Abstract

We studied smooth-pursuit eye movements elicited by first- and second-order motion stimuli. Stimuli were random dot fields whose contrast was modulated by a Gaussian window with a space constant of 0.5°. For the first-order stimuli, the random dots simply moved across the screen at the same speed as the window; for the second-order stimuli the window moved across stationary or randomly flickering dots. Additional stimuli which combined first- and second-order motion cues were used to determine the degree and type of interaction found between the two types of motion stimuli. Measurements were made at slow (1°/s) and moderate (6°/s) target speeds. At a velocity of 1°/s the initiation, transition, and steady-state phases of smooth pursuit in response to second-order motion targets are severely affected when compared with the smooth pursuit of first-order motion targets. At a velocity of 6°/s there is a small but significant deficit in steady-state pursuit of second-order motion targets but not much effect on pursuit initiation.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Dursteler, R. H. Wurtz, W. T. Newsome, “Directional pursuit deficits following lesions of the foveal representation of the superior temporal sulcus of the macaque monkey,” J. Neurophysiol. 57, 1262–1287 (1987).
  2. M. R. Dursteler, R. H. Wurtz, “Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST,” J. Neurophysiol. 60, 950–965 (1988).
  3. J. C. Lynch, “Frontal eye field lesions in monkeys disrupt visual pursuit,” Exp. Brain Res. 68, 437–441 (1987).
    [CrossRef] [PubMed]
  4. E. G. Keating, “Frontal eye field lesions impair predictive and visually guided pursuit eye movements,” Exp. Brain Res. 86, 311–323 (1991).
    [CrossRef]
  5. J. P. Gottlieb, M. G. MacAvoy, C. J. Bruce, “Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field,” J. Neurophysiol. 72, 1634–1653 (1994).
    [PubMed]
  6. S. J. Heinen, “Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements,” Exp. Brain Res. 104, 357–361 (1995).
    [CrossRef] [PubMed]
  7. S. J. Heinen, M. Liu, “Single-neuron activity in the dorsomedial frontal cortex during smooth-pursuit eye movements to predictable target motion,” Visual Neurosci. 14, 853–865 (1997).
    [CrossRef]
  8. S. Heywood, J. Churcher, “Eye movements and the after-image—I. Tracking the after-image,” Vision Res. 11, 1163–1167 (1971).
    [CrossRef] [PubMed]
  9. S. Yasui, L. R. Young, “Perceived visual motion as effective stimulus to pursuit eye movement system,” Science 190, 906–908 (1975).
    [CrossRef] [PubMed]
  10. M. Steinbach, “Pursuing the perceptual rather than the retinal stimulus,” Vision Res. 16, 1371–1376 (1976).
    [CrossRef] [PubMed]
  11. M. J. Morgan, D. F. Turnbull, “Smooth eye tracking and the perception of motion in the absence of real motion,” Vision Res. 18, 1053–1059 (1978).
    [CrossRef]
  12. H. J. Wyatt, J. Pola, “The role of perceived motion in smooth pursuit eye movements,” Vision Res. 19, 613–618 (1979).
    [CrossRef] [PubMed]
  13. A. Mack, R. Fendrich, J. Pleune, “Smooth pursuit eye movements: Is perceived motion necessary?” Science 203, 1361–1363 (1979).
    [CrossRef] [PubMed]
  14. A. Mack, R. Fendrich, E. Wong, “Is perceived motion a stimulus for smooth pursuit?” Vision Res. 22, 77–88 (1982).
    [CrossRef]
  15. E. Kowler, S. P. McKee, “Sensitivity of smooth eye movement to small differences in target velocity,” Vision Res. 27, 993–1015 (1987).
    [CrossRef] [PubMed]
  16. B. B. Beutter, L. S. Stone, “Human motion perception and smooth eye movements show similar directional biases for elongated apertures,” Vision Res. 38, 1273–1286 (1998).
    [CrossRef] [PubMed]
  17. B. B. Beutter, L. S. Stone, “Motion coherence affects human perception and pursuit similarly,” Visual Neurosci. 17, 139–153 (2000).
    [CrossRef]
  18. L. S. Stone, B. B. Beutter, J. Lorenceau, “Visual motion integration for perception and pursuit,” Perception 29, 771–787 (2000).
    [CrossRef] [PubMed]
  19. P. Cavanagh, G. Mather, “Motion: the long and the short of it,” Spatial Vision 4, 103–129 (1989).
    [CrossRef]
  20. A. T. Smith, “The detection of second-order motion,” in Visual Detection of Motion, A. T. Smith, R. J. Snowden, eds. (Academic, London, 1994), pp. 145–176.
  21. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
    [CrossRef] [PubMed]
  22. J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 353–369 (1993).
    [CrossRef]
  23. E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [CrossRef] [PubMed]
  24. J. P. H. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
    [CrossRef] [PubMed]
  25. A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
    [CrossRef] [PubMed]
  26. F. Butzer, U. J. Ilg, J. M. Zanker, “Smooth pursuit eye movements elicited by first- and second-order motion,” Exp. Brain Res. 115, 61–70 (1997).
    [CrossRef] [PubMed]
  27. A. Lindner, U. J. Ilg, “Initiation of smooth pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
    [CrossRef] [PubMed]
  28. L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
    [CrossRef]
  29. C. Rashbass, “The relationship between saccadic and smooth tracking eye movements,” J. Physiol. (London) 159, 326–338 (1961).
  30. S. G. Lisberger, L. E. Westbrook, “Properties of visual inputs that initiate horizontal smooth pursuit eye movements in monkeys,” J. Neurosci. 5, 1662–1673 (1985).
    [PubMed]
  31. E. L. Keller, N. S. Kahn, “Smooth-pursuit initiation in the presence of a textured background in the monkey,” Vision Res. 26, 943–955 (1986).
    [CrossRef]
  32. M. J. Hawken, K. R. Gegenfurtner, “Motion of second-order stimuli: smooth pursuit eye movements and perceived speed,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S741 (1996).
  33. H. Crane, C. Steele, “Accurate three-dimensional eye tracker,” Appl. Opt. 17, 691–705 (1978).
    [CrossRef] [PubMed]
  34. D. L. Ringach, M. J. Hawken, R. M. Shapley, “Binocular eye movements caused by the perception of three-dimensional structure from motion,” Vision Res. 36, 1479–1492 (1996).
    [CrossRef] [PubMed]
  35. H. Deubel, B. Bridgeman, “Fourth purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades,” Vision Res. 35, 529–538 (1995).
    [CrossRef] [PubMed]
  36. J. R. Carl, R. S. Gellman, “Human smooth pursuit: stimulus-dependent responses,” J. Neurophysiol. 57, 1446–1463 (1987).
    [PubMed]
  37. E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. I. Periodic target steps,” Vision Res. 19, 619–632 (1979).
    [CrossRef] [PubMed]
  38. E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. II. Single target displacements,” Vision Res. 19, 633–646 (1979).
    [CrossRef] [PubMed]
  39. E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. III. Guessing unpredictable target displacements,” Vision Res. 21, 191–203 (1981).
    [CrossRef]
  40. E. Kowler, “The role of visual and cognitive processes in the control of eye movement,” in Eye Movements and Their Role in Visual and Cognitive Processes, E. Kowler, ed. [Elsevier Science Publishers BV (Biomedical Division), 1990], pp. 1–70.
  41. R. J. Krauzlis, “The visual drive for smooth pursuit eye movements,” in Visual Detection of Motion, A. T. Smith, R. J. Snowden, eds. (Academic, London, 1994), pp. 437–473.
  42. S. G. Lisberger, E. J. Morris, L. Tychsen, “Visual motion processing and sensorimotor integration for smooth pursuit eye movements,” Annu. Rev. Neurosci. 10, 97–129 (1987).
    [CrossRef]
  43. F. A. Miles, K. Kawano, L. M. Optican, “Short-latency ocular-following responses of monkey. I. Dependence on temporospatial properties of the visual input,” J. Neurophysiol. 56, 1321–1354 (1986).
    [PubMed]
  44. R. S. Gellman, J. R. Carl, “Motion processing for saccadic eye movements in humans,” Exp. Brain Res. 84, 660–667 (1991).
    [CrossRef] [PubMed]
  45. A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
    [CrossRef]
  46. T. E. Reisbeck, K. R. Gegenfurtner, “Velocity tuned mechanisms in human motion perception,” Vision Res. 39, 3267–3286 (1999).
    [CrossRef]
  47. H. G. Kimmig, F. A. Miles, U. Schwarz, “Effects of stationary textured backgrounds on the initiation of pursuit eye movements in monkeys,” J. Neurophysiol. 68, 2147–2164 (1992).
    [PubMed]
  48. R. E. Yee, S. A. Daniels, O. W. Jones, R. W. Baloh, V. Honrubia, “Effects of an optokinetic background on pursuit eye movements,” Invest. Ophthalmol. Visual Sci. 24, 1115–1122 (1983).
  49. H. Collewijn, E. P. Tamminga, “Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds,” J. Physiol. 351, 217–250 (1984).
    [PubMed]
  50. H. Collewijn, E. P. Tamminga, “Human fixation and pursuit in normal and open-loop conditions: effects of central and peripheral retinal targets,” J. Physiol. 379, 109–129 (1986).
    [PubMed]
  51. E. Kowler, J. van der Steen, E. P. Tamminga, H. Collewijn, “Voluntary selection of the target for smooth eye movement in the presence of superimposed, full-field stationary and moving stimuli,” Vision Res. 24, 1789–1798 (1984).
    [CrossRef] [PubMed]
  52. E. Kowler, B. J. Murphy, R. M. Steinman, “Velocity matching during smooth pursuit of different targets on different backgrounds,” Vision Res. 18, 603–605 (1978).
    [CrossRef]
  53. T. D. Albright, “Form–cue invariant motion processing in primate visual cortex,” Science 225, 1141–1143 (1992).
    [CrossRef]
  54. K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: influ-ence of contrast and temporal frequency,” Vision Res. 36, 1281–1289 (1996).
    [CrossRef] [PubMed]
  55. H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
    [CrossRef]
  56. K. R. Gegenfurtner, M. J. Hawken, “Interaction of colour and motion in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
    [CrossRef] [PubMed]
  57. P. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
    [CrossRef] [PubMed]
  58. L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
    [CrossRef] [PubMed]

2000

B. B. Beutter, L. S. Stone, “Motion coherence affects human perception and pursuit similarly,” Visual Neurosci. 17, 139–153 (2000).
[CrossRef]

L. S. Stone, B. B. Beutter, J. Lorenceau, “Visual motion integration for perception and pursuit,” Perception 29, 771–787 (2000).
[CrossRef] [PubMed]

A. Lindner, U. J. Ilg, “Initiation of smooth pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
[CrossRef] [PubMed]

1999

T. E. Reisbeck, K. R. Gegenfurtner, “Velocity tuned mechanisms in human motion perception,” Vision Res. 39, 3267–3286 (1999).
[CrossRef]

1998

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

B. B. Beutter, L. S. Stone, “Human motion perception and smooth eye movements show similar directional biases for elongated apertures,” Vision Res. 38, 1273–1286 (1998).
[CrossRef] [PubMed]

1997

S. J. Heinen, M. Liu, “Single-neuron activity in the dorsomedial frontal cortex during smooth-pursuit eye movements to predictable target motion,” Visual Neurosci. 14, 853–865 (1997).
[CrossRef]

F. Butzer, U. J. Ilg, J. M. Zanker, “Smooth pursuit eye movements elicited by first- and second-order motion,” Exp. Brain Res. 115, 61–70 (1997).
[CrossRef] [PubMed]

1996

M. J. Hawken, K. R. Gegenfurtner, “Motion of second-order stimuli: smooth pursuit eye movements and perceived speed,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S741 (1996).

K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: influ-ence of contrast and temporal frequency,” Vision Res. 36, 1281–1289 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Interaction of colour and motion in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
[CrossRef] [PubMed]

D. L. Ringach, M. J. Hawken, R. M. Shapley, “Binocular eye movements caused by the perception of three-dimensional structure from motion,” Vision Res. 36, 1479–1492 (1996).
[CrossRef] [PubMed]

1995

H. Deubel, B. Bridgeman, “Fourth purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades,” Vision Res. 35, 529–538 (1995).
[CrossRef] [PubMed]

S. J. Heinen, “Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements,” Exp. Brain Res. 104, 357–361 (1995).
[CrossRef] [PubMed]

1994

J. P. Gottlieb, M. G. MacAvoy, C. J. Bruce, “Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field,” J. Neurophysiol. 72, 1634–1653 (1994).
[PubMed]

1993

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 353–369 (1993).
[CrossRef]

1992

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

T. D. Albright, “Form–cue invariant motion processing in primate visual cortex,” Science 225, 1141–1143 (1992).
[CrossRef]

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

H. G. Kimmig, F. A. Miles, U. Schwarz, “Effects of stationary textured backgrounds on the initiation of pursuit eye movements in monkeys,” J. Neurophysiol. 68, 2147–2164 (1992).
[PubMed]

1991

R. S. Gellman, J. R. Carl, “Motion processing for saccadic eye movements in humans,” Exp. Brain Res. 84, 660–667 (1991).
[CrossRef] [PubMed]

E. G. Keating, “Frontal eye field lesions impair predictive and visually guided pursuit eye movements,” Exp. Brain Res. 86, 311–323 (1991).
[CrossRef]

1989

P. Cavanagh, G. Mather, “Motion: the long and the short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef]

1988

M. R. Dursteler, R. H. Wurtz, “Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST,” J. Neurophysiol. 60, 950–965 (1988).

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2006 (1988).
[CrossRef] [PubMed]

1987

J. C. Lynch, “Frontal eye field lesions in monkeys disrupt visual pursuit,” Exp. Brain Res. 68, 437–441 (1987).
[CrossRef] [PubMed]

M. R. Dursteler, R. H. Wurtz, W. T. Newsome, “Directional pursuit deficits following lesions of the foveal representation of the superior temporal sulcus of the macaque monkey,” J. Neurophysiol. 57, 1262–1287 (1987).

E. Kowler, S. P. McKee, “Sensitivity of smooth eye movement to small differences in target velocity,” Vision Res. 27, 993–1015 (1987).
[CrossRef] [PubMed]

S. G. Lisberger, E. J. Morris, L. Tychsen, “Visual motion processing and sensorimotor integration for smooth pursuit eye movements,” Annu. Rev. Neurosci. 10, 97–129 (1987).
[CrossRef]

J. R. Carl, R. S. Gellman, “Human smooth pursuit: stimulus-dependent responses,” J. Neurophysiol. 57, 1446–1463 (1987).
[PubMed]

1986

F. A. Miles, K. Kawano, L. M. Optican, “Short-latency ocular-following responses of monkey. I. Dependence on temporospatial properties of the visual input,” J. Neurophysiol. 56, 1321–1354 (1986).
[PubMed]

H. Collewijn, E. P. Tamminga, “Human fixation and pursuit in normal and open-loop conditions: effects of central and peripheral retinal targets,” J. Physiol. 379, 109–129 (1986).
[PubMed]

E. L. Keller, N. S. Kahn, “Smooth-pursuit initiation in the presence of a textured background in the monkey,” Vision Res. 26, 943–955 (1986).
[CrossRef]

1985

1984

E. Kowler, J. van der Steen, E. P. Tamminga, H. Collewijn, “Voluntary selection of the target for smooth eye movement in the presence of superimposed, full-field stationary and moving stimuli,” Vision Res. 24, 1789–1798 (1984).
[CrossRef] [PubMed]

H. Collewijn, E. P. Tamminga, “Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds,” J. Physiol. 351, 217–250 (1984).
[PubMed]

1983

R. E. Yee, S. A. Daniels, O. W. Jones, R. W. Baloh, V. Honrubia, “Effects of an optokinetic background on pursuit eye movements,” Invest. Ophthalmol. Visual Sci. 24, 1115–1122 (1983).

1982

A. Mack, R. Fendrich, E. Wong, “Is perceived motion a stimulus for smooth pursuit?” Vision Res. 22, 77–88 (1982).
[CrossRef]

P. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

1981

E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. III. Guessing unpredictable target displacements,” Vision Res. 21, 191–203 (1981).
[CrossRef]

1979

E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. I. Periodic target steps,” Vision Res. 19, 619–632 (1979).
[CrossRef] [PubMed]

E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. II. Single target displacements,” Vision Res. 19, 633–646 (1979).
[CrossRef] [PubMed]

H. J. Wyatt, J. Pola, “The role of perceived motion in smooth pursuit eye movements,” Vision Res. 19, 613–618 (1979).
[CrossRef] [PubMed]

A. Mack, R. Fendrich, J. Pleune, “Smooth pursuit eye movements: Is perceived motion necessary?” Science 203, 1361–1363 (1979).
[CrossRef] [PubMed]

1978

M. J. Morgan, D. F. Turnbull, “Smooth eye tracking and the perception of motion in the absence of real motion,” Vision Res. 18, 1053–1059 (1978).
[CrossRef]

E. Kowler, B. J. Murphy, R. M. Steinman, “Velocity matching during smooth pursuit of different targets on different backgrounds,” Vision Res. 18, 603–605 (1978).
[CrossRef]

H. Crane, C. Steele, “Accurate three-dimensional eye tracker,” Appl. Opt. 17, 691–705 (1978).
[CrossRef] [PubMed]

1976

M. Steinbach, “Pursuing the perceptual rather than the retinal stimulus,” Vision Res. 16, 1371–1376 (1976).
[CrossRef] [PubMed]

1975

S. Yasui, L. R. Young, “Perceived visual motion as effective stimulus to pursuit eye movement system,” Science 190, 906–908 (1975).
[CrossRef] [PubMed]

1971

S. Heywood, J. Churcher, “Eye movements and the after-image—I. Tracking the after-image,” Vision Res. 11, 1163–1167 (1971).
[CrossRef] [PubMed]

1961

C. Rashbass, “The relationship between saccadic and smooth tracking eye movements,” J. Physiol. (London) 159, 326–338 (1961).

Adelson, E. H.

Ahumada, A. J.

Albright, T. D.

T. D. Albright, “Form–cue invariant motion processing in primate visual cortex,” Science 225, 1141–1143 (1992).
[CrossRef]

Baloh, R. W.

R. E. Yee, S. A. Daniels, O. W. Jones, R. W. Baloh, V. Honrubia, “Effects of an optokinetic background on pursuit eye movements,” Invest. Ophthalmol. Visual Sci. 24, 1115–1122 (1983).

Bergen, J. R.

Beutter, B. B.

B. B. Beutter, L. S. Stone, “Motion coherence affects human perception and pursuit similarly,” Visual Neurosci. 17, 139–153 (2000).
[CrossRef]

L. S. Stone, B. B. Beutter, J. Lorenceau, “Visual motion integration for perception and pursuit,” Perception 29, 771–787 (2000).
[CrossRef] [PubMed]

B. B. Beutter, L. S. Stone, “Human motion perception and smooth eye movements show similar directional biases for elongated apertures,” Vision Res. 38, 1273–1286 (1998).
[CrossRef] [PubMed]

Bridgeman, B.

H. Deubel, B. Bridgeman, “Fourth purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades,” Vision Res. 35, 529–538 (1995).
[CrossRef] [PubMed]

Bruce, C. J.

J. P. Gottlieb, M. G. MacAvoy, C. J. Bruce, “Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field,” J. Neurophysiol. 72, 1634–1653 (1994).
[PubMed]

Butzer, F.

F. Butzer, U. J. Ilg, J. M. Zanker, “Smooth pursuit eye movements elicited by first- and second-order motion,” Exp. Brain Res. 115, 61–70 (1997).
[CrossRef] [PubMed]

Carl, J. R.

R. S. Gellman, J. R. Carl, “Motion processing for saccadic eye movements in humans,” Exp. Brain Res. 84, 660–667 (1991).
[CrossRef] [PubMed]

J. R. Carl, R. S. Gellman, “Human smooth pursuit: stimulus-dependent responses,” J. Neurophysiol. 57, 1446–1463 (1987).
[PubMed]

Cavanagh, P.

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

P. Cavanagh, G. Mather, “Motion: the long and the short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef]

Chubb, C.

Churcher, J.

S. Heywood, J. Churcher, “Eye movements and the after-image—I. Tracking the after-image,” Vision Res. 11, 1163–1167 (1971).
[CrossRef] [PubMed]

Collewijn, H.

H. Collewijn, E. P. Tamminga, “Human fixation and pursuit in normal and open-loop conditions: effects of central and peripheral retinal targets,” J. Physiol. 379, 109–129 (1986).
[PubMed]

E. Kowler, J. van der Steen, E. P. Tamminga, H. Collewijn, “Voluntary selection of the target for smooth eye movement in the presence of superimposed, full-field stationary and moving stimuli,” Vision Res. 24, 1789–1798 (1984).
[CrossRef] [PubMed]

H. Collewijn, E. P. Tamminga, “Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds,” J. Physiol. 351, 217–250 (1984).
[PubMed]

Crane, H.

Daniels, S. A.

R. E. Yee, S. A. Daniels, O. W. Jones, R. W. Baloh, V. Honrubia, “Effects of an optokinetic background on pursuit eye movements,” Invest. Ophthalmol. Visual Sci. 24, 1115–1122 (1983).

Deubel, H.

H. Deubel, B. Bridgeman, “Fourth purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades,” Vision Res. 35, 529–538 (1995).
[CrossRef] [PubMed]

Dursteler, M. R.

M. R. Dursteler, R. H. Wurtz, “Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST,” J. Neurophysiol. 60, 950–965 (1988).

M. R. Dursteler, R. H. Wurtz, W. T. Newsome, “Directional pursuit deficits following lesions of the foveal representation of the superior temporal sulcus of the macaque monkey,” J. Neurophysiol. 57, 1262–1287 (1987).

Fendrich, R.

A. Mack, R. Fendrich, E. Wong, “Is perceived motion a stimulus for smooth pursuit?” Vision Res. 22, 77–88 (1982).
[CrossRef]

A. Mack, R. Fendrich, J. Pleune, “Smooth pursuit eye movements: Is perceived motion necessary?” Science 203, 1361–1363 (1979).
[CrossRef] [PubMed]

Ferrera, V. P.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Gegenfurtner, K. R.

T. E. Reisbeck, K. R. Gegenfurtner, “Velocity tuned mechanisms in human motion perception,” Vision Res. 39, 3267–3286 (1999).
[CrossRef]

K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: influ-ence of contrast and temporal frequency,” Vision Res. 36, 1281–1289 (1996).
[CrossRef] [PubMed]

M. J. Hawken, K. R. Gegenfurtner, “Motion of second-order stimuli: smooth pursuit eye movements and perceived speed,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S741 (1996).

K. R. Gegenfurtner, M. J. Hawken, “Interaction of colour and motion in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
[CrossRef] [PubMed]

Gellman, R. S.

R. S. Gellman, J. R. Carl, “Motion processing for saccadic eye movements in humans,” Exp. Brain Res. 84, 660–667 (1991).
[CrossRef] [PubMed]

J. R. Carl, R. S. Gellman, “Human smooth pursuit: stimulus-dependent responses,” J. Neurophysiol. 57, 1446–1463 (1987).
[PubMed]

Gottlieb, J. P.

J. P. Gottlieb, M. G. MacAvoy, C. J. Bruce, “Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field,” J. Neurophysiol. 72, 1634–1653 (1994).
[PubMed]

Harris, L. R.

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

Hawken, M. J.

M. J. Hawken, K. R. Gegenfurtner, “Motion of second-order stimuli: smooth pursuit eye movements and perceived speed,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S741 (1996).

D. L. Ringach, M. J. Hawken, R. M. Shapley, “Binocular eye movements caused by the perception of three-dimensional structure from motion,” Vision Res. 36, 1479–1492 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Interaction of colour and motion in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: influ-ence of contrast and temporal frequency,” Vision Res. 36, 1281–1289 (1996).
[CrossRef] [PubMed]

Heinen, S. J.

S. J. Heinen, M. Liu, “Single-neuron activity in the dorsomedial frontal cortex during smooth-pursuit eye movements to predictable target motion,” Visual Neurosci. 14, 853–865 (1997).
[CrossRef]

S. J. Heinen, “Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements,” Exp. Brain Res. 104, 357–361 (1995).
[CrossRef] [PubMed]

Heywood, S.

S. Heywood, J. Churcher, “Eye movements and the after-image—I. Tracking the after-image,” Vision Res. 11, 1163–1167 (1971).
[CrossRef] [PubMed]

Honrubia, V.

R. E. Yee, S. A. Daniels, O. W. Jones, R. W. Baloh, V. Honrubia, “Effects of an optokinetic background on pursuit eye movements,” Invest. Ophthalmol. Visual Sci. 24, 1115–1122 (1983).

Ilg, U. J.

A. Lindner, U. J. Ilg, “Initiation of smooth pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
[CrossRef] [PubMed]

F. Butzer, U. J. Ilg, J. M. Zanker, “Smooth pursuit eye movements elicited by first- and second-order motion,” Exp. Brain Res. 115, 61–70 (1997).
[CrossRef] [PubMed]

Jones, O. W.

R. E. Yee, S. A. Daniels, O. W. Jones, R. W. Baloh, V. Honrubia, “Effects of an optokinetic background on pursuit eye movements,” Invest. Ophthalmol. Visual Sci. 24, 1115–1122 (1983).

Kahn, N. S.

E. L. Keller, N. S. Kahn, “Smooth-pursuit initiation in the presence of a textured background in the monkey,” Vision Res. 26, 943–955 (1986).
[CrossRef]

Kawano, K.

F. A. Miles, K. Kawano, L. M. Optican, “Short-latency ocular-following responses of monkey. I. Dependence on temporospatial properties of the visual input,” J. Neurophysiol. 56, 1321–1354 (1986).
[PubMed]

Keating, E. G.

E. G. Keating, “Frontal eye field lesions impair predictive and visually guided pursuit eye movements,” Exp. Brain Res. 86, 311–323 (1991).
[CrossRef]

Keller, E. L.

E. L. Keller, N. S. Kahn, “Smooth-pursuit initiation in the presence of a textured background in the monkey,” Vision Res. 26, 943–955 (1986).
[CrossRef]

Kimmig, H. G.

H. G. Kimmig, F. A. Miles, U. Schwarz, “Effects of stationary textured backgrounds on the initiation of pursuit eye movements in monkeys,” J. Neurophysiol. 68, 2147–2164 (1992).
[PubMed]

Kowler, E.

E. Kowler, S. P. McKee, “Sensitivity of smooth eye movement to small differences in target velocity,” Vision Res. 27, 993–1015 (1987).
[CrossRef] [PubMed]

E. Kowler, J. van der Steen, E. P. Tamminga, H. Collewijn, “Voluntary selection of the target for smooth eye movement in the presence of superimposed, full-field stationary and moving stimuli,” Vision Res. 24, 1789–1798 (1984).
[CrossRef] [PubMed]

E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. III. Guessing unpredictable target displacements,” Vision Res. 21, 191–203 (1981).
[CrossRef]

E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. I. Periodic target steps,” Vision Res. 19, 619–632 (1979).
[CrossRef] [PubMed]

E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. II. Single target displacements,” Vision Res. 19, 633–646 (1979).
[CrossRef] [PubMed]

E. Kowler, B. J. Murphy, R. M. Steinman, “Velocity matching during smooth pursuit of different targets on different backgrounds,” Vision Res. 18, 603–605 (1978).
[CrossRef]

E. Kowler, “The role of visual and cognitive processes in the control of eye movement,” in Eye Movements and Their Role in Visual and Cognitive Processes, E. Kowler, ed. [Elsevier Science Publishers BV (Biomedical Division), 1990], pp. 1–70.

Krauzlis, R. J.

R. J. Krauzlis, “The visual drive for smooth pursuit eye movements,” in Visual Detection of Motion, A. T. Smith, R. J. Snowden, eds. (Academic, London, 1994), pp. 437–473.

Lindner, A.

A. Lindner, U. J. Ilg, “Initiation of smooth pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
[CrossRef] [PubMed]

Lisberger, S. G.

S. G. Lisberger, E. J. Morris, L. Tychsen, “Visual motion processing and sensorimotor integration for smooth pursuit eye movements,” Annu. Rev. Neurosci. 10, 97–129 (1987).
[CrossRef]

S. G. Lisberger, L. E. Westbrook, “Properties of visual inputs that initiate horizontal smooth pursuit eye movements in monkeys,” J. Neurosci. 5, 1662–1673 (1985).
[PubMed]

Liu, M.

S. J. Heinen, M. Liu, “Single-neuron activity in the dorsomedial frontal cortex during smooth-pursuit eye movements to predictable target motion,” Visual Neurosci. 14, 853–865 (1997).
[CrossRef]

Lorenceau, J.

L. S. Stone, B. B. Beutter, J. Lorenceau, “Visual motion integration for perception and pursuit,” Perception 29, 771–787 (2000).
[CrossRef] [PubMed]

Lynch, J. C.

J. C. Lynch, “Frontal eye field lesions in monkeys disrupt visual pursuit,” Exp. Brain Res. 68, 437–441 (1987).
[CrossRef] [PubMed]

MacAvoy, M. G.

J. P. Gottlieb, M. G. MacAvoy, C. J. Bruce, “Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field,” J. Neurophysiol. 72, 1634–1653 (1994).
[PubMed]

Mack, A.

A. Mack, R. Fendrich, E. Wong, “Is perceived motion a stimulus for smooth pursuit?” Vision Res. 22, 77–88 (1982).
[CrossRef]

A. Mack, R. Fendrich, J. Pleune, “Smooth pursuit eye movements: Is perceived motion necessary?” Science 203, 1361–1363 (1979).
[CrossRef] [PubMed]

Mather, G.

P. Cavanagh, G. Mather, “Motion: the long and the short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef]

McKee, S. P.

E. Kowler, S. P. McKee, “Sensitivity of smooth eye movement to small differences in target velocity,” Vision Res. 27, 993–1015 (1987).
[CrossRef] [PubMed]

Miles, F. A.

H. G. Kimmig, F. A. Miles, U. Schwarz, “Effects of stationary textured backgrounds on the initiation of pursuit eye movements in monkeys,” J. Neurophysiol. 68, 2147–2164 (1992).
[PubMed]

F. A. Miles, K. Kawano, L. M. Optican, “Short-latency ocular-following responses of monkey. I. Dependence on temporospatial properties of the visual input,” J. Neurophysiol. 56, 1321–1354 (1986).
[PubMed]

Morgan, M. J.

M. J. Morgan, D. F. Turnbull, “Smooth eye tracking and the perception of motion in the absence of real motion,” Vision Res. 18, 1053–1059 (1978).
[CrossRef]

Morris, E. J.

S. G. Lisberger, E. J. Morris, L. Tychsen, “Visual motion processing and sensorimotor integration for smooth pursuit eye movements,” Annu. Rev. Neurosci. 10, 97–129 (1987).
[CrossRef]

Murphy, B. J.

E. Kowler, B. J. Murphy, R. M. Steinman, “Velocity matching during smooth pursuit of different targets on different backgrounds,” Vision Res. 18, 603–605 (1978).
[CrossRef]

Newsome, W. T.

M. R. Dursteler, R. H. Wurtz, W. T. Newsome, “Directional pursuit deficits following lesions of the foveal representation of the superior temporal sulcus of the macaque monkey,” J. Neurophysiol. 57, 1262–1287 (1987).

Optican, L. M.

F. A. Miles, K. Kawano, L. M. Optican, “Short-latency ocular-following responses of monkey. I. Dependence on temporospatial properties of the visual input,” J. Neurophysiol. 56, 1321–1354 (1986).
[PubMed]

Pleune, J.

A. Mack, R. Fendrich, J. Pleune, “Smooth pursuit eye movements: Is perceived motion necessary?” Science 203, 1361–1363 (1979).
[CrossRef] [PubMed]

Pola, J.

H. J. Wyatt, J. Pola, “The role of perceived motion in smooth pursuit eye movements,” Vision Res. 19, 613–618 (1979).
[CrossRef] [PubMed]

Rashbass, C.

C. Rashbass, “The relationship between saccadic and smooth tracking eye movements,” J. Physiol. (London) 159, 326–338 (1961).

Reisbeck, T. E.

T. E. Reisbeck, K. R. Gegenfurtner, “Velocity tuned mechanisms in human motion perception,” Vision Res. 39, 3267–3286 (1999).
[CrossRef]

Ringach, D. L.

D. L. Ringach, M. J. Hawken, R. M. Shapley, “Binocular eye movements caused by the perception of three-dimensional structure from motion,” Vision Res. 36, 1479–1492 (1996).
[CrossRef] [PubMed]

Schwarz, U.

H. G. Kimmig, F. A. Miles, U. Schwarz, “Effects of stationary textured backgrounds on the initiation of pursuit eye movements in monkeys,” J. Neurophysiol. 68, 2147–2164 (1992).
[PubMed]

Seiffert, A. E.

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

Shapley, R. M.

D. L. Ringach, M. J. Hawken, R. M. Shapley, “Binocular eye movements caused by the perception of three-dimensional structure from motion,” Vision Res. 36, 1479–1492 (1996).
[CrossRef] [PubMed]

Smith, A. T.

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

A. T. Smith, “The detection of second-order motion,” in Visual Detection of Motion, A. T. Smith, R. J. Snowden, eds. (Academic, London, 1994), pp. 145–176.

Sperling, G.

Steele, C.

Steinbach, M.

M. Steinbach, “Pursuing the perceptual rather than the retinal stimulus,” Vision Res. 16, 1371–1376 (1976).
[CrossRef] [PubMed]

Steinman, R. M.

E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. III. Guessing unpredictable target displacements,” Vision Res. 21, 191–203 (1981).
[CrossRef]

E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. I. Periodic target steps,” Vision Res. 19, 619–632 (1979).
[CrossRef] [PubMed]

E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. II. Single target displacements,” Vision Res. 19, 633–646 (1979).
[CrossRef] [PubMed]

E. Kowler, B. J. Murphy, R. M. Steinman, “Velocity matching during smooth pursuit of different targets on different backgrounds,” Vision Res. 18, 603–605 (1978).
[CrossRef]

Stone, L. S.

B. B. Beutter, L. S. Stone, “Motion coherence affects human perception and pursuit similarly,” Visual Neurosci. 17, 139–153 (2000).
[CrossRef]

L. S. Stone, B. B. Beutter, J. Lorenceau, “Visual motion integration for perception and pursuit,” Perception 29, 771–787 (2000).
[CrossRef] [PubMed]

B. B. Beutter, L. S. Stone, “Human motion perception and smooth eye movements show similar directional biases for elongated apertures,” Vision Res. 38, 1273–1286 (1998).
[CrossRef] [PubMed]

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

Tamminga, E. P.

H. Collewijn, E. P. Tamminga, “Human fixation and pursuit in normal and open-loop conditions: effects of central and peripheral retinal targets,” J. Physiol. 379, 109–129 (1986).
[PubMed]

E. Kowler, J. van der Steen, E. P. Tamminga, H. Collewijn, “Voluntary selection of the target for smooth eye movement in the presence of superimposed, full-field stationary and moving stimuli,” Vision Res. 24, 1789–1798 (1984).
[CrossRef] [PubMed]

H. Collewijn, E. P. Tamminga, “Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds,” J. Physiol. 351, 217–250 (1984).
[PubMed]

Thompson, P.

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

P. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

Turnbull, D. F.

M. J. Morgan, D. F. Turnbull, “Smooth eye tracking and the perception of motion in the absence of real motion,” Vision Res. 18, 1053–1059 (1978).
[CrossRef]

Tychsen, L.

S. G. Lisberger, E. J. Morris, L. Tychsen, “Visual motion processing and sensorimotor integration for smooth pursuit eye movements,” Annu. Rev. Neurosci. 10, 97–129 (1987).
[CrossRef]

van der Steen, J.

E. Kowler, J. van der Steen, E. P. Tamminga, H. Collewijn, “Voluntary selection of the target for smooth eye movement in the presence of superimposed, full-field stationary and moving stimuli,” Vision Res. 24, 1789–1798 (1984).
[CrossRef] [PubMed]

van Santen, J. P. H.

Watson, A. B.

Westbrook, L. E.

S. G. Lisberger, L. E. Westbrook, “Properties of visual inputs that initiate horizontal smooth pursuit eye movements in monkeys,” J. Neurosci. 5, 1662–1673 (1985).
[PubMed]

Wilson, H. R.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Wong, E.

A. Mack, R. Fendrich, E. Wong, “Is perceived motion a stimulus for smooth pursuit?” Vision Res. 22, 77–88 (1982).
[CrossRef]

Wurtz, R. H.

M. R. Dursteler, R. H. Wurtz, “Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST,” J. Neurophysiol. 60, 950–965 (1988).

M. R. Dursteler, R. H. Wurtz, W. T. Newsome, “Directional pursuit deficits following lesions of the foveal representation of the superior temporal sulcus of the macaque monkey,” J. Neurophysiol. 57, 1262–1287 (1987).

Wyatt, H. J.

H. J. Wyatt, J. Pola, “The role of perceived motion in smooth pursuit eye movements,” Vision Res. 19, 613–618 (1979).
[CrossRef] [PubMed]

Yasui, S.

S. Yasui, L. R. Young, “Perceived visual motion as effective stimulus to pursuit eye movement system,” Science 190, 906–908 (1975).
[CrossRef] [PubMed]

Yee, R. E.

R. E. Yee, S. A. Daniels, O. W. Jones, R. W. Baloh, V. Honrubia, “Effects of an optokinetic background on pursuit eye movements,” Invest. Ophthalmol. Visual Sci. 24, 1115–1122 (1983).

Yo, C.

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Young, L. R.

S. Yasui, L. R. Young, “Perceived visual motion as effective stimulus to pursuit eye movement system,” Science 190, 906–908 (1975).
[CrossRef] [PubMed]

Zanker, J. M.

F. Butzer, U. J. Ilg, J. M. Zanker, “Smooth pursuit eye movements elicited by first- and second-order motion,” Exp. Brain Res. 115, 61–70 (1997).
[CrossRef] [PubMed]

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 353–369 (1993).
[CrossRef]

Annu. Rev. Neurosci.

S. G. Lisberger, E. J. Morris, L. Tychsen, “Visual motion processing and sensorimotor integration for smooth pursuit eye movements,” Annu. Rev. Neurosci. 10, 97–129 (1987).
[CrossRef]

Appl. Opt.

Exp. Brain Res.

F. Butzer, U. J. Ilg, J. M. Zanker, “Smooth pursuit eye movements elicited by first- and second-order motion,” Exp. Brain Res. 115, 61–70 (1997).
[CrossRef] [PubMed]

A. Lindner, U. J. Ilg, “Initiation of smooth pursuit eye movements to first-order and second-order motion stimuli,” Exp. Brain Res. 133, 450–456 (2000).
[CrossRef] [PubMed]

R. S. Gellman, J. R. Carl, “Motion processing for saccadic eye movements in humans,” Exp. Brain Res. 84, 660–667 (1991).
[CrossRef] [PubMed]

J. C. Lynch, “Frontal eye field lesions in monkeys disrupt visual pursuit,” Exp. Brain Res. 68, 437–441 (1987).
[CrossRef] [PubMed]

E. G. Keating, “Frontal eye field lesions impair predictive and visually guided pursuit eye movements,” Exp. Brain Res. 86, 311–323 (1991).
[CrossRef]

S. J. Heinen, “Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements,” Exp. Brain Res. 104, 357–361 (1995).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci.

R. E. Yee, S. A. Daniels, O. W. Jones, R. W. Baloh, V. Honrubia, “Effects of an optokinetic background on pursuit eye movements,” Invest. Ophthalmol. Visual Sci. 24, 1115–1122 (1983).

Invest. Ophthalmol. Visual Sci. Suppl.

M. J. Hawken, K. R. Gegenfurtner, “Motion of second-order stimuli: smooth pursuit eye movements and perceived speed,” Invest. Ophthalmol. Visual Sci. Suppl. 37, S741 (1996).

J. Neurophysiol.

H. G. Kimmig, F. A. Miles, U. Schwarz, “Effects of stationary textured backgrounds on the initiation of pursuit eye movements in monkeys,” J. Neurophysiol. 68, 2147–2164 (1992).
[PubMed]

F. A. Miles, K. Kawano, L. M. Optican, “Short-latency ocular-following responses of monkey. I. Dependence on temporospatial properties of the visual input,” J. Neurophysiol. 56, 1321–1354 (1986).
[PubMed]

J. R. Carl, R. S. Gellman, “Human smooth pursuit: stimulus-dependent responses,” J. Neurophysiol. 57, 1446–1463 (1987).
[PubMed]

J. P. Gottlieb, M. G. MacAvoy, C. J. Bruce, “Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field,” J. Neurophysiol. 72, 1634–1653 (1994).
[PubMed]

M. R. Dursteler, R. H. Wurtz, W. T. Newsome, “Directional pursuit deficits following lesions of the foveal representation of the superior temporal sulcus of the macaque monkey,” J. Neurophysiol. 57, 1262–1287 (1987).

M. R. Dursteler, R. H. Wurtz, “Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST,” J. Neurophysiol. 60, 950–965 (1988).

J. Neurosci.

S. G. Lisberger, L. E. Westbrook, “Properties of visual inputs that initiate horizontal smooth pursuit eye movements in monkeys,” J. Neurosci. 5, 1662–1673 (1985).
[PubMed]

J. Opt. Soc. Am. A

J. Physiol.

H. Collewijn, E. P. Tamminga, “Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds,” J. Physiol. 351, 217–250 (1984).
[PubMed]

H. Collewijn, E. P. Tamminga, “Human fixation and pursuit in normal and open-loop conditions: effects of central and peripheral retinal targets,” J. Physiol. 379, 109–129 (1986).
[PubMed]

J. Physiol. (London)

C. Rashbass, “The relationship between saccadic and smooth tracking eye movements,” J. Physiol. (London) 159, 326–338 (1961).

Perception

L. S. Stone, B. B. Beutter, J. Lorenceau, “Visual motion integration for perception and pursuit,” Perception 29, 771–787 (2000).
[CrossRef] [PubMed]

Science

A. Mack, R. Fendrich, J. Pleune, “Smooth pursuit eye movements: Is perceived motion necessary?” Science 203, 1361–1363 (1979).
[CrossRef] [PubMed]

S. Yasui, L. R. Young, “Perceived visual motion as effective stimulus to pursuit eye movement system,” Science 190, 906–908 (1975).
[CrossRef] [PubMed]

T. D. Albright, “Form–cue invariant motion processing in primate visual cortex,” Science 225, 1141–1143 (1992).
[CrossRef]

Spatial Vision

P. Cavanagh, G. Mather, “Motion: the long and the short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef]

Trends Neurosci.

K. R. Gegenfurtner, M. J. Hawken, “Interaction of colour and motion in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
[CrossRef] [PubMed]

Vision Res.

P. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: influ-ence of contrast and temporal frequency,” Vision Res. 36, 1281–1289 (1996).
[CrossRef] [PubMed]

E. L. Keller, N. S. Kahn, “Smooth-pursuit initiation in the presence of a textured background in the monkey,” Vision Res. 26, 943–955 (1986).
[CrossRef]

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 353–369 (1993).
[CrossRef]

A. Mack, R. Fendrich, E. Wong, “Is perceived motion a stimulus for smooth pursuit?” Vision Res. 22, 77–88 (1982).
[CrossRef]

E. Kowler, S. P. McKee, “Sensitivity of smooth eye movement to small differences in target velocity,” Vision Res. 27, 993–1015 (1987).
[CrossRef] [PubMed]

B. B. Beutter, L. S. Stone, “Human motion perception and smooth eye movements show similar directional biases for elongated apertures,” Vision Res. 38, 1273–1286 (1998).
[CrossRef] [PubMed]

M. Steinbach, “Pursuing the perceptual rather than the retinal stimulus,” Vision Res. 16, 1371–1376 (1976).
[CrossRef] [PubMed]

M. J. Morgan, D. F. Turnbull, “Smooth eye tracking and the perception of motion in the absence of real motion,” Vision Res. 18, 1053–1059 (1978).
[CrossRef]

H. J. Wyatt, J. Pola, “The role of perceived motion in smooth pursuit eye movements,” Vision Res. 19, 613–618 (1979).
[CrossRef] [PubMed]

E. Kowler, J. van der Steen, E. P. Tamminga, H. Collewijn, “Voluntary selection of the target for smooth eye movement in the presence of superimposed, full-field stationary and moving stimuli,” Vision Res. 24, 1789–1798 (1984).
[CrossRef] [PubMed]

E. Kowler, B. J. Murphy, R. M. Steinman, “Velocity matching during smooth pursuit of different targets on different backgrounds,” Vision Res. 18, 603–605 (1978).
[CrossRef]

S. Heywood, J. Churcher, “Eye movements and the after-image—I. Tracking the after-image,” Vision Res. 11, 1163–1167 (1971).
[CrossRef] [PubMed]

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detection of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

T. E. Reisbeck, K. R. Gegenfurtner, “Velocity tuned mechanisms in human motion perception,” Vision Res. 39, 3267–3286 (1999).
[CrossRef]

E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. I. Periodic target steps,” Vision Res. 19, 619–632 (1979).
[CrossRef] [PubMed]

E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. II. Single target displacements,” Vision Res. 19, 633–646 (1979).
[CrossRef] [PubMed]

E. Kowler, R. M. Steinman, “The effect of expectations on slow oculomotor control. III. Guessing unpredictable target displacements,” Vision Res. 21, 191–203 (1981).
[CrossRef]

D. L. Ringach, M. J. Hawken, R. M. Shapley, “Binocular eye movements caused by the perception of three-dimensional structure from motion,” Vision Res. 36, 1479–1492 (1996).
[CrossRef] [PubMed]

H. Deubel, B. Bridgeman, “Fourth purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades,” Vision Res. 35, 529–538 (1995).
[CrossRef] [PubMed]

Visual Neurosci.

B. B. Beutter, L. S. Stone, “Motion coherence affects human perception and pursuit similarly,” Visual Neurosci. 17, 139–153 (2000).
[CrossRef]

S. J. Heinen, M. Liu, “Single-neuron activity in the dorsomedial frontal cortex during smooth-pursuit eye movements to predictable target motion,” Visual Neurosci. 14, 853–865 (1997).
[CrossRef]

L. R. Harris, A. T. Smith, “Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus,” Visual Neurosci. 9, 565–570 (1992).
[CrossRef]

H. R. Wilson, V. P. Ferrera, C. Yo, “A psychophysically motivated model for two-dimensional motion perception,” Visual Neurosci. 9, 79–97 (1992).
[CrossRef]

Other

A. T. Smith, “The detection of second-order motion,” in Visual Detection of Motion, A. T. Smith, R. J. Snowden, eds. (Academic, London, 1994), pp. 145–176.

E. Kowler, “The role of visual and cognitive processes in the control of eye movement,” in Eye Movements and Their Role in Visual and Cognitive Processes, E. Kowler, ed. [Elsevier Science Publishers BV (Biomedical Division), 1990], pp. 1–70.

R. J. Krauzlis, “The visual drive for smooth pursuit eye movements,” in Visual Detection of Motion, A. T. Smith, R. J. Snowden, eds. (Academic, London, 1994), pp. 437–473.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Halftone of a random-texture patch moving across the display. (a) First-order (Fourier) stimulus. At different points in time (t0  t3) the same random dots are located within the Gaussian window as both the window and the dots move to the right. (b) Second-order, static-noise, drift-balanced (non-Fourier) stimulus. At different points in time different dots are located within the window, which moves to the right on top of a static, stationary, random-noise field.

Fig. 2
Fig. 2

Space–time diagram illustrating the five different types of motion stimuli we used. A horizontal slice through the random-noise pattern is shown on the x axis. The y axis indicates time. (a) First-order, Fourier motion: random dots and Gaussian window move in the same direction at the same speed. (b) Second-order, static-noise, non-Fourier, drift-balanced motion: the window moves across a static random-noise background. (c) Second-order, theta motion: the window moves across a random-noise background that moves at the same speed but in the opposite direction. This stimulus is perceived to move rightward, even though most of its Fourier energy is in the leftward direction. (d) Second-order, dynamic-noise, non-Fourier, drift-balanced motion: the window moves across a dynamic-random-noise background. (e) First-order+stimulus: the random dots move to the right at twice the speed of the window. The solid arrow under each strip shows the dominant direction vector of first-order motion energy. The arrow to the right of the diagram marked “window motion” is the second-order-motion direction vector and is the same for all five conditions.

Fig. 3
Fig. 3

Example traces of pursuit to first-order motion stimuli. All individual pursuit trials are for subject MH. Contrast was 37.5% for all stimuli. The lower traces show the stimulus position and eye position before and during stimulus motion. The upper trace shows stimulus velocity and eye velocity. The saccades in the velocity traces are truncated, but the full extent of the saccades is shown in the position traces. (a) 1°/s object motion stimulus. In general, there is consistent initiation reaching a peak velocity of just greater than 1°/s, and then pursuit proceeds during the steady-state phase with a gain close to 1. Note that there are a number of small corrective saccades. (b) 6°/s object motion stimulus. After the latency there is a clear acceleration phase with a velocity overshoot followed by a steady-state region with a velocity close to 1.

Fig. 4
Fig. 4

Example traces of pursuit to second-order non-Fourier motion stimuli. All details are the same as given in Fig. 3. (a) 1°/s object motion stimulus. (b) 6°/s object motion stimulus.

Fig. 5
Fig. 5

(a) averaged eye velocity traces in response to 1°/s target velocity for all five motion stimuli that are shown in Fig. 1. Data are shown for one observer, MH. The dashed line shows the velocity of the stimulus envelope. The insets on the right show the initial portion of the response with an expanded time scale. The correspondence of the labels on the right-hand graphs to those on the left are 1+ = first-order+; 1=first-order; 2d = second-order dynamic; 2s = second-order; 2t=second-ordertheta. (b) Averaged eye velocity traces in response to 6°/s target velocity. The labeling convention is the same as for (a).

Fig. 6
Fig. 6

Mean eye acceleration traces to 6°/s object motion stimuli for one observer, MH. The eye acceleration was averaged for all the 30-ms periods up to 120 ms after the initiation of pursuit. The height of the histogram bars is the mean, and the error bars are one standard deviation of the mean. The significance of the results of Student’s t test between the first-order condition and other conditions are given above the error bars.  *** , p<0.001;  ** , p<0.01;  * , p<0.05; n.s. (not significant), p>0.05.

Fig. 7
Fig. 7

Latencies of smooth pursuit for three observers to the five different types of motion stimuli moving at 6°/s. All else is as for Fig. 6.

Fig. 8
Fig. 8

Peak eye velocity for three observers to the five different types of motion stimuli. The left column shows data for 1°/s target velocity, and the right column shows the data for 6°/s target velocity. All else is as for Fig. 6.

Fig. 9
Fig. 9

Steady-state eye velocity for three observers to the five different types of motion stimuli. All else is as for Fig. 6.

Fig. 10
Fig. 10

Steady-state eye velocity as a function of contrast for first-order and second-order static targets. (a) Observer MH, stimuli moving at 6°/s; (b) observer MH, stimuli moving at 1°/s; (c) observer BS, stimuli moving at 1°/s. Solid squares, first-order motion target; open squares, second-order motion targets.

Metrics