Abstract

Two rhesus monkeys were subjects in a direction-discrimination task involving moving stimuli defined by either first- or second-order motion. Two different second-order motion stimuli were used: drift-balanced motion consisting of a rectangular field of stationary dots and theta motion consisting of the same rectangular field with dots moving in the direction opposite to that of the object. The two types of stimuli involved different segmentation cues between the moving object and the background: temporal structure of the luminance (flicker) in the case of drift-balanced motion and opposed motion in the case of the theta-motion stimulus. Our monkeys were able to correctly report the direction of each stimulus. Single-unit recordings from the middle temporal (MT) and medial superior temporal (MST) areas revealed that 16 out of 38 neurons (41%) from area MT and 34 out of 68 neurons (50%) from area MST responded in a directionally selective manner to the drift-balanced stimulus. The movement of an object defined by theta motion is not explicitly encoded in the neuronal activity in areas MT or MST. Our results do not support the hypothesis that the neuronal activity in these areas codes for the direction of stimulus movement independent of specific stimulus parameters. Furthermore, our results emphasize the relevance of different segmentation cues between figure and background. Therefore the notion that there are multiple sites responsible for the processing of second-order motion is strongly supported.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Butzer, U. J. Ilg, J. M. Zanker, “Smooth-pursuit eye movements elicited by first-order and second-order motion,” Exp. Brain Res. 115, 61–70 (1997).
    [CrossRef] [PubMed]
  2. A. Lindner, J. I. Ilg, “Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
    [CrossRef] [PubMed]
  3. T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994).
    [CrossRef] [PubMed]
  4. N. E. Scott Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
    [CrossRef]
  5. L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
    [CrossRef]
  6. L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999).
    [CrossRef] [PubMed]
  7. A. T. Smith, M. W. Greenlee, K. D. Singh, F. M. Kraemer, J. Hennig, “The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI),” J. Neurosci. 18, 3816–3830 (1998).
    [PubMed]
  8. J. T. Petersik, “A comparison of varieties of ‘second-order’ motion,” Vision Res. 35, 507–517 (1995).
    [CrossRef] [PubMed]
  9. A. Mikami, W. T. Newsome, R. H. Wurtz, “Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,” J. Neurophysiol. 55, 1308–1327 (1986).
    [PubMed]
  10. M. J. Hawken, A. J. Parker, J. S. Lund, “Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey,” J. Neurosci. 8, 3541–3548 (1988).
    [PubMed]
  11. U. J. Ilg, P. Thier, “Inability of rhesus monkey area V1 to discriminate between self-induced and externally induced retinal image slip,” Eur. J. Neurosci. 8, 1156–1166 (1996).
    [CrossRef] [PubMed]
  12. J. A. Movshon, W. T. Newsome, “Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys,” J. Neurosci. 16, 7733–7741 (1996).
    [PubMed]
  13. J. M. Allman, J. H. Kaas, “Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus),” Brain Res. 35, 89–106 (1971).
    [CrossRef] [PubMed]
  14. S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).
  15. L. G. Ungerleider, R. Desimone, “Cortical connections of visual area MT in the macaque,” J. Comp. Neurol. 248, 190–222 (1986).
    [CrossRef] [PubMed]
  16. S. Celebrini, W. T. Newsome, “Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey,” J. Neurosci. 14, 4109–4124 (1994).
    [PubMed]
  17. A. J. Parker, W. T. Newsome, “Sense and the single neu-ron: probing the physiology of perception,” Annu. Rev. Neurosci. 21, 227–277 (1998).
    [CrossRef]
  18. J. A. Assad, J. H. Maunsell, “Neuronal correlates of inferred motion in primate posterior parietal cortex,” Nature 373, 518–521 (1995).
    [CrossRef] [PubMed]
  19. T. D. Albright, “Form-cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992).
    [CrossRef] [PubMed]
  20. B. J. Geesaman, R. A. Andersen, “The analysis of complex motion patterns by form/cue invariant MSTd neurons,” J. Neurosci. 16, 4716–4732 (1996).
    [PubMed]
  21. A. Chaudhuri, T. D. Albright, “Neuronal responses to edges defined by luminance vs. temporal texture in macaque area V1,” Visual Neurosci. 14, 949–962 (1998).
    [CrossRef]
  22. L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).
  23. I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
    [PubMed]
  24. J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
    [PubMed]
  25. A. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
    [CrossRef] [PubMed]
  26. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
    [CrossRef] [PubMed]
  27. J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
    [CrossRef] [PubMed]
  28. J. Churan, J. U. Ilg, “Does the temporal structure of the background affect the perception of first- and second-order motion? A study in human psychophysics and primate single unit recording,” Soc. Neurosci. Abstr. 26, 671 (2000).
  29. W. T. Newsome, R. H. Wurtz, H. Komatsu, “Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs,” J. Neurophysiol. 60, 604–620 (1988).
    [PubMed]
  30. K. Nakayama, “Biological image motion processing: a review,” Vision Res. 25, 625–660 (1985).
    [CrossRef] [PubMed]
  31. A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
    [CrossRef]
  32. P. Thier, R. G. Erickson, “Responses of visual-tracking neurons from cortical area MST-I to visual, eye and head motion,” Eur. J. Neurosci. 4, 539–553 (1992).
    [CrossRef] [PubMed]

2000 (2)

A. Lindner, J. I. Ilg, “Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
[CrossRef] [PubMed]

J. Churan, J. U. Ilg, “Does the temporal structure of the background affect the perception of first- and second-order motion? A study in human psychophysics and primate single unit recording,” Soc. Neurosci. Abstr. 26, 671 (2000).

1999 (2)

N. E. Scott Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef]

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999).
[CrossRef] [PubMed]

1998 (7)

A. T. Smith, M. W. Greenlee, K. D. Singh, F. M. Kraemer, J. Hennig, “The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI),” J. Neurosci. 18, 3816–3830 (1998).
[PubMed]

L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
[CrossRef]

A. J. Parker, W. T. Newsome, “Sense and the single neu-ron: probing the physiology of perception,” Annu. Rev. Neurosci. 21, 227–277 (1998).
[CrossRef]

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

A. Chaudhuri, T. D. Albright, “Neuronal responses to edges defined by luminance vs. temporal texture in macaque area V1,” Visual Neurosci. 14, 949–962 (1998).
[CrossRef]

L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).

I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
[PubMed]

1997 (1)

F. Butzer, U. J. Ilg, J. M. Zanker, “Smooth-pursuit eye movements elicited by first-order and second-order motion,” Exp. Brain Res. 115, 61–70 (1997).
[CrossRef] [PubMed]

1996 (3)

U. J. Ilg, P. Thier, “Inability of rhesus monkey area V1 to discriminate between self-induced and externally induced retinal image slip,” Eur. J. Neurosci. 8, 1156–1166 (1996).
[CrossRef] [PubMed]

J. A. Movshon, W. T. Newsome, “Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys,” J. Neurosci. 16, 7733–7741 (1996).
[PubMed]

B. J. Geesaman, R. A. Andersen, “The analysis of complex motion patterns by form/cue invariant MSTd neurons,” J. Neurosci. 16, 4716–4732 (1996).
[PubMed]

1995 (2)

J. A. Assad, J. H. Maunsell, “Neuronal correlates of inferred motion in primate posterior parietal cortex,” Nature 373, 518–521 (1995).
[CrossRef] [PubMed]

J. T. Petersik, “A comparison of varieties of ‘second-order’ motion,” Vision Res. 35, 507–517 (1995).
[CrossRef] [PubMed]

1994 (2)

T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994).
[CrossRef] [PubMed]

S. Celebrini, W. T. Newsome, “Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey,” J. Neurosci. 14, 4109–4124 (1994).
[PubMed]

1993 (1)

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
[CrossRef] [PubMed]

1992 (3)

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

P. Thier, R. G. Erickson, “Responses of visual-tracking neurons from cortical area MST-I to visual, eye and head motion,” Eur. J. Neurosci. 4, 539–553 (1992).
[CrossRef] [PubMed]

T. D. Albright, “Form-cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992).
[CrossRef] [PubMed]

1988 (3)

M. J. Hawken, A. J. Parker, J. S. Lund, “Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey,” J. Neurosci. 8, 3541–3548 (1988).
[PubMed]

W. T. Newsome, R. H. Wurtz, H. Komatsu, “Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs,” J. Neurophysiol. 60, 604–620 (1988).
[PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
[CrossRef] [PubMed]

1986 (2)

L. G. Ungerleider, R. Desimone, “Cortical connections of visual area MT in the macaque,” J. Comp. Neurol. 248, 190–222 (1986).
[CrossRef] [PubMed]

A. Mikami, W. T. Newsome, R. H. Wurtz, “Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,” J. Neurophysiol. 55, 1308–1327 (1986).
[PubMed]

1985 (1)

K. Nakayama, “Biological image motion processing: a review,” Vision Res. 25, 625–660 (1985).
[CrossRef] [PubMed]

1984 (1)

A. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

1974 (1)

S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).

1971 (1)

J. M. Allman, J. H. Kaas, “Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus),” Brain Res. 35, 89–106 (1971).
[CrossRef] [PubMed]

Albright, T. D.

A. Chaudhuri, T. D. Albright, “Neuronal responses to edges defined by luminance vs. temporal texture in macaque area V1,” Visual Neurosci. 14, 949–962 (1998).
[CrossRef]

T. D. Albright, “Form-cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992).
[CrossRef] [PubMed]

Allman, J. M.

J. M. Allman, J. H. Kaas, “Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus),” Brain Res. 35, 89–106 (1971).
[CrossRef] [PubMed]

Andersen, R. A.

B. J. Geesaman, R. A. Andersen, “The analysis of complex motion patterns by form/cue invariant MSTd neurons,” J. Neurosci. 16, 4716–4732 (1996).
[PubMed]

Assad, J. A.

J. A. Assad, J. H. Maunsell, “Neuronal correlates of inferred motion in primate posterior parietal cortex,” Nature 373, 518–521 (1995).
[CrossRef] [PubMed]

Baker, C. L.

I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
[PubMed]

Butzer, F.

F. Butzer, U. J. Ilg, J. M. Zanker, “Smooth-pursuit eye movements elicited by first-order and second-order motion,” Exp. Brain Res. 115, 61–70 (1997).
[CrossRef] [PubMed]

Cavanagh, P.

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

Celebrini, S.

S. Celebrini, W. T. Newsome, “Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey,” J. Neurosci. 14, 4109–4124 (1994).
[PubMed]

Chaudhuri, A.

A. Chaudhuri, T. D. Albright, “Neuronal responses to edges defined by luminance vs. temporal texture in macaque area V1,” Visual Neurosci. 14, 949–962 (1998).
[CrossRef]

Chubb, C.

Churan, J.

J. Churan, J. U. Ilg, “Does the temporal structure of the background affect the perception of first- and second-order motion? A study in human psychophysics and primate single unit recording,” Soc. Neurosci. Abstr. 26, 671 (2000).

Cowey, A.

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999).
[CrossRef] [PubMed]

L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
[CrossRef]

Desimone, R.

L. G. Ungerleider, R. Desimone, “Cortical connections of visual area MT in the macaque,” J. Comp. Neurol. 248, 190–222 (1986).
[CrossRef] [PubMed]

DeYoe, E. A.

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

Erickson, R. G.

P. Thier, R. G. Erickson, “Responses of visual-tracking neurons from cortical area MST-I to visual, eye and head motion,” Eur. J. Neurosci. 4, 539–553 (1992).
[CrossRef] [PubMed]

Fox, J. M.

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

Geesaman, B. J.

B. J. Geesaman, R. A. Andersen, “The analysis of complex motion patterns by form/cue invariant MSTd neurons,” J. Neurosci. 16, 4716–4732 (1996).
[PubMed]

Georgeson, M. A.

N. E. Scott Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef]

Greenlee, M. W.

A. T. Smith, M. W. Greenlee, K. D. Singh, F. M. Kraemer, J. Hennig, “The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI),” J. Neurosci. 18, 3816–3830 (1998).
[PubMed]

Hawken, M. J.

M. J. Hawken, A. J. Parker, J. S. Lund, “Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey,” J. Neurosci. 8, 3541–3548 (1988).
[PubMed]

Hennig, J.

A. T. Smith, M. W. Greenlee, K. D. Singh, F. M. Kraemer, J. Hennig, “The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI),” J. Neurosci. 18, 3816–3830 (1998).
[PubMed]

Ilg, J. I.

A. Lindner, J. I. Ilg, “Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
[CrossRef] [PubMed]

Ilg, J. U.

J. Churan, J. U. Ilg, “Does the temporal structure of the background affect the perception of first- and second-order motion? A study in human psychophysics and primate single unit recording,” Soc. Neurosci. Abstr. 26, 671 (2000).

Ilg, U. J.

F. Butzer, U. J. Ilg, J. M. Zanker, “Smooth-pursuit eye movements elicited by first-order and second-order motion,” Exp. Brain Res. 115, 61–70 (1997).
[CrossRef] [PubMed]

U. J. Ilg, P. Thier, “Inability of rhesus monkey area V1 to discriminate between self-induced and externally induced retinal image slip,” Eur. J. Neurosci. 8, 1156–1166 (1996).
[CrossRef] [PubMed]

Kaas, J. H.

J. M. Allman, J. H. Kaas, “Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus),” Brain Res. 35, 89–106 (1971).
[CrossRef] [PubMed]

Kennedy, D.

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999).
[CrossRef] [PubMed]

L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
[CrossRef]

Knierim, J. J.

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

Koenderink, J. J.

A. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

Komatsu, H.

W. T. Newsome, R. H. Wurtz, H. Komatsu, “Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs,” J. Neurophysiol. 60, 604–620 (1988).
[PubMed]

Kraemer, F. M.

A. T. Smith, M. W. Greenlee, K. D. Singh, F. M. Kraemer, J. Hennig, “The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI),” J. Neurosci. 18, 3816–3830 (1998).
[PubMed]

Ledgeway, T.

T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994).
[CrossRef] [PubMed]

Lelkens, A. M.

A. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

Lindner, A.

A. Lindner, J. I. Ilg, “Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
[CrossRef] [PubMed]

Lund, J. S.

M. J. Hawken, A. J. Parker, J. S. Lund, “Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey,” J. Neurosci. 8, 3541–3548 (1988).
[PubMed]

Makris, N.

L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
[CrossRef]

Mareschal, I.

I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
[PubMed]

Maunsell, J. H.

J. A. Assad, J. H. Maunsell, “Neuronal correlates of inferred motion in primate posterior parietal cortex,” Nature 373, 518–521 (1995).
[CrossRef] [PubMed]

Mikami, A.

A. Mikami, W. T. Newsome, R. H. Wurtz, “Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,” J. Neurophysiol. 55, 1308–1327 (1986).
[PubMed]

Movshon, J. A.

L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).

J. A. Movshon, W. T. Newsome, “Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys,” J. Neurosci. 16, 7733–7741 (1996).
[PubMed]

Nakayama, K.

K. Nakayama, “Biological image motion processing: a review,” Vision Res. 25, 625–660 (1985).
[CrossRef] [PubMed]

Newsome, W. T.

A. J. Parker, W. T. Newsome, “Sense and the single neu-ron: probing the physiology of perception,” Annu. Rev. Neurosci. 21, 227–277 (1998).
[CrossRef]

J. A. Movshon, W. T. Newsome, “Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys,” J. Neurosci. 16, 7733–7741 (1996).
[PubMed]

S. Celebrini, W. T. Newsome, “Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey,” J. Neurosci. 14, 4109–4124 (1994).
[PubMed]

W. T. Newsome, R. H. Wurtz, H. Komatsu, “Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs,” J. Neurophysiol. 60, 604–620 (1988).
[PubMed]

A. Mikami, W. T. Newsome, R. H. Wurtz, “Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,” J. Neurophysiol. 55, 1308–1327 (1986).
[PubMed]

O’Keefe, L. P.

L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).

Olavarria, J. F.

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

Parker, A. J.

A. J. Parker, W. T. Newsome, “Sense and the single neu-ron: probing the physiology of perception,” Annu. Rev. Neurosci. 21, 227–277 (1998).
[CrossRef]

M. J. Hawken, A. J. Parker, J. S. Lund, “Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey,” J. Neurosci. 8, 3541–3548 (1988).
[PubMed]

Petersik, J. T.

J. T. Petersik, “A comparison of varieties of ‘second-order’ motion,” Vision Res. 35, 507–517 (1995).
[CrossRef] [PubMed]

Scott Samuel, N. E.

N. E. Scott Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef]

Seiffert, A. E.

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

Singh, K. D.

A. T. Smith, M. W. Greenlee, K. D. Singh, F. M. Kraemer, J. Hennig, “The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI),” J. Neurosci. 18, 3816–3830 (1998).
[PubMed]

Smith, A. T.

A. T. Smith, M. W. Greenlee, K. D. Singh, F. M. Kraemer, J. Hennig, “The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI),” J. Neurosci. 18, 3816–3830 (1998).
[PubMed]

T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994).
[CrossRef] [PubMed]

Sperling, G.

Thier, P.

U. J. Ilg, P. Thier, “Inability of rhesus monkey area V1 to discriminate between self-induced and externally induced retinal image slip,” Eur. J. Neurosci. 8, 1156–1166 (1996).
[CrossRef] [PubMed]

P. Thier, R. G. Erickson, “Responses of visual-tracking neurons from cortical area MST-I to visual, eye and head motion,” Eur. J. Neurosci. 4, 539–553 (1992).
[CrossRef] [PubMed]

Ungerleider, L. G.

L. G. Ungerleider, R. Desimone, “Cortical connections of visual area MT in the macaque,” J. Comp. Neurol. 248, 190–222 (1986).
[CrossRef] [PubMed]

Vaina, L. M.

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999).
[CrossRef] [PubMed]

L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
[CrossRef]

van Essen, D. C.

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

Wurtz, R. H.

W. T. Newsome, R. H. Wurtz, H. Komatsu, “Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs,” J. Neurophysiol. 60, 604–620 (1988).
[PubMed]

A. Mikami, W. T. Newsome, R. H. Wurtz, “Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,” J. Neurophysiol. 55, 1308–1327 (1986).
[PubMed]

Zanker, J. M.

F. Butzer, U. J. Ilg, J. M. Zanker, “Smooth-pursuit eye movements elicited by first-order and second-order motion,” Exp. Brain Res. 115, 61–70 (1997).
[CrossRef] [PubMed]

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
[CrossRef] [PubMed]

Zeki, S. M.

S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).

Annu. Rev. Neurosci. (1)

A. J. Parker, W. T. Newsome, “Sense and the single neu-ron: probing the physiology of perception,” Annu. Rev. Neurosci. 21, 227–277 (1998).
[CrossRef]

Brain Res. (1)

J. M. Allman, J. H. Kaas, “Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus),” Brain Res. 35, 89–106 (1971).
[CrossRef] [PubMed]

Eur. J. Neurosci. (2)

U. J. Ilg, P. Thier, “Inability of rhesus monkey area V1 to discriminate between self-induced and externally induced retinal image slip,” Eur. J. Neurosci. 8, 1156–1166 (1996).
[CrossRef] [PubMed]

P. Thier, R. G. Erickson, “Responses of visual-tracking neurons from cortical area MST-I to visual, eye and head motion,” Eur. J. Neurosci. 4, 539–553 (1992).
[CrossRef] [PubMed]

Exp. Brain Res. (2)

F. Butzer, U. J. Ilg, J. M. Zanker, “Smooth-pursuit eye movements elicited by first-order and second-order motion,” Exp. Brain Res. 115, 61–70 (1997).
[CrossRef] [PubMed]

A. Lindner, J. I. Ilg, “Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
[CrossRef] [PubMed]

Hum. Brain Mapp. (1)

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Brain Mapp. 7, 67–77 (1999).
[CrossRef] [PubMed]

J. Comp. Neurol. (1)

L. G. Ungerleider, R. Desimone, “Cortical connections of visual area MT in the macaque,” J. Comp. Neurol. 248, 190–222 (1986).
[CrossRef] [PubMed]

J. Neurophysiol. (4)

A. Mikami, W. T. Newsome, R. H. Wurtz, “Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,” J. Neurophysiol. 55, 1308–1327 (1986).
[PubMed]

I. Mareschal, C. L. Baker, “Temporal and spatial response to second-order stimuli in cat area 18,” J. Neurophysiol. 80, 2811–2823 (1998).
[PubMed]

J. F. Olavarria, E. A. DeYoe, J. J. Knierim, J. M. Fox, D. C. van Essen, “Neural responses to visual texture patterns in middle temporal area of the macaque monkey,” J. Neurophysiol. 68, 164–181 (1992).
[PubMed]

W. T. Newsome, R. H. Wurtz, H. Komatsu, “Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs,” J. Neurophysiol. 60, 604–620 (1988).
[PubMed]

J. Neurosci. (5)

B. J. Geesaman, R. A. Andersen, “The analysis of complex motion patterns by form/cue invariant MSTd neurons,” J. Neurosci. 16, 4716–4732 (1996).
[PubMed]

M. J. Hawken, A. J. Parker, J. S. Lund, “Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey,” J. Neurosci. 8, 3541–3548 (1988).
[PubMed]

A. T. Smith, M. W. Greenlee, K. D. Singh, F. M. Kraemer, J. Hennig, “The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI),” J. Neurosci. 18, 3816–3830 (1998).
[PubMed]

S. Celebrini, W. T. Newsome, “Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey,” J. Neurosci. 14, 4109–4124 (1994).
[PubMed]

J. A. Movshon, W. T. Newsome, “Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys,” J. Neurosci. 16, 7733–7741 (1996).
[PubMed]

J. Opt. Soc. Am. A (1)

J. Physiol. (London) (1)

S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).

Nature (1)

J. A. Assad, J. H. Maunsell, “Neuronal correlates of inferred motion in primate posterior parietal cortex,” Nature 373, 518–521 (1995).
[CrossRef] [PubMed]

Science (1)

T. D. Albright, “Form-cue invariant motion processing in primate visual cortex,” Science 255, 1141–1143 (1992).
[CrossRef] [PubMed]

Soc. Neurosci. Abstr. (1)

J. Churan, J. U. Ilg, “Does the temporal structure of the background affect the perception of first- and second-order motion? A study in human psychophysics and primate single unit recording,” Soc. Neurosci. Abstr. 26, 671 (2000).

Vision Res. (7)

K. Nakayama, “Biological image motion processing: a review,” Vision Res. 25, 625–660 (1985).
[CrossRef] [PubMed]

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

A. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
[CrossRef] [PubMed]

J. T. Petersik, “A comparison of varieties of ‘second-order’ motion,” Vision Res. 35, 507–517 (1995).
[CrossRef] [PubMed]

T. Ledgeway, A. T. Smith, “Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision,” Vision Res. 34, 2727–2740 (1994).
[CrossRef] [PubMed]

N. E. Scott Samuel, M. A. Georgeson, “Does early non-linearity account for second-order motion?” Vision Res. 39, 2853–2865 (1999).
[CrossRef]

Visual Neurosci. (3)

L. M. Vaina, N. Makris, D. Kennedy, A. Cowey, “The selective impairment of the perception of first-order motion by unilateral cortical brain damage,” Visual Neurosci. 15, 333–348 (1998).
[CrossRef]

A. Chaudhuri, T. D. Albright, “Neuronal responses to edges defined by luminance vs. temporal texture in macaque area V1,” Visual Neurosci. 14, 949–962 (1998).
[CrossRef]

L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Space–time diagrams of the different motion stimuli used in the experiments. We applied only horizontal moving stimuli, so the space axis is equivalent to horizontal position. (a) fF, (b) Db (c) Th-stat, (d) Th-dyn. The white arrows in the upper-right corner of each picture indicate the direction of object movement; the black arrows in the lower-left corner indicate the direction of dot movement if present. For reasons of clarity, the density of dots in this figure is 50%, while in the experimental display the density was only 2%.

Fig. 2
Fig. 2

Sketch of a single trial. Each trial was subdivided into four phases. The monkey had to fixate a red dot in the first three phases, and in the fourth phase he reported the perceived direction of stimulus motion by a saccade toward the target located in the direction of the movement of the previously displayed stimulus. The base activity of a neuron was obtained during the last 300-ms interval of fixation 1. The neuronal response to the stimulus was obtained during the stimulus presentation in a time window of 1000 ms.

Fig. 3
Fig. 3

Percentages of correct responses of monkeys F and G for the four different motion stimuli, as indicated. Effects of monkey, stimulus type, and combination of the factors are significant (two-factorial analysis of variance, p<0.001, n=64).

Fig. 4
Fig. 4

Description of the data sample. (a) Histogram of preferred directions of all recorded neurons. Since the values for neurons recorded from areas MT and MST were not statistically different, we pooled the values obtained from the two areas. 0° represents rightward motion, 90° upward motion. (b) Histogram of tuning widths of all recorded neurons. (c) Histogram of directional selectivity to horizontal stimulus movement expressed as DI. (d) Ratios of area to eccentricity of receptive fields of neurons recorded from areas MT and MST in monkey G. Differences between the two areas were significant (t-test).

Fig. 5
Fig. 5

Drawings of four parasagittal sections of monkey F. The borders of area MT were plotted on the basis of dense myelination. The sites where MT and MST neurons were recorded are labeled. The direction of microelectrode penetrations is also shown.  

Fig. 6
Fig. 6

Response of a typical MT neuron during discrimination of a first-order stimulus. From top to bottom, the position of stimulus and response targets, eye position, and neuronal activity as raster and peri-stimulus-time-histogram (PSTH) are shown. The time of onset of saccades, which is taken as the reaction time, is marked with an x in the raster display. (a) The stimulus moved in the preferred direction; (b) the stimulus moved in the nonpreferred direction. The thick horizontal line in the PSTH marks the time interval in which the response to the stimulus was determined. gh37-2 is the designation of the individual neuron.

Fig. 7
Fig. 7

Distribution of directional selectivity of the responses elicited by the fF stimulus expressed as DI (n=106).

Fig. 8
Fig. 8

Responses of a typical MST neuron to a moving first-order and second-order (Db) stimulus shown as raster and PSTH. (a) The fF stimulus moved in the preferred direction; (b) the fF stimulus moved in the nonpreferred direction. (c) and (d) The Db stimulus moved in the preferred and the nonpreferred directions, respectively. Note that the directional selectivity was lower in the case of the Db stimulus than for the fF stimulus (see Fig. 6 for details).

Fig. 9
Fig. 9

Comparison of directional selectivity obtained by fF and Db stimuli. DI elicited by Db stimuli (mean 0.24) was generally lower (on average by 53%) than that elicited by fF stimuli (mean 0.51). The legend shows whether a specific value of DI was significant (t-test of the responses between the preferred and the nonpreferred directions).

Fig. 10
Fig. 10

Typical MT neuron showing different responses to fF, Th-stat and Th-dyn stimuli (see Fig. 6 for details).

Fig. 11
Fig. 11

Directional selectivity elicited by Th-dyn (mean -0.37) compared with fF stimuli (mean 0.51). To emphasize the inversion of the preferred direction in the case of the Th-dyn stimulus, these values of DI were multiplied by -1 when the preferred direction was different between fF and Th-dyn stimuli. The DI values of the two stimuli correlate (r=-0.64, p<0.001). The legend shows which DI values were significant (t test of the responses in preferred and the nonpreferred directions).

Fig. 12
Fig. 12

Modulation of activity (MI) obtained by theta-motion stimuli with (a) Th-stat and (b) Th-dyn stimuli. Dashed lines represent the mean of each distribution. The legend tells which values of MI were significant (t test of the stimulus response and base activity). The inset in (b) shows the MI values of neurons that had a preferred direction within a range of ±20° from the horizontal.

Fig. 13
Fig. 13

Comparison of the responses recorded from neurons in areas MT and MST. (a) DI elicited by fF and Db stimuli; (b) MI caused by Th-stat and Th-dyn.

Tables (1)

Tables Icon

Table 1 Combinations of Segmentation Cues between Motion Stimuli and Background

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

DI = 1- activityinnonpreferreddirectionactivityinpreferreddirection .
MI = activityduringstimuluspresentationbaseactivity .

Metrics