Abstract

Highly accurate computations of surface plasmons in metallic nanostructures with various geometries are presented. Calculations for cylinders with irregular cross section, coupled structures, and periodic gratings are shown. These systems exhibit a resonant behavior with complex field distribution and strong field enhancement, and therefore their computation requires a very accurate numerical method. It is shown that the multiple multipole (MMP) method, together with an automatic multipole setting (AMS) procedure, is well suited for these computations. An AMS technique for the two-dimensional MMP method is presented. It relies on the global topology of each domain boundary to generate a distribution of numerically independent multipole expansions. This technique greatly facilitates the MMP modeling.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  2. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  4. The name “plasmon” should not lead one to believe that the theory behind this paper is quantum mechanical. The whole treatment is classical (Maxwell equations, indeed), and the only relevant quantum physics is hidden in the dielectric function ε(ν), which we consider a given function.
  5. S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [CrossRef] [PubMed]
  6. F. Meriaudeau, T. R. Downey, A. Passian, A. Wig, T. L. Ferrel, “Environment effects on surface-plasmon spectra in gold-island films potential for sensing applications,” Appl. Opt. 37, 8030–8037 (1998).
    [CrossRef]
  7. T. Okamoto, I. Yamaguchi, T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25, 372–374 (2000).
    [CrossRef]
  8. M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [CrossRef]
  9. S. A. Maier, M. L. Brongersma, H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
    [CrossRef]
  10. M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000).
    [CrossRef]
  11. J.-C. Weeber, A. Dereux, Ch. Girard, G. Colas des Francs, J. R. Krenn, J.-P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E 62, 7381–7388 (2000).
    [CrossRef]
  12. S. J. Oldenburg, G. D. Hale, J. B. Jackson, N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063–1065 (1999).
    [CrossRef]
  13. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
    [CrossRef]
  14. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
    [CrossRef] [PubMed]
  15. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7, 329–335 (2000).
    [CrossRef] [PubMed]
  16. R. M. Dickson, L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
    [CrossRef]
  17. J.-C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
  18. L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
  19. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
  20. J.-C. Weeber, Ch. Girard, J. R. Krenn, A. Dereux, J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).
  21. N. Richard, “Polarization and spectroscopy analysis of the scattering by nanoscopic objects in the near-field optics,” J. Appl. Phys. 88, 2318–2325 (2000).
  22. C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
  23. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
  24. J. A. Porto, F. J. Garcı́a-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
  25. H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
    [CrossRef]
  26. M. G. Somekh, S. Liu, T. S. Velinov, C. W. See, “High-resolution scanning surface-plasmon microscopy,” Appl. Opt. 39, 6279–6287 (2000).
    [CrossRef]
  27. W.-C. Tan, J. R. Sambles, T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000).
    [CrossRef]
  28. W.-C. Tan, T. W. Preist, R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
    [CrossRef]
  29. Ref. 1, Chaps. 5.2–5.4, pp. 136–150.
  30. Ch. Girard, A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
    [CrossRef]
  31. Th. Wriedt, “A review of elastic light scattering theories,” Part. Part. Syst. Charact. 15, 67–74 (1998).
    [CrossRef]
  32. N. Félidj, J. Aubard, G. Lévi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
    [CrossRef]
  33. M. Quinten, A. Pack, R. Wannenmacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).
    [CrossRef]
  34. N. Richard, “Light scattering by supported metallic nanostructures: polarization and spectroscopy in the near-field zone,” Phys. Status Solidi B 220, 1009–1024 (2000).
    [CrossRef]
  35. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
    [CrossRef]
  36. J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Express 6, 213–219 (2000).
    [PubMed]
  37. J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 1–9 (2000).
  38. W.-C. Tan, T. W. Preist, R. J. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).
  39. J. P. Kottmann, O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).
  40. Ch. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Boston, 1990).
  41. Ch. Hafner, Post-modern Electromagnetics. Using Intelligent MaXwell Solvers (Wiley, Chichester, UK, 1999).
  42. Th. Wriedt, ed., Generalized Multipole Techniques for Electromagnetic and Light Scattering (Elsevier, Amsterdam, 1999).
  43. Ref. 40, Chap. 7.2, pp. 159–174.
  44. F. G. Bogdanov, D. D. Karkashadze, R. S. Zaridze, “The method of auxiliary sources in electromagnetic scattering problems,” in Ref. 42, Chaps. 7.2–7.4, pp. 145–154.
  45. Y. Leviatan, A. Boag, “Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model,” IEEE Trans. Antennas Propag. AP-35, 1119–1127 (1987).
  46. S. Eisler, Y. Leviatan, “Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model,” IEE Proc. H 136, 431–438 (1989).
  47. K. I. Beshir, J. E. Richie, “On the location and number of expansion centers for the generalized multipole technique,” IEEE Trans. Electromagn. Compat. 38, 177–180 (1996).
  48. P. B. Leuchtmann, “Automatic computation of optimum origins of the poles in the multiple multipole method (MMP-method),” IEEE Trans. Magn. M-19, 2371–2374 (1983).
  49. P. B. Leuchtmann, “Automatisierung der Funktionenwahl bei der MMP-Methode,” Ph.D. dissertation (Eidgenössischen Technischen Hochschule, Zürich, Switzerland, 1987).
  50. P. Regli, “Automatische Wahl der sphärischen Entwicklungsfunktionen für die 3D-MMP Methode,” Ph.D. dissertation (Eidgenössischen Technischen Hochschule, Zürich, Switzerland, 1992).
  51. Ch. Tudziers, “Verbesserung der Anwendbarkeit der Multipolmethode durch automatisches Setzen der Entwicklungsparameter and Parallelisierung,” Ph.D. dissertation (Technischen Universität Hamburg-Harburg, Hamburg, Germany, 1996).
  52. Ref. 40, Chap. 7.4.3, pp. 209–212.
  53. Ref. 41, Chap. 8, pp. 229–234.
  54. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chaps. 16.1–16.2, pp. 739–747.
  55. A. G. Kyurkchan, A. I. Sukov, A. I. Kleev, “Singularities of wave fields and numerical methods of solving the boundary-value problems for Helmholtz equation,” in Ref. 42, Chaps. 5.2–5.4, pp. 82–102.
  56. R. Zaridze, G. Bit-Babik, K. Tavzarashvili, N. Uzunoglu, D. Economou, “Some recent developments in method of auxiliary sources for inverse and scattering problems on large and complex structure,” in Electromagnetic and Light Scattering—Theory and Applications, Th. Wriedt, Y. Eremin, eds. (Universität Bremen, Bremen, Germany, 1998), pp. 287–294.
  57. Ref. 40, Chap. 7.2, pp. 169–170.
  58. Ref. 49, Chaps. 4.1.1.1–4.1.1.2, pp. 32–37.
  59. F. G. Bogdanov, D. D. Karkashadze, R. S. Zaridze, “The method of auxiliary sources in electromagnetic scattering problems,” in Ref. 42, Chap. 7.4.1, pp. 149–151.
  60. Ref. 50, Chap. 3.4.5, pp. 43–45.
  61. Ref. 50, Chap. 2.5, pp. 29–31.
  62. Ref. 40, Chap. 7.2, p. 166.
  63. In the convex side of Γij,we use a larger value of β to obtain a similar number of multipoles at both sides of the interface.
  64. U. Kreibig, C. v. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224, 307–323 (1969).
  65. D. Dalacu, L. Martinu, “Optical properties of discontinuous gold films: finite-size effects,” J. Opt. Soc. Am. B 18, 85–92 (2001).
    [CrossRef]
  66. J. Lermé, “Introduction of quantum finite-size effects in the Mie’s theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters,” Eur. Phys. J. D 10, 265–277 (2000).
  67. Ch. Hafner, MaX-1. A Visual Electromagnetics Platform (Wiley, Chichester, UK, 1998).
  68. J. P. Kottmann, O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
    [PubMed]
  69. Ch. Hafner, “Multiple multipole program computation of periodic structures,” J. Opt. Soc. Am. A 12, 1057–1067 (1995).
  70. L. Martı́n-Moreno, F. J. Garcı́a-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [PubMed]

2001

S. A. Maier, M. L. Brongersma, H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
[CrossRef]

D. Dalacu, L. Martinu, “Optical properties of discontinuous gold films: finite-size effects,” J. Opt. Soc. Am. B 18, 85–92 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
[PubMed]

L. Martı́n-Moreno, F. J. Garcı́a-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[PubMed]

2000

J. Lermé, “Introduction of quantum finite-size effects in the Mie’s theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters,” Eur. Phys. J. D 10, 265–277 (2000).

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000).
[CrossRef]

J.-C. Weeber, A. Dereux, Ch. Girard, G. Colas des Francs, J. R. Krenn, J.-P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E 62, 7381–7388 (2000).
[CrossRef]

T. Okamoto, I. Yamaguchi, T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25, 372–374 (2000).
[CrossRef]

P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7, 329–335 (2000).
[CrossRef] [PubMed]

R. M. Dickson, L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
[CrossRef]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

M. G. Somekh, S. Liu, T. S. Velinov, C. W. See, “High-resolution scanning surface-plasmon microscopy,” Appl. Opt. 39, 6279–6287 (2000).
[CrossRef]

W.-C. Tan, J. R. Sambles, T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000).
[CrossRef]

W.-C. Tan, T. W. Preist, R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
[CrossRef]

N. Richard, “Polarization and spectroscopy analysis of the scattering by nanoscopic objects in the near-field optics,” J. Appl. Phys. 88, 2318–2325 (2000).

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

N. Richard, “Light scattering by supported metallic nanostructures: polarization and spectroscopy in the near-field zone,” Phys. Status Solidi B 220, 1009–1024 (2000).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Express 6, 213–219 (2000).
[PubMed]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 1–9 (2000).

J. P. Kottmann, O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).

1999

W.-C. Tan, T. W. Preist, R. J. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[CrossRef]

M. Quinten, A. Pack, R. Wannenmacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).
[CrossRef]

J. A. Porto, F. J. Garcı́a-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).

J.-C. Weeber, Ch. Girard, J. R. Krenn, A. Dereux, J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).

J.-C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).

S. J. Oldenburg, G. D. Hale, J. B. Jackson, N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063–1065 (1999).
[CrossRef]

1998

M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

F. Meriaudeau, T. R. Downey, A. Passian, A. Wig, T. L. Ferrel, “Environment effects on surface-plasmon spectra in gold-island films potential for sensing applications,” Appl. Opt. 37, 8030–8037 (1998).
[CrossRef]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).

Th. Wriedt, “A review of elastic light scattering theories,” Part. Part. Syst. Charact. 15, 67–74 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).

1997

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
[CrossRef] [PubMed]

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

1996

Ch. Girard, A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

K. I. Beshir, J. E. Richie, “On the location and number of expansion centers for the generalized multipole technique,” IEEE Trans. Electromagn. Compat. 38, 177–180 (1996).

1995

1994

1989

S. Eisler, Y. Leviatan, “Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model,” IEE Proc. H 136, 431–438 (1989).

1987

Y. Leviatan, A. Boag, “Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model,” IEEE Trans. Antennas Propag. AP-35, 1119–1127 (1987).

1983

P. B. Leuchtmann, “Automatic computation of optimum origins of the poles in the multiple multipole method (MMP-method),” IEEE Trans. Magn. M-19, 2371–2374 (1983).

1969

U. Kreibig, C. v. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224, 307–323 (1969).

Atwater, H. A.

S. A. Maier, M. L. Brongersma, H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000).
[CrossRef]

Aubard, J.

N. Félidj, J. Aubard, G. Lévi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[CrossRef]

Aussenegg, F. R.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

Berini, P.

Beshir, K. I.

K. I. Beshir, J. E. Richie, “On the location and number of expansion centers for the generalized multipole technique,” IEEE Trans. Electromagn. Compat. 38, 177–180 (1996).

Bit-Babik, G.

R. Zaridze, G. Bit-Babik, K. Tavzarashvili, N. Uzunoglu, D. Economou, “Some recent developments in method of auxiliary sources for inverse and scattering problems on large and complex structure,” in Electromagnetic and Light Scattering—Theory and Applications, Th. Wriedt, Y. Eremin, eds. (Universität Bremen, Bremen, Germany, 1998), pp. 287–294.

Boag, A.

Y. Leviatan, A. Boag, “Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model,” IEEE Trans. Antennas Propag. AP-35, 1119–1127 (1987).

Bogdanov, F. G.

F. G. Bogdanov, D. D. Karkashadze, R. S. Zaridze, “The method of auxiliary sources in electromagnetic scattering problems,” in Ref. 42, Chap. 7.4.1, pp. 149–151.

F. G. Bogdanov, D. D. Karkashadze, R. S. Zaridze, “The method of auxiliary sources in electromagnetic scattering problems,” in Ref. 42, Chaps. 7.2–7.4, pp. 145–154.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bourillot, E.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000).
[CrossRef]

Chan, V. Z.-H.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

Colas des Francs, G.

J.-C. Weeber, A. Dereux, Ch. Girard, G. Colas des Francs, J. R. Krenn, J.-P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E 62, 7381–7388 (2000).
[CrossRef]

Dalacu, D.

Dereux, A.

J.-C. Weeber, A. Dereux, Ch. Girard, G. Colas des Francs, J. R. Krenn, J.-P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E 62, 7381–7388 (2000).
[CrossRef]

J.-C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).

J.-C. Weeber, Ch. Girard, J. R. Krenn, A. Dereux, J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Ch. Girard, A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

Dickson, R. M.

R. M. Dickson, L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
[CrossRef]

Ditlbacher, H.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

Downey, T. R.

Ebbesen, T. W.

L. Martı́n-Moreno, F. J. Garcı́a-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).

Economou, D.

R. Zaridze, G. Bit-Babik, K. Tavzarashvili, N. Uzunoglu, D. Economou, “Some recent developments in method of auxiliary sources for inverse and scattering problems on large and complex structure,” in Electromagnetic and Light Scattering—Theory and Applications, Th. Wriedt, Y. Eremin, eds. (Universität Bremen, Bremen, Germany, 1998), pp. 287–294.

Eisler, S.

S. Eisler, Y. Leviatan, “Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model,” IEE Proc. H 136, 431–438 (1989).

Emory, S. R.

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Feldmann, J.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).

Félidj, N.

N. Félidj, J. Aubard, G. Lévi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[CrossRef]

Ferrel, T. L.

Fragstein, C. v.

U. Kreibig, C. v. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224, 307–323 (1969).

Garci´a-Vidal, F. J.

L. Martı́n-Moreno, F. J. Garcı́a-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[PubMed]

J. A. Porto, F. J. Garcı́a-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).

Geier, S.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).

Girard, Ch.

J.-C. Weeber, A. Dereux, Ch. Girard, G. Colas des Francs, J. R. Krenn, J.-P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E 62, 7381–7388 (2000).
[CrossRef]

J.-C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).

J.-C. Weeber, Ch. Girard, J. R. Krenn, A. Dereux, J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Ch. Girard, A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

Gotschy, W.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Goudonnet, J. P.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Goudonnet, J.-P.

J.-C. Weeber, A. Dereux, Ch. Girard, G. Colas des Francs, J. R. Krenn, J.-P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E 62, 7381–7388 (2000).
[CrossRef]

J.-C. Weeber, Ch. Girard, J. R. Krenn, A. Dereux, J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).

J.-C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).

Hafner, Ch.

Ch. Hafner, “Multiple multipole program computation of periodic structures,” J. Opt. Soc. Am. A 12, 1057–1067 (1995).

Ch. Hafner, MaX-1. A Visual Electromagnetics Platform (Wiley, Chichester, UK, 1998).

Ch. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Boston, 1990).

Ch. Hafner, Post-modern Electromagnetics. Using Intelligent MaXwell Solvers (Wiley, Chichester, UK, 1999).

Halas, N. J.

S. J. Oldenburg, G. D. Hale, J. B. Jackson, N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063–1065 (1999).
[CrossRef]

Hale, G. D.

S. J. Oldenburg, G. D. Hale, J. B. Jackson, N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063–1065 (1999).
[CrossRef]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000).
[CrossRef]

Hecker, N. E.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Jackson, J. B.

S. J. Oldenburg, G. D. Hale, J. B. Jackson, N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063–1065 (1999).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chaps. 16.1–16.2, pp. 739–747.

Kano, H.

H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

Karkashadze, D. D.

F. G. Bogdanov, D. D. Karkashadze, R. S. Zaridze, “The method of auxiliary sources in electromagnetic scattering problems,” in Ref. 42, Chaps. 7.2–7.4, pp. 145–154.

F. G. Bogdanov, D. D. Karkashadze, R. S. Zaridze, “The method of auxiliary sources in electromagnetic scattering problems,” in Ref. 42, Chap. 7.4.1, pp. 149–151.

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).

Kleev, A. I.

A. G. Kyurkchan, A. I. Sukov, A. I. Kleev, “Singularities of wave fields and numerical methods of solving the boundary-value problems for Helmholtz equation,” in Ref. 42, Chaps. 5.2–5.4, pp. 82–102.

Knoll, W.

H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

Kobayashi, T.

Kottmann, J. P.

J. P. Kottmann, O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
[PubMed]

J. P. Kottmann, O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).

J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 1–9 (2000).

J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Express 6, 213–219 (2000).
[PubMed]

Kreibig, U.

U. Kreibig, C. v. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224, 307–323 (1969).

U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

Krenn, J. R.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

J.-C. Weeber, A. Dereux, Ch. Girard, G. Colas des Francs, J. R. Krenn, J.-P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E 62, 7381–7388 (2000).
[CrossRef]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

J.-C. Weeber, Ch. Girard, J. R. Krenn, A. Dereux, J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

J.-C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).

M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

Kyurkchan, A. G.

A. G. Kyurkchan, A. I. Sukov, A. I. Kleev, “Singularities of wave fields and numerical methods of solving the boundary-value problems for Helmholtz equation,” in Ref. 42, Chaps. 5.2–5.4, pp. 82–102.

Lacroute, Y.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Lamprecht, B.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

Leitner, A.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

Lermé, J.

J. Lermé, “Introduction of quantum finite-size effects in the Mie’s theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters,” Eur. Phys. J. D 10, 265–277 (2000).

Leuchtmann, P. B.

P. B. Leuchtmann, “Automatic computation of optimum origins of the poles in the multiple multipole method (MMP-method),” IEEE Trans. Magn. M-19, 2371–2374 (1983).

P. B. Leuchtmann, “Automatisierung der Funktionenwahl bei der MMP-Methode,” Ph.D. dissertation (Eidgenössischen Technischen Hochschule, Zürich, Switzerland, 1987).

Lévi, G.

N. Félidj, J. Aubard, G. Lévi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[CrossRef]

Leviatan, Y.

S. Eisler, Y. Leviatan, “Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model,” IEE Proc. H 136, 431–438 (1989).

Y. Leviatan, A. Boag, “Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model,” IEEE Trans. Antennas Propag. AP-35, 1119–1127 (1987).

Lezec, H. J.

L. Martı́n-Moreno, F. J. Garcı́a-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).

Liu, S.

Lyon, L. A.

R. M. Dickson, L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
[CrossRef]

Maier, S. A.

S. A. Maier, M. L. Brongersma, H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
[CrossRef]

Marti´n-Moreno, L.

L. Martı́n-Moreno, F. J. Garcı́a-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[PubMed]

Martin, O. J. F.

J. P. Kottmann, O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655–663 (2001).
[PubMed]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Express 6, 213–219 (2000).
[PubMed]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 1–9 (2000).

J. P. Kottmann, O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).

Martinu, L.

Meriaudeau, F.

Möller, M.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

Morimoto, A.

Nie, S.

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Novotny, L.

Okamoto, T.

Oldenburg, S. J.

S. J. Oldenburg, G. D. Hale, J. B. Jackson, N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063–1065 (1999).
[CrossRef]

Pack, A.

M. Quinten, A. Pack, R. Wannenmacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).
[CrossRef]

Passian, A.

Pellerin, K. M.

L. Martı́n-Moreno, F. J. Garcı́a-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[PubMed]

Pendry, J. B.

L. Martı́n-Moreno, F. J. Garcı́a-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[PubMed]

J. A. Porto, F. J. Garcı́a-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).

Pohl, D. W.

Porto, J. A.

J. A. Porto, F. J. Garcı́a-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).

Preist, T. W.

W.-C. Tan, J. R. Sambles, T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000).
[CrossRef]

W.-C. Tan, T. W. Preist, R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
[CrossRef]

W.-C. Tan, T. W. Preist, R. J. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).

Quinten, M.

M. Quinten, A. Pack, R. Wannenmacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

Rechberger, W.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

Regli, P.

L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).

P. Regli, “Automatische Wahl der sphärischen Entwicklungsfunktionen für die 3D-MMP Methode,” Ph.D. dissertation (Eidgenössischen Technischen Hochschule, Zürich, Switzerland, 1992).

Richard, N.

N. Richard, “Polarization and spectroscopy analysis of the scattering by nanoscopic objects in the near-field optics,” J. Appl. Phys. 88, 2318–2325 (2000).

N. Richard, “Light scattering by supported metallic nanostructures: polarization and spectroscopy in the near-field zone,” Phys. Status Solidi B 220, 1009–1024 (2000).
[CrossRef]

Richie, J. E.

K. I. Beshir, J. E. Richie, “On the location and number of expansion centers for the generalized multipole technique,” IEEE Trans. Electromagn. Compat. 38, 177–180 (1996).

Sambles, J. R.

W.-C. Tan, J. R. Sambles, T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000).
[CrossRef]

Sambles, R. J.

W.-C. Tan, T. W. Preist, R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
[CrossRef]

W.-C. Tan, T. W. Preist, R. J. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).

Schider, G.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 1–9 (2000).

J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Express 6, 213–219 (2000).
[PubMed]

See, C. W.

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 1–9 (2000).

J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Express 6, 213–219 (2000).
[PubMed]

Somekh, M. G.

Sönnichsen, C.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

Spatz, J. P.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).

Sukov, A. I.

A. G. Kyurkchan, A. I. Sukov, A. I. Kleev, “Singularities of wave fields and numerical methods of solving the boundary-value problems for Helmholtz equation,” in Ref. 42, Chaps. 5.2–5.4, pp. 82–102.

Takahara, J.

Taki, H.

Tan, W.-C.

W.-C. Tan, J. R. Sambles, T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000).
[CrossRef]

W.-C. Tan, T. W. Preist, R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
[CrossRef]

W.-C. Tan, T. W. Preist, R. J. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).

Tavzarashvili, K.

R. Zaridze, G. Bit-Babik, K. Tavzarashvili, N. Uzunoglu, D. Economou, “Some recent developments in method of auxiliary sources for inverse and scattering problems on large and complex structure,” in Electromagnetic and Light Scattering—Theory and Applications, Th. Wriedt, Y. Eremin, eds. (Universität Bremen, Bremen, Germany, 1998), pp. 287–294.

Thio, T.

L. Martı́n-Moreno, F. J. Garcı́a-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).

Tudziers, Ch.

Ch. Tudziers, “Verbesserung der Anwendbarkeit der Multipolmethode durch automatisches Setzen der Entwicklungsparameter and Parallelisierung,” Ph.D. dissertation (Technischen Universität Hamburg-Harburg, Hamburg, Germany, 1996).

Uzunoglu, N.

R. Zaridze, G. Bit-Babik, K. Tavzarashvili, N. Uzunoglu, D. Economou, “Some recent developments in method of auxiliary sources for inverse and scattering problems on large and complex structure,” in Electromagnetic and Light Scattering—Theory and Applications, Th. Wriedt, Y. Eremin, eds. (Universität Bremen, Bremen, Germany, 1998), pp. 287–294.

Velinov, T. S.

Vollmer, M.

U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

von Plessen, G.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).

Wannenmacher, R.

M. Quinten, A. Pack, R. Wannenmacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).
[CrossRef]

Wanstall, N. P.

W.-C. Tan, T. W. Preist, R. J. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).

Weeber, J. C.

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Weeber, J.-C.

J.-C. Weeber, A. Dereux, Ch. Girard, G. Colas des Francs, J. R. Krenn, J.-P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E 62, 7381–7388 (2000).
[CrossRef]

J.-C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).

J.-C. Weeber, Ch. Girard, J. R. Krenn, A. Dereux, J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).

Wig, A.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).

Wriedt, Th.

Th. Wriedt, “A review of elastic light scattering theories,” Part. Part. Syst. Charact. 15, 67–74 (1998).
[CrossRef]

Yamagishi, S.

Yamaguchi, I.

Zaridze, R.

R. Zaridze, G. Bit-Babik, K. Tavzarashvili, N. Uzunoglu, D. Economou, “Some recent developments in method of auxiliary sources for inverse and scattering problems on large and complex structure,” in Electromagnetic and Light Scattering—Theory and Applications, Th. Wriedt, Y. Eremin, eds. (Universität Bremen, Bremen, Germany, 1998), pp. 287–294.

Zaridze, R. S.

F. G. Bogdanov, D. D. Karkashadze, R. S. Zaridze, “The method of auxiliary sources in electromagnetic scattering problems,” in Ref. 42, Chap. 7.4.1, pp. 149–151.

F. G. Bogdanov, D. D. Karkashadze, R. S. Zaridze, “The method of auxiliary sources in electromagnetic scattering problems,” in Ref. 42, Chaps. 7.2–7.4, pp. 145–154.

Appl. Opt.

Appl. Phys. B

M. Quinten, A. Pack, R. Wannenmacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).
[CrossRef]

Appl. Phys. Lett.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).

S. A. Maier, M. L. Brongersma, H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
[CrossRef]

S. J. Oldenburg, G. D. Hale, J. B. Jackson, N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063–1065 (1999).
[CrossRef]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

Eur. Phys. J. D

J. Lermé, “Introduction of quantum finite-size effects in the Mie’s theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters,” Eur. Phys. J. D 10, 265–277 (2000).

IEE Proc. H

S. Eisler, Y. Leviatan, “Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model,” IEE Proc. H 136, 431–438 (1989).

IEEE Trans. Antennas Propag.

J. P. Kottmann, O. J. F. Martin, “Accurate solution of the volume integral equation for high-permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).

Y. Leviatan, A. Boag, “Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model,” IEEE Trans. Antennas Propag. AP-35, 1119–1127 (1987).

IEEE Trans. Electromagn. Compat.

K. I. Beshir, J. E. Richie, “On the location and number of expansion centers for the generalized multipole technique,” IEEE Trans. Electromagn. Compat. 38, 177–180 (1996).

IEEE Trans. Magn.

P. B. Leuchtmann, “Automatic computation of optimum origins of the poles in the multiple multipole method (MMP-method),” IEEE Trans. Magn. M-19, 2371–2374 (1983).

J. Appl. Phys.

J.-C. Weeber, Ch. Girard, J. R. Krenn, A. Dereux, J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).

N. Richard, “Polarization and spectroscopy analysis of the scattering by nanoscopic objects in the near-field optics,” J. Appl. Phys. 88, 2318–2325 (2000).

J. Chem. Phys.

N. Félidj, J. Aubard, G. Lévi, “Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. Chem. B

R. M. Dickson, L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
[CrossRef]

Nature (London)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).

New J. Phys.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys. 2, 1–9 (2000).

Opt. Commun.

H. Kano, W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Part. Part. Syst. Charact.

Th. Wriedt, “A review of elastic light scattering theories,” Part. Part. Syst. Charact. 15, 67–74 (1998).
[CrossRef]

Phys. Rev. B

W.-C. Tan, J. R. Sambles, T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000).
[CrossRef]

W.-C. Tan, T. W. Preist, R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134–11138 (2000).
[CrossRef]

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000).
[CrossRef]

J.-C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).

W.-C. Tan, T. W. Preist, R. J. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).

Phys. Rev. E

J.-C. Weeber, A. Dereux, Ch. Girard, G. Colas des Francs, J. R. Krenn, J.-P. Goudonnet, “Optical addressing at the subwavelength scale,” Phys. Rev. E 62, 7381–7388 (2000).
[CrossRef]

Phys. Rev. Lett.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).

J. A. Porto, F. J. Garcı́a-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, Ch. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

L. Martı́n-Moreno, F. J. Garcı́a-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[PubMed]

Phys. Status Solidi B

N. Richard, “Light scattering by supported metallic nanostructures: polarization and spectroscopy in the near-field zone,” Phys. Status Solidi B 220, 1009–1024 (2000).
[CrossRef]

Rep. Prog. Phys.

Ch. Girard, A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

Science

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Z. Phys.

U. Kreibig, C. v. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224, 307–323 (1969).

Other

Ch. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Boston, 1990).

Ch. Hafner, Post-modern Electromagnetics. Using Intelligent MaXwell Solvers (Wiley, Chichester, UK, 1999).

Th. Wriedt, ed., Generalized Multipole Techniques for Electromagnetic and Light Scattering (Elsevier, Amsterdam, 1999).

Ref. 40, Chap. 7.2, pp. 159–174.

F. G. Bogdanov, D. D. Karkashadze, R. S. Zaridze, “The method of auxiliary sources in electromagnetic scattering problems,” in Ref. 42, Chaps. 7.2–7.4, pp. 145–154.

Ch. Hafner, MaX-1. A Visual Electromagnetics Platform (Wiley, Chichester, UK, 1998).

P. B. Leuchtmann, “Automatisierung der Funktionenwahl bei der MMP-Methode,” Ph.D. dissertation (Eidgenössischen Technischen Hochschule, Zürich, Switzerland, 1987).

P. Regli, “Automatische Wahl der sphärischen Entwicklungsfunktionen für die 3D-MMP Methode,” Ph.D. dissertation (Eidgenössischen Technischen Hochschule, Zürich, Switzerland, 1992).

Ch. Tudziers, “Verbesserung der Anwendbarkeit der Multipolmethode durch automatisches Setzen der Entwicklungsparameter and Parallelisierung,” Ph.D. dissertation (Technischen Universität Hamburg-Harburg, Hamburg, Germany, 1996).

Ref. 40, Chap. 7.4.3, pp. 209–212.

Ref. 41, Chap. 8, pp. 229–234.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chaps. 16.1–16.2, pp. 739–747.

A. G. Kyurkchan, A. I. Sukov, A. I. Kleev, “Singularities of wave fields and numerical methods of solving the boundary-value problems for Helmholtz equation,” in Ref. 42, Chaps. 5.2–5.4, pp. 82–102.

R. Zaridze, G. Bit-Babik, K. Tavzarashvili, N. Uzunoglu, D. Economou, “Some recent developments in method of auxiliary sources for inverse and scattering problems on large and complex structure,” in Electromagnetic and Light Scattering—Theory and Applications, Th. Wriedt, Y. Eremin, eds. (Universität Bremen, Bremen, Germany, 1998), pp. 287–294.

Ref. 40, Chap. 7.2, pp. 169–170.

Ref. 49, Chaps. 4.1.1.1–4.1.1.2, pp. 32–37.

F. G. Bogdanov, D. D. Karkashadze, R. S. Zaridze, “The method of auxiliary sources in electromagnetic scattering problems,” in Ref. 42, Chap. 7.4.1, pp. 149–151.

Ref. 50, Chap. 3.4.5, pp. 43–45.

Ref. 50, Chap. 2.5, pp. 29–31.

Ref. 40, Chap. 7.2, p. 166.

In the convex side of Γij,we use a larger value of β to obtain a similar number of multipoles at both sides of the interface.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

The name “plasmon” should not lead one to believe that the theory behind this paper is quantum mechanical. The whole treatment is classical (Maxwell equations, indeed), and the only relevant quantum physics is hidden in the dielectric function ε(ν), which we consider a given function.

Ref. 1, Chaps. 5.2–5.4, pp. 136–150.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Multipole expansions for the multiple multipole (MMP) modeling of a scattering problem. The origins of the multipolar functions are represented by circles for the inner domain Dj and by × symbols for the outer domain Di.

Fig. 2
Fig. 2

Rules for positioning the multipoles (×): (a) rule 1 (ρ is the local radius of curvature), (b) rule 2 [the area of maximum influence of multipole k is shown as well (nonshaded circle)], (c) rule 3.

Fig. 3
Fig. 3

Automatic multipole setting (AMS): multipoles (×) for the outer domain Di are located on the inner auxiliary curve γi. This curve is constructed by using the local radius of curvature of Γij. The distance between two consecutive multipoles k and k+1 is determined by using rule 3.

Fig. 4
Fig. 4

Refinements of the basic procedure for the AMS. The thin curves depict the auxiliary curves γi. The left column represents the distribution of multipoles generated with the basic procedure without refinements, and the right column does so with the corresponding refinements.

Fig. 5
Fig. 5

Distributions of multipoles generated with our AMS method: (a) Note that the procedure takes into account the global topology of the domains, (b) the corners were rounded as in Ref. 37, and (c) the radii of the circumferences are r=25 nm, and the distance between the centers is l=48 nm. The cusps were rounded with a radius rˆ=0.25 nm.

Fig. 6
Fig. 6

Detail of the electric field distribution around the upper cusp (see the inset). The lateral size of the figure is 12 nm. A complex field pattern can be observed, which justifies a dense distribution of multipoles near the cusps.

Fig. 7
Fig. 7

Comparison of the electric field amplitude computed by using two different techniques. The plots show the amplitude (normalized to the incident amplitude) along the dotted line (see the insets). The circles represent Green’s tensor technique with finite elements, and the curves represent the MMP with the AMS. (a) λ=331 nm and (b) λ=456 nm.

Fig. 8
Fig. 8

Scattering cross section as a function of the frequency: (a) cylinder above the interface and (b) cylinder below the interface. The parameter h denotes the distance between the cylinder and the interface.

Fig. 9
Fig. 9

Electric field for the two highest plasmon resonances (ν1+5, ν2+5) when h=+5 nm.

Fig. 10
Fig. 10

Diagram of the electric field lines and charge distribution for the four highest plasmon resonances (ν1+5, ν2+5, ν3+5, ν4+5) when h=+1 nm.

Fig. 11
Fig. 11

Intensity of the zero-order waves transmitted (solid curve) and reflected (dashed curve) by the metallic thin-film grating.

Fig. 12
Fig. 12

Intensity of the first-order waves transmitted (solid curve) and reflected (dashed curve) by the grating (300-nm period). Inset: geometry of one period of the grating.    

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΦapproxDi=ΦexcDi+k=1NakDiφkDi,
εAg(ν)=1+iτωp22πν(1-i2πτν),
H exp-x-x0w2,

Metrics