hikita, T. Kurihara, T. Maruno, “Wideband polymer thermo-optic wavelength tunable filter with fast response for WDM systems,” Electron. Lett. 36, 658–660 (2000).
[CrossRef]

Patel, R. R.

R. R. Patel, “Development of components for wavelength division multiplexing over parallel optical interconnects,” Ph.D. dissertation (University of California, Davis, Calif., 2001).

Pezeshki, B.

S. Guha, F. Agahi, B. Pezeshki, J. A. Kash, D. W. Kisker, N. A. Bojarczuk, “Microstructure of AlGaAs-oxide heterolayers formed by wet oxidation,” Appl. Phys. Lett. 68, 906–908 (1996).
[CrossRef]

Richard, T. A.

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs–AlAs-GaAs quantum well heterostructures and super lattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[CrossRef]

Rogers, T. J.

D. L. Huffaker, D. G. Deppe, K. Kumar, T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
[CrossRef]

Schlesinger, T. E.

R. S. Burton, T. E. Schlesinger, “Wet thermal oxidation of AlxGa1-xAs compounds,” J. Appl. Phys. 76, 5503–5507 (1994).
[CrossRef]

Schneider, R. P.

R. D. Twesten, D. M. Follstaedt, K. D. Choquette, R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69, 19–21 (1996).
[CrossRef]

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, J. J. Figiel, R. Hull, “Wavelength insensitive performance of robust selectively oxidized vertical-cavity lasers,” IEEE Photonics Technol. Lett. 7, 1237–1239 (1995).
[CrossRef]

Scott, J. W.

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68, 1898–1900 (1996).
[CrossRef]

Sugg, A. R.

A. R. Sugg, E. I. Chen, N. Holonyak, K. C. Hsieh, J. E. Baker, N. Finnegan, “Effects of low-temperature an-nealing on the native oxide of AlxGa1-xAs,” J. Appl. Phys. 74, 3880–3885 (1993).
[CrossRef]

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs–AlAs-GaAs quantum well heterostructures and super lattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[CrossRef]

Temkin, H.

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68, 1898–1900 (1996).
[CrossRef]

Thelen, A.

A. Thelen, “Equivalent layers in multilayer filters,” J. Opt. Soc. Am. 56, 533–538 (1966).
[CrossRef]

Toyoda, S.

S. Toyoda, N. Ooba, A. Kaneko, M. Hikita, T. Kurihara, T. Maruno, “Wideband polymer thermo-optic wavelength tunable filter with fast response for WDM systems,” Electron. Lett. 36, 658–660 (2000).
[CrossRef]

Twesten, R. D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, E. B. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[CrossRef]

R. D. Twesten, D. M. Follstaedt, K. D. Choquette, R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69, 19–21 (1996).
[CrossRef]

Yang, G. M.

J. H. Kim, D. H. Lim, K. S. Kim, G. M. Yang, K. Y. Lim, H. J. Lee, “Lateral wet oxidation of AlxGa1-xAs depending on its structures,” Appl. Phys. Lett. 69, 3357–3359 (1996).
[CrossRef]

Appl. Phys. Lett. (11)

R. D. Twesten, D. M. Follstaedt, K. D. Choquette, R. P. Schneider, “Microstructure of laterally oxidized AlxGa1-xAs layers in vertical-cavity lasers,” Appl. Phys. Lett. 69, 19–21 (1996).
[CrossRef]

K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, R. Hull, “Selective oxidation of AlGaAs versus AlAs,” Appl. Phys. Lett. 69, 1385–1387 (1996).
[CrossRef]

M. Ochiai, G. E. Giudice, H. Temkin, J. W. Scott, T. M. Cockerill, “Kinetics of thermal oxidation of AlAs in water vapor,” Appl. Phys. Lett. 68, 1898–1900 (1996).
[CrossRef]

C. I. H. Ashby, M. M. Bridges, A. A. Allerman, B. E. Hammons, H. Q. Hong, “Origin of the time dependence of wet oxidation of AlGaAs,” Appl. Phys. Lett. 75, 73–75 (1999).
[CrossRef]

J. M. Dallesasse, N. Holonyak, “Native-oxide stripe-geometry AlxGa1-xAs–GaAs quantum well heterostructure lasers,” Appl. Phys. Lett. 58, 394–396 (1991).
[CrossRef]

D. L. Huffaker, D. G. Deppe, K. Kumar, T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
[CrossRef]

J. H. Kim, D. H. Lim, K. S. Kim, G. M. Yang, K. Y. Lim, H. J. Lee, “Lateral wet oxidation of AlxGa1-xAs depending on its structures,” Appl. Phys. Lett. 69, 3357–3359 (1996).
[CrossRef]

S. Guha, F. Agahi, B. Pezeshki, J. A. Kash, D. W. Kisker, N. A. Bojarczuk, “Microstructure of AlGaAs-oxide heterolayers formed by wet oxidation,” Appl. Phys. Lett. 68, 906–908 (1996).
[CrossRef]

A. Fiore, A. Akulova, J. Ko, E. R. Hegblom, L. A. Coldren, “Multiple-wavelength ertical-cavity laser arrays based on post-growth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
[CrossRef]

O. Blum, C. I. H. Ashby, H. Q. Hou, “Barrier-layer-thickness control of selective wet oxidation of AlGaAs for embedded optical elements,” Appl. Phys. Lett. 70, 2870–2872 (1997).
[CrossRef]

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs–AlAs-GaAs quantum well heterostructures and super lattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[CrossRef]

C. R. Acad. Sci. (1)

A. Herpin, “Calcul du pouvoir réflecteur d’un système stratifié quelconque,” C. R. Acad. Sci. 225, 182–183 (1947).

Electron. Lett. (1)

S. Toyoda, N. Ooba, A. Kaneko, M. Hikita, T. Kurihara, T. Maruno, “Wideband polymer thermo-optic wavelength tunable filter with fast response for WDM systems,” Electron. Lett. 36, 658–660 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, E. B. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. H. MacDougal, P. D. Dapkus, “Wavelength shift of selectively oxidized AlxOy–AlGaAs–GaAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett. 9, 884–886 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, J. J. Figiel, R. Hull, “Wavelength insensitive performance of robust selectively oxidized vertical-cavity lasers,” IEEE Photonics Technol. Lett. 7, 1237–1239 (1995).
[CrossRef]

J. Appl. Phys. (5)

R. S. Burton, T. E. Schlesinger, “Wet thermal oxidation of AlxGa1-xAs compounds,” J. Appl. Phys. 76, 5503–5507 (1994).
[CrossRef]

A. R. Sugg, E. I. Chen, N. Holonyak, K. C. Hsieh, J. E. Baker, N. Finnegan, “Effects of low-temperature an-nealing on the native oxide of AlxGa1-xAs,” J. Appl. Phys. 74, 3880–3885 (1993).
[CrossRef]

R. L. Naone, L. A. Coldren, “Surface energy model for the thickness dependence of the lateral oxidation of AlAs,” J. Appl. Phys. 82, 2277–2280 (1997).
[CrossRef]

R. J. Deri, M. A. Emanuel, “Consistent formula for the refractive index of AlxGa1-xAs below the band edge,” J. Appl. Phys. 77, 4667–4672 (1995).
[CrossRef]

B. E. Deal, A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36, 3770–3778 (1965).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Phys. Chem. (1)

R. H. Doremus, “Exchange and diffusion of ions in glass,” J. Phys. Chem. 68, 2212–2218 (1964).
[CrossRef]

Other (3)

R. J. Deri, TeraWave Communications, Inc., 30680 Huntwood Avenue, Hayward, Calif. 94544 (personal communication, 1999).

R. R. Patel, “Development of components for wavelength division multiplexing over parallel optical interconnects,” Ph.D. dissertation (University of California, Davis, Calif., 2001).

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Effect of the tuning layers on a single thin-film layer. The tuning layer and the thin-film layer thickness are chosen such that the three-layer combination is QWOT at λ0 as grown. Upon postgrowth processing, the refractive index of the tuning layer decreases, thus decreasing the optical thickness of the three-layer sequence, making it QWOT at λ0-Δλ.

Fig. 2
Fig. 2

Tuning layer thickness as a function of H layer thickness for solutions of Eq. (6) at λ0 and λ0-Δλ. The points where the two curves intersect are solutions to Eq. (8) for the given λ0 of 820 nm and Δλ of 20 nm.

Fig. 3
Fig. 3

Reflection spectra of a center-wavelength-shifting DBR as calculated by the transfer-matrix method. For this example λ0=820 nm and Δλ=20 nm.

Fig. 4
Fig. 4

Calculated filter transmission for a three-cavity PSF. In this example λ0=840 nm and Δλ=30 nm. The filter passband shifts by exactly 30 nm upon postgrowth processing.

Fig. 5
Fig. 5

Calculated filter transmission for a two-cavity PSF with thick tuning layers. In this example λ0=820 nm and Δλ=20 nm. The filter passband shifts by exactly 20 nm upon postgrowth processing. Layer thicknesses for this case were calculated by using Eq. (16).

Fig. 6
Fig. 6

Schematic of the lateral oxidation setup. Samples are heated to 350 °C–500 °C in the tube furnace. Water vapor carried by an inert gas is responsible for the conversion from semiconductor to oxide. D. I. stands for de-ionized.

Fig. 7
Fig. 7

SEM cross section of sample B after 30 min of oxidation. The arrows indicate areas where the 85%-aluminum low-index layers have oxidized as a result of vertical supply of oxidant from adjacent tuning layers.

Fig. 8
Fig. 8

Photograph of the surface of sample C after 45 min of oxidation. The green regions are properly oxidized. Around each access hole, there is a yellow region where the filter is overoxidized. The unpatterned purple area on the right side of the figure is unoxidized. The colors in the photograph have been computer enhanced for clarity.

Fig. 9
Fig. 9

(top) Transfer-matrix method simulations of the filter of sample C before oxidation (open circles) and after oxidation (no symbols). (bottom) Measured transmission spectra for sample C in oxidized and unoxidized regions. The sample was oxidized for 40 min at 425 °C. The curve with solid circles is from an area of epi that is not oxidized because it was not patterned with access holes. The solid curve is from an area of epi that was patterned with 4-μm-diameter holes on a 30-μm triangular lattice. The small peak at 920 nm in the solid curve is due to unwanted oxidation of layers adjacent to the tuning layers (overoxidation). The passband has shifted 36 nm because of the oxidation.

Tables (1)

Tables Icon

Table 1 Properties of the PSF Design with Thick Tuning Layers

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

cos(ϕA)i sin(ϕA)nAinAsin(ϕA)cos(ϕA) cos(ϕH)i sin(ϕH)nHinHsin(ϕH)cos(ϕH)
×cos(ϕA)i sin(ϕA)nAinAsin(ϕA)cos(ϕA).
M11=M22=cos(ϕH)cos(2ϕA)-12sin(ϕH)sin(2ϕA)×nAnH+nHnA,
M12=1nAcos(ϕH)sin(2ϕA)+12sin(ϕH)nHnA+nAnH×cos(2ϕA)+nAnH-nHnA,
M21=nAcos(ϕH)sin(2ϕA)+12sin(ϕH)nHnA+nAnH×cos(2ϕA)-nAnH-nHnA.
cos(Γ)i sin(Γ)NiN sin(Γ)cos(Γ)=M11iM12iM21M22.
cot(2ϕA)=12nAnH+nHnAtan(ϕH)
(for quarter-waveequivalentlayers).
cot(2ϕA)|λ0=12nAnH+nHnAtan(ϕH)λ0,
cot(2ϕA)|λ0-Δλ=12nAnH+nHnAtan(ϕH)λ0-Δλ.
cot(2ϕA)|λ0-cot(2ϕA)|λ0-Δλ
=12nAnH+nHnA×tan(ϕH)λ0-12nAnH+nHnAtan(ϕH)λ0-Δλ.
H L H L H L H L,
AHA BLB AHA BLB AHA BLB AHA BLB.
[AHA BLB]5 [AHA]2 [BLB AHA]13 BLB[AHA]2
[BLB AHA]13 BLB [AHA]2 [BLB AHA]5.
ϕA=γ 2πnAtAλ0-Δλ.
cos(ϕ)i sin(ϕ)nin sin(ϕ)cos(ϕ)=M11iM12iM21M22.
12nAnH+nHnAtan(ϕH)=12 nAM12+M21/nAM11,
cot(2ϕA)=2 B11nAB12+B21/nA,
whereB=cos(2ϕA)i sin(2ϕA)nAinAsin(2ϕA)cos(2ϕA).
B11nAB12+B21/nAλ0-B11nAB12+B21/nAλ0-Δλ
=14nAM12+M21/nAM11λ0-nAM12+M21/nAM11λ0-Δλ.
H L H L H L H L H L H L,
U V U V.
[AUA BVB]2[AUA]2[BVB AUA]5
BVB[AUA]2[BVB AUA]2.
[HLH T LHL T]2H2
[T LHL T HLH]5T LHL T H2[T LHL T HLH]2,

Metrics