Abstract

We study the effects of a dc external magnetic field on the polaritons propagating in hollow dielectric cylinders, taking into account the retardation effects. In solving Maxwell’s equations we show that only the TM modes can propagate in these systems, and we obtain the dispersion relation of the confined-surface-polariton modes. The effects of geometric parameters and the external magnetic field on the propagation of surface-polariton modes are also analyzed and show significant influence on the behavior of the modes. Numerical results are presented for the dispersion relation of surface polaritons with GaAs as the optically active medium.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Pffeifer, E. N. Economou, K. L. Ngai, “Surface polaritons in a circularly cylindrical interface-surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
    [CrossRef]
  2. H. Khosravi, D. R. Tilley, R. Loudon, “Surface polaritons in cylindrical optical fibers,” J. Opt. Soc. Am. A 8, 112–122 (1991).
    [CrossRef]
  3. G. C. Aers, A. D. Boardman, B. V. Paranjape, “Nonradiative surface plasmon-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F 10, 53–65 (1980).
    [CrossRef]
  4. H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
    [CrossRef] [PubMed]
  5. M. A. Kaliteevski, S. Brand, R. A. Abram, V. V. Nikolaev, M. V. Maximov, N. N. Ledentsov, C. M. S. Torres, A. V. Kavolin, “Exciton polaritons in a cylindrical microcavity with an embedded quantum wire,” Phys. Rev. B 61, 13791–13797 (2000).
    [CrossRef]
  6. M. A. Kaliteevski, R. A. Abram, V. V. Nikolaev, “Optical eigenmodes of a cylindrical microcavity,” J. Mod. Opt. 47, 677–684 (2000).
    [CrossRef]
  7. D. Liballoy, H. Benisty, C. Weisbush, T. F. Kraus, C. J. Smith, R. Houdre, U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
    [CrossRef]
  8. U. Schröter, A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420-1–125420-10 (2001).
  9. E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
    [CrossRef]
  10. E. F. Nobre, G. A. Farias, N. S. Almeida, “Polaritons in uniaxial materials propagating in hollow cylinders,” J. Opt. Soc. Am. A 17, 173–179 (2000).
    [CrossRef]
  11. N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
    [CrossRef]
  12. E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
    [CrossRef]
  13. E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, C. Girad, “Detection of the optical magnetic field by circular symmetry plasmons,” Appl. Surf. Sci. 164, 124–130 (2000).
    [CrossRef]
  14. V. M. Agranovich, D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).
  15. D. N. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
  16. M. Abramowitz, L. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
  17. K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, K. Ploog, “Collective excitations in antidots,” Phys. Rev. Lett. 66, 1618–1621 (1991).
    [CrossRef] [PubMed]

2001

U. Schröter, A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420-1–125420-10 (2001).

2000

M. A. Kaliteevski, S. Brand, R. A. Abram, V. V. Nikolaev, M. V. Maximov, N. N. Ledentsov, C. M. S. Torres, A. V. Kavolin, “Exciton polaritons in a cylindrical microcavity with an embedded quantum wire,” Phys. Rev. B 61, 13791–13797 (2000).
[CrossRef]

M. A. Kaliteevski, R. A. Abram, V. V. Nikolaev, “Optical eigenmodes of a cylindrical microcavity,” J. Mod. Opt. 47, 677–684 (2000).
[CrossRef]

E. F. Nobre, G. A. Farias, N. S. Almeida, “Polaritons in uniaxial materials propagating in hollow cylinders,” J. Opt. Soc. Am. A 17, 173–179 (2000).
[CrossRef]

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, C. Girad, “Detection of the optical magnetic field by circular symmetry plasmons,” Appl. Surf. Sci. 164, 124–130 (2000).
[CrossRef]

1998

D. Liballoy, H. Benisty, C. Weisbush, T. F. Kraus, C. J. Smith, R. Houdre, U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
[CrossRef]

1996

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

1993

N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
[CrossRef]

1991

K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, K. Ploog, “Collective excitations in antidots,” Phys. Rev. Lett. 66, 1618–1621 (1991).
[CrossRef] [PubMed]

H. Khosravi, D. R. Tilley, R. Loudon, “Surface polaritons in cylindrical optical fibers,” J. Opt. Soc. Am. A 8, 112–122 (1991).
[CrossRef]

1980

G. C. Aers, A. D. Boardman, B. V. Paranjape, “Nonradiative surface plasmon-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F 10, 53–65 (1980).
[CrossRef]

1974

C. A. Pffeifer, E. N. Economou, K. L. Ngai, “Surface polaritons in a circularly cylindrical interface-surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[CrossRef]

Abram, R. A.

M. A. Kaliteevski, S. Brand, R. A. Abram, V. V. Nikolaev, M. V. Maximov, N. N. Ledentsov, C. M. S. Torres, A. V. Kavolin, “Exciton polaritons in a cylindrical microcavity with an embedded quantum wire,” Phys. Rev. B 61, 13791–13797 (2000).
[CrossRef]

M. A. Kaliteevski, R. A. Abram, V. V. Nikolaev, “Optical eigenmodes of a cylindrical microcavity,” J. Mod. Opt. 47, 677–684 (2000).
[CrossRef]

Abramowitz, M.

M. Abramowitz, L. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

Aers, G. C.

G. C. Aers, A. D. Boardman, B. V. Paranjape, “Nonradiative surface plasmon-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F 10, 53–65 (1980).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich, D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).

Almeida, N. S.

E. F. Nobre, G. A. Farias, N. S. Almeida, “Polaritons in uniaxial materials propagating in hollow cylinders,” J. Opt. Soc. Am. A 17, 173–179 (2000).
[CrossRef]

E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
[CrossRef]

N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
[CrossRef]

Benisty, H.

D. Liballoy, H. Benisty, C. Weisbush, T. F. Kraus, C. J. Smith, R. Houdre, U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Boardman, A. D.

G. C. Aers, A. D. Boardman, B. V. Paranjape, “Nonradiative surface plasmon-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F 10, 53–65 (1980).
[CrossRef]

Bourillot, E.

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, C. Girad, “Detection of the optical magnetic field by circular symmetry plasmons,” Appl. Surf. Sci. 164, 124–130 (2000).
[CrossRef]

Brand, S.

M. A. Kaliteevski, S. Brand, R. A. Abram, V. V. Nikolaev, M. V. Maximov, N. N. Ledentsov, C. M. S. Torres, A. V. Kavolin, “Exciton polaritons in a cylindrical microcavity with an embedded quantum wire,” Phys. Rev. B 61, 13791–13797 (2000).
[CrossRef]

Costa Filho, R. N.

E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
[CrossRef]

Dereux, A.

U. Schröter, A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420-1–125420-10 (2001).

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, C. Girad, “Detection of the optical magnetic field by circular symmetry plasmons,” Appl. Surf. Sci. 164, 124–130 (2000).
[CrossRef]

Devaux, E.

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, C. Girad, “Detection of the optical magnetic field by circular symmetry plasmons,” Appl. Surf. Sci. 164, 124–130 (2000).
[CrossRef]

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Economou, E. N.

C. A. Pffeifer, E. N. Economou, K. L. Ngai, “Surface polaritons in a circularly cylindrical interface-surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[CrossRef]

Farias, G. A.

E. F. Nobre, G. A. Farias, N. S. Almeida, “Polaritons in uniaxial materials propagating in hollow cylinders,” J. Opt. Soc. Am. A 17, 173–179 (2000).
[CrossRef]

E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
[CrossRef]

N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
[CrossRef]

Girad, C.

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, C. Girad, “Detection of the optical magnetic field by circular symmetry plasmons,” Appl. Surf. Sci. 164, 124–130 (2000).
[CrossRef]

Goudonnet, J.-P.

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, C. Girad, “Detection of the optical magnetic field by circular symmetry plasmons,” Appl. Surf. Sci. 164, 124–130 (2000).
[CrossRef]

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Grambow, P.

K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, K. Ploog, “Collective excitations in antidots,” Phys. Rev. Lett. 66, 1618–1621 (1991).
[CrossRef] [PubMed]

Heitmann, D.

K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, K. Ploog, “Collective excitations in antidots,” Phys. Rev. Lett. 66, 1618–1621 (1991).
[CrossRef] [PubMed]

Houdre, R.

D. Liballoy, H. Benisty, C. Weisbush, T. F. Kraus, C. J. Smith, R. Houdre, U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Ito, H.

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Jackson, D. N.

D. N. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).

Jhe, W.

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Kaliteevski, M. A.

M. A. Kaliteevski, S. Brand, R. A. Abram, V. V. Nikolaev, M. V. Maximov, N. N. Ledentsov, C. M. S. Torres, A. V. Kavolin, “Exciton polaritons in a cylindrical microcavity with an embedded quantum wire,” Phys. Rev. B 61, 13791–13797 (2000).
[CrossRef]

M. A. Kaliteevski, R. A. Abram, V. V. Nikolaev, “Optical eigenmodes of a cylindrical microcavity,” J. Mod. Opt. 47, 677–684 (2000).
[CrossRef]

Kavolin, A. V.

M. A. Kaliteevski, S. Brand, R. A. Abram, V. V. Nikolaev, M. V. Maximov, N. N. Ledentsov, C. M. S. Torres, A. V. Kavolin, “Exciton polaritons in a cylindrical microcavity with an embedded quantum wire,” Phys. Rev. B 61, 13791–13797 (2000).
[CrossRef]

Kern, K.

K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, K. Ploog, “Collective excitations in antidots,” Phys. Rev. Lett. 66, 1618–1621 (1991).
[CrossRef] [PubMed]

Khosravi, H.

Kraus, T. F.

D. Liballoy, H. Benisty, C. Weisbush, T. F. Kraus, C. J. Smith, R. Houdre, U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Lacrout, Y.

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, C. Girad, “Detection of the optical magnetic field by circular symmetry plasmons,” Appl. Surf. Sci. 164, 124–130 (2000).
[CrossRef]

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

Ledentsov, N. N.

M. A. Kaliteevski, S. Brand, R. A. Abram, V. V. Nikolaev, M. V. Maximov, N. N. Ledentsov, C. M. S. Torres, A. V. Kavolin, “Exciton polaritons in a cylindrical microcavity with an embedded quantum wire,” Phys. Rev. B 61, 13791–13797 (2000).
[CrossRef]

Lee, K. I.

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Liballoy, D.

D. Liballoy, H. Benisty, C. Weisbush, T. F. Kraus, C. J. Smith, R. Houdre, U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Loudon, R.

Maximov, M. V.

M. A. Kaliteevski, S. Brand, R. A. Abram, V. V. Nikolaev, M. V. Maximov, N. N. Ledentsov, C. M. S. Torres, A. V. Kavolin, “Exciton polaritons in a cylindrical microcavity with an embedded quantum wire,” Phys. Rev. B 61, 13791–13797 (2000).
[CrossRef]

Mills, D. L.

V. M. Agranovich, D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).

Nakata, T.

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Ngai, K. L.

C. A. Pffeifer, E. N. Economou, K. L. Ngai, “Surface polaritons in a circularly cylindrical interface-surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[CrossRef]

Nikolaev, V. V.

M. A. Kaliteevski, S. Brand, R. A. Abram, V. V. Nikolaev, M. V. Maximov, N. N. Ledentsov, C. M. S. Torres, A. V. Kavolin, “Exciton polaritons in a cylindrical microcavity with an embedded quantum wire,” Phys. Rev. B 61, 13791–13797 (2000).
[CrossRef]

M. A. Kaliteevski, R. A. Abram, V. V. Nikolaev, “Optical eigenmodes of a cylindrical microcavity,” J. Mod. Opt. 47, 677–684 (2000).
[CrossRef]

Nobre, E. F.

E. F. Nobre, G. A. Farias, N. S. Almeida, “Polaritons in uniaxial materials propagating in hollow cylinders,” J. Opt. Soc. Am. A 17, 173–179 (2000).
[CrossRef]

E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
[CrossRef]

Oesterle, U.

D. Liballoy, H. Benisty, C. Weisbush, T. F. Kraus, C. J. Smith, R. Houdre, U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Ohtsu, M.

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Oliveira, N. T.

N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
[CrossRef]

Paranjape, B. V.

G. C. Aers, A. D. Boardman, B. V. Paranjape, “Nonradiative surface plasmon-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F 10, 53–65 (1980).
[CrossRef]

Pffeifer, C. A.

C. A. Pffeifer, E. N. Economou, K. L. Ngai, “Surface polaritons in a circularly cylindrical interface-surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[CrossRef]

Ploog, K.

K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, K. Ploog, “Collective excitations in antidots,” Phys. Rev. Lett. 66, 1618–1621 (1991).
[CrossRef] [PubMed]

Schröter, U.

U. Schröter, A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420-1–125420-10 (2001).

Smith, C. J.

D. Liballoy, H. Benisty, C. Weisbush, T. F. Kraus, C. J. Smith, R. Houdre, U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Stegun, L. A.

M. Abramowitz, L. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

Tilley, D. R.

Torres, C. M. S.

M. A. Kaliteevski, S. Brand, R. A. Abram, V. V. Nikolaev, M. V. Maximov, N. N. Ledentsov, C. M. S. Torres, A. V. Kavolin, “Exciton polaritons in a cylindrical microcavity with an embedded quantum wire,” Phys. Rev. B 61, 13791–13797 (2000).
[CrossRef]

Vasconcelos, E. F.

N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
[CrossRef]

Weber, J.-C.

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, C. Girad, “Detection of the optical magnetic field by circular symmetry plasmons,” Appl. Surf. Sci. 164, 124–130 (2000).
[CrossRef]

Weisbush, C.

D. Liballoy, H. Benisty, C. Weisbush, T. F. Kraus, C. J. Smith, R. Houdre, U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Zhang, Y. H.

K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, K. Ploog, “Collective excitations in antidots,” Phys. Rev. Lett. 66, 1618–1621 (1991).
[CrossRef] [PubMed]

Appl. Phys. Lett.

D. Liballoy, H. Benisty, C. Weisbush, T. F. Kraus, C. J. Smith, R. Houdre, U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Appl. Surf. Sci.

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, C. Girad, “Detection of the optical magnetic field by circular symmetry plasmons,” Appl. Surf. Sci. 164, 124–130 (2000).
[CrossRef]

J. Mod. Opt.

M. A. Kaliteevski, R. A. Abram, V. V. Nikolaev, “Optical eigenmodes of a cylindrical microcavity,” J. Mod. Opt. 47, 677–684 (2000).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. F

G. C. Aers, A. D. Boardman, B. V. Paranjape, “Nonradiative surface plasmon-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F 10, 53–65 (1980).
[CrossRef]

Phys. Rev. B

C. A. Pffeifer, E. N. Economou, K. L. Ngai, “Surface polaritons in a circularly cylindrical interface-surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974).
[CrossRef]

M. A. Kaliteevski, S. Brand, R. A. Abram, V. V. Nikolaev, M. V. Maximov, N. N. Ledentsov, C. M. S. Torres, A. V. Kavolin, “Exciton polaritons in a cylindrical microcavity with an embedded quantum wire,” Phys. Rev. B 61, 13791–13797 (2000).
[CrossRef]

N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
[CrossRef]

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weber, Y. Lacrout, J.-P. Goudonnet, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B 62, 10504–10514 (2000).
[CrossRef]

U. Schröter, A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420-1–125420-10 (2001).

E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
[CrossRef]

Phys. Rev. Lett.

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, K. Ploog, “Collective excitations in antidots,” Phys. Rev. Lett. 66, 1618–1621 (1991).
[CrossRef] [PubMed]

Other

V. M. Agranovich, D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).

D. N. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).

M. Abramowitz, L. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Dispersion relation of surface modes for a solid cylinder of GaAs with radius (a) b=5.0×10-3 cm, (b) b=5.0×10-2 cm, and external magnetic field H0=500 G. The dotted curve in each case shows the surface mode in the absence of an external magnetic field; the dashed curve is the light line.

Fig. 2
Fig. 2

Dispersion relation of surface modes for a solid cylinder of GaAs with radius (a) b=5.0×10-3 cm, (b) b=5.0×10-2 cm, and external magnetic field H0=5000 G. The dotted curve in each case shows the surface mode in the absence of an external magnetic field; the dashed curve is the light line.

Fig. 3
Fig. 3

Dispersion relation of surface modes for a hollow cylinder of GaAs with internal radius a=1.0×10-2 cm and external radius b=5.0×10-2 cm, in the absence of an external magnetic field; the dashed curve is the light line.

Fig. 4
Fig. 4

Dispersion relation of localized modes (surface modes) of the polariton for a hollow cylinder of GaAs, with internal radius (a) a=1.0×10-3 cm, (b) a=1.0×10-2 cm, and external radius b=5.0×10-2 cm, in the presence of a dc external magnetic field of H0=500 G. The dotted curve in each case shows the localized modes in the absence of an external magnetic field (displayed in Fig. 3); the dashed curve is the light line.

Fig. 5
Fig. 5

Dispersion relation of localized modes (surface modes) of the polariton for a hollow cylinder of GaAs, with internal radius (a) a=1.0×10-3 cm, (b) a=1.0×10-2 cm, and external radius b=5.0×10-2 cm, in the presence of a dc external magnetic field of H0=5000 G. The dotted curve in each case shows the localized modes in the absence of an external magnetic field (displayed in Fig. 3); the dashed curve is the light line.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

=1,j-i2,j0i2,j1,j0003,j,
1,II=1+ωp2ωc2-ω2,
2,II=ωcωp2ω(ωc2-ω2),
3,II=1-ωp2ω2.
ωp2=4πρe2me*,
ωc=eH0me*,
E=[Er(r),Eθ(r),Ez(r)]Sn,
H=[Hr(r),Hθ(r),Hz(r)]Sn,
Sn=exp[i(kz+nθ-ωt)],
kz=ωc(μ),
1r [nEz-krEθ]=ωc Hr,
ikEr-ddr Ez=i ωc Hθ,
1rddr (rEθ)-inEr=i ωc Hz,
1r [nHz-krHθ]=-ωc [1,jEr-i2,jEθ],
ikHr-ddr Hz=-i ωc [i2,jEr+1,jEθ],
1rddr (rHθ)-inHr=-i ωc 3,jEz,
ddr (rHr)+inHθ+ikrHz=0,
ddr [r(1,jEr-i2,jEθ)]+in[i2,jEr+1,jEθ]
+ik3,jrEz=0.
1rddrr ddr Ez+3,j1,j (k0,j2-k2)-n2r2Ez=0,
Ezn=AnIn(kIr)=AnJn(kIr),ifkI2>0,AnIn(kIr),ifkI2<0,
Ezn=BnIn(kIIr)+CnZn(kIIr)=BnJn(kIIr)+CnNn(kIIr),ifkII2>0,BnIn(kIIr)+CnKn(kIIr),ifkII2<0,
Ezn=DnKn(kIIIr),withkIII2>0,
Eθn=k(k0,j2-k2)2-δj4-nr (k0,j2-k2)Ez+δj2ddr Ez,
Ern=-ik(k0,j2-k2)2-δj4nr δj2Ez-(k0,j2-k2) ddr Ez;
Hθn=-ωci(k0,j2-k2)2-δj4nr 2,jk2Ez+[-1,j(k0,j2-k2)+2,jδj2] ddr Ez,
Hrn=-ωc1(k0,j2-k2)2-δj4nr [-1,j(k0,j2-k2)+2,jδj2]Ez+2,jk2ddr Ez,
{AIIIn(kIa)[BIIIn(kIIa)-CIIIn+1(kIIa)]-AI[BIIn(kIIa)-CIIn+1(kIIa)]In(kIa)}×-nb1kIII2Zn(kIb)Kn(kIIIb)-AII[BIIZn(kIIb)-|CII|Zn+1(kIIb)]Kn(kIIIb)-{AIIIn(kIa)[BIIZn(kIIa)-CIIZn+1(kIIa)]+AI[BIIn(kIIa)-CIIn+1(kIIa)]In(kIa)}×-nb1kIII2-In(kIb)Kn(kIIIb)-AII[BIIIn(kIIb)-|CII|
×In+1(kIIb)]Kn(kIIIb)}=0,
Ai=1(k0,i2-k2)2-δi4,
Bi=nri [(k0,i2-k2)-δi2],
Ci=sign(ki2)δi2|ki|,
ddrIn(kr)=-sign(k2)|k|In+1(kr)+nrIn(kr),
ddrZn(kr)=-|k|Zn+1(kr)+nrZn(kr).

Metrics