Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Brindley, W. S. Lewing, “The sensations produced by electrical stimulation of the visual cortex,” J. Physiol. 196, 479–493 (1968).
    [PubMed]
  2. D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol. 148, 574–591 (1959).
    [PubMed]
  3. D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).
    [PubMed]
  4. T. N. Wiesel, D. H. Hubel, “Single-cell responses in striate cortex of kittens deprived of vision in one eye,” J. Neurophysiol. 26, 1002–1017 (1963).
  5. D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).
    [PubMed]
  6. C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation of and size of retinal images,” J. Physiol. 210, 237–260 (1969).
  7. C. Blakemore, P. Sutton, “Size adaptation: a new aftereffect,” Science 166, 245–247 (1969).
    [CrossRef] [PubMed]
  8. C. Blakemore, J. Nachmias, P. Sutton, “The perceived spatial frequency shift: evidence for frequency-selective neurons in the human brain,” J. Physiol. 210, 727–750 (1969).
  9. A. Pantle, R. W. Sekuler, “Size-detecting mechanisms in human vision,” Science 162, 1146–1148 (1968).
    [CrossRef] [PubMed]
  10. A. S. Gilinsky, “Orientation-specific effects of patterns of adapting light on visual acuity,” J. Opt. Soc. Am. 58, 13–18 (1968).
    [CrossRef] [PubMed]
  11. F. W. Campbell, J. Nachmias, J. Jukes, “Spatial-frequency discrimination in human vision,” J. Opt. Soc. Am. 60, 555–559 (1970).
    [CrossRef] [PubMed]
  12. M. B. Sachs, J. Nachmias, J. G. Robson, “Spatial-frequency channels in human vision,” J. Opt. Soc. Am. 61, 1176–1186 (1971).
    [CrossRef] [PubMed]
  13. F. W. Campbell, J. G. Robson, “Applications of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
    [PubMed]
  14. J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980), pp. 177–214.
  15. B. Julesz, “Visual pattern discrimination,” IRE Trans. Inf. Theory IT-8, 84–92 (1962).
    [CrossRef]
  16. J. Beck, “Effect of orientation and shape similarity in perceptual grouping,” Percept. Psychophys. 1, 300–302 (1966).
    [CrossRef]
  17. B. Julesz, E. N. Gilbert, L. A. Shepp, H. L. Frisch, “Inability of humans to discriminate between visual textures that agree in second-order statistics—revisited,” Perception 2, 391–405 (1973).
    [CrossRef]
  18. J. Beck, A. Sutter, R. Ivry, “Spatial frequency channels and perceptual grouping in texture segregation,” Comput. Vision Graph. Image Process. 37, 299–325 (1987).
    [CrossRef]
  19. J. R. Bergen, E. H. Adelson, “Early vision and texture perception,” Nature (London) 333, 363–364 (1988).
    [CrossRef]
  20. J. R. Bergen, M. S. Landy, “Computational modeling of visual texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press; Cambridge, Mass., 1991), pp. 253–271.
  21. M. S. Landy, J. K. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
    [CrossRef] [PubMed]
  22. N. Graham, “Non-linearities in texture segregation,” in Higher-Order Processing in the Visual System, G. R. Bock, J. A. Goode, eds. (Wiley, New York, 1994), pp. 309–329.
  23. C. Chubb, J. Econopouly, M. S. Landy, “Histogram contrast analysis and the visual segregation of IID textures,” J. Opt. Soc. Am. A 11, 2350–2374 (1994).
    [CrossRef]
  24. C. Chubb, “Texture-based methods for analyzing elementary visual substances,” J. Math. Psychol. 43, 539–567 (1999).
    [CrossRef] [PubMed]
  25. C. Chubb, J.-H. Nam, “Variance of high contrast textures is sensed using negative half-wave rectification,” Vision Res. 40, 1677–1694 (2000).
    [CrossRef] [PubMed]
  26. J. Malik, P. Perona, “Preattentive texture discrimination with early vision mechanisms,” J. Opt. Soc. Am. A 7, 923–932 (1990).
    [CrossRef] [PubMed]
  27. T. Caelli, “Three processing characteristics of visual texture segmentation,” Spatial Vision 1, 19–30 (1985).
    [CrossRef] [PubMed]
  28. H. Knutsson, G. H. Granlund, “Texture analysis using two-dimensional quadrature filters,” presented at the IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image Database Management, Pasadena, Calif., Oct. 12–14, 1983.
  29. J. D. Victor, “Models for preattentive texture discrimination: Fourier analysis and local feature processing in a unified framework,” Spatial Vision 3, 263–280 (1988).
    [CrossRef] [PubMed]
  30. E. Barth, C. Zetzsche, I. Rentschler, “Intrinsic two-dimensional features as textons,” J. Opt. Soc. Am. A 15, 1723–1732 (1998).
    [CrossRef]
  31. P. de Weerd, J. M. Sprague, E. Vandenbussche, G. A. Orban, “Two stages in visual texture segregation: a lesion study in the cat,” J. Neurosci. 14, (3, Pt. 1), 929–948 (1994).
    [PubMed]
  32. H.-C. Nothdurft, “Common properties of visual segmentation,” in Higher-Order Processing in the Visual System, G. R. Bock, J. A. Goode, eds. (Wiley, New York, 1994), pp. 245–268.
  33. T. V. Papathomas, A. Gorea, A. Feher, T. E. Conway, “Attention-based texture segregation,” Percept. Psychophys. 61, 1399–1410 (1999).
    [CrossRef] [PubMed]
  34. A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
    [CrossRef] [PubMed]
  35. J. D. Victor, M. Conte, “The role of high-order phase correlations in texture processing,” Vision Res. 36, 1615–1631 (1996).
    [CrossRef] [PubMed]
  36. J. D. Victor, M. M. Conte, K. Purpura, E. Katz, “Isodipole textures: a window on cortical mechanisms of form processing,” in Early Vision and Beyond, T. V. Papathomas, and all eds., (MIT Press, Cambridge, Mass.1995), p. 99–107.
  37. J. D. Victor, “Models for preattentive texture discrimination: Fourier analysis and local feature processing in a unified framework,” Spatial Vision 3, 263–280 (1988).
    [CrossRef] [PubMed]
  38. S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
    [CrossRef] [PubMed]
  39. B. Moulden, “Collator units: second-stage orientational filters,” in Higher-Order Processing in the Visual System, G. R. Bock, J. A. Goode, eds. (Wiley, New York, 1994), p. 170–192.
  40. D. S. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
    [CrossRef] [PubMed]
  41. L.-M. Lin, H. R. Wilson, “Fourier and non-Fourier pattern discrimination compared,” Vision Res. 36, 1907–1918 (1996).
    [CrossRef] [PubMed]
  42. A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
    [CrossRef] [PubMed]
  43. F. A. A. Kingdom, D. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
    [CrossRef] [PubMed]
  44. R. Rosenholtz, “A simple saliency model predicts a number of motion popout phenomena,” Vision Res. 39, 3157–3163 (1999).
    [CrossRef]
  45. E. S. Olds, W. B. Cowan, P. Jolicoeur, “Partial orientation pop-out helps difficult search for orientation,” Percept. Psychophys. 62, 1341–1347 (2000).
    [CrossRef]
  46. Z. Li, “Pre-attentive segmentation in the primary visual cortex,” Spatial Vision 13, 25–50 (2000).
    [CrossRef] [PubMed]
  47. L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
    [CrossRef] [PubMed]
  48. L. A. Olzak, T. D. Wickens, “Discrimination of complex patterns: Orientation information is integrated across spatial scale; spatial-frequency and contrast information ar not,” Perception 26, 1101–1120 (1997).
    [CrossRef]
  49. J. P. Thomas, L. A. Olzak, “Uncertainty experiments support the roles of second-order mechanisms in spatial frequency and orientation discriminations,” J. Opt. Soc. Am. A 13, 689–696 (1996).
    [CrossRef]
  50. J. P. Thomas, L. A. Olzak, S. S. Shimozaki, “The role of Fourier components in discrimination between two types of plaid patterns,” Vision Res. 33, 1573–1579 (1993).
    [CrossRef] [PubMed]
  51. C. Chubb, G. Sperling, J. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. U.S.A. 86, 9631–9635 (1989).
    [CrossRef] [PubMed]
  52. J. A. Solomon, G. Sperling, C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993).
    [CrossRef] [PubMed]
  53. M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
    [CrossRef] [PubMed]
  54. B. Singer, M. D’Zmura, “Contrast gain control: a bilinear model for chromatic selectivity,” J. Opt. Soc. Am. A 12, 667–685 (1995).
    [CrossRef]
  55. M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
    [CrossRef] [PubMed]
  56. B. Spehar, L. E. Arend, A. L. Gilchrist, “Contrast contrast: Interactions between spatial and luminance factors.” Rev. Psych. 2, 3–12 (1995).
  57. L. A. Olzak, P. I. Laurinen, “Multiple gain control processes in contrast-contrast phenomena,” Vision Res. 39, 3983–3987 (1999).
    [CrossRef]
  58. E. H. Adelson, “Perceptual organization and the judgment of brightness,” Science 262, 2042–2044 (1993).
    [CrossRef] [PubMed]
  59. B. Blakeslee, M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vision Res. 39, 4361–4377 (1999).
    [CrossRef]
  60. K. R. Gegenfurtner, J. E. Brown, J. Rieger, “Interpolation processes in the perception of real and illusory contours,” Perception 26, 1445–1458 (1997).
    [CrossRef] [PubMed]
  61. D. L. Ringach, R. Shapley, “Spatial and temporal properties of illusory contours and amodal boundary completion,” Vision Res. 36, 3037–3050 (1996).
    [CrossRef] [PubMed]
  62. G. Francis, S. Grossberg, “Cortical dynamics of form and motion integration: persistence, apparent motion, and illusory contours,” Vision Res. 36, 149–173 (1996).
    [CrossRef] [PubMed]
  63. B. Dresp, C. Bonnet, “Subthreshold summation with illusory contours,” Vision Res. 35, 1071–1078 (1995).
    [CrossRef] [PubMed]
  64. V. S. Ramachandran, M. V. Rao, T. R. Vidyasagar, “Apparent motion with subjective contours,” Vision Res. 13, 1399–1401 (1973).
    [CrossRef] [PubMed]
  65. A. Pantle, L. Picciano, “A multistable movement display: evidence for two separate motion systems in human vision,” Science 193, 500–502 (1976).
    [CrossRef] [PubMed]
  66. G. Sperling, “Movement perception in computer-driven visual displays,” Behav. Res. Methods Instrum. 8, 144–151 (1976).
    [CrossRef]
  67. C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
    [CrossRef] [PubMed]
  68. A. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
    [CrossRef] [PubMed]
  69. A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex grating patterns?” Vision Res. 25, 1869–1878 (1985).
    [CrossRef] [PubMed]
  70. A. M. Derrington, D. R. Badcock, “Detection of spatial beats: Non-linearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
    [CrossRef] [PubMed]
  71. K. Turano, A. Pantle, “On the mechanism that encodes the movement of contrast variations: Velocity discrimination,” Vision Res. 29, 207–221 (1989).
    [CrossRef] [PubMed]
  72. P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
    [CrossRef] [PubMed]
  73. A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London 266, 509–518 (1992).
    [CrossRef]
  74. A. Johnston, C. W. G. Clifford, “Perceived motion of contrast modulated gratings: predictions of the multi-channel gradient model and the role of full-wave rectification,” Vision Res. 35, 1771–1783 (1995).
    [CrossRef] [PubMed]
  75. A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
    [CrossRef] [PubMed]
  76. E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
    [CrossRef] [PubMed]
  77. A. Baloch, S. Grossberg, E. Mingolla, C. A. M. Nogueira, “Neural model of first-order and second-order motion perception and magnocellular dynamics,” J. Opt. Soc. Am. A 16, 953–978 (1999).
    [CrossRef]
  78. C. W. G. Clifford, L. M. Vaina, “A computational model of selective deficits in first and second order motion processing,” Vision Res. 39, 113–130 (1999).
    [CrossRef] [PubMed]
  79. S. J. Cropper, S. T. Hammett, “Adaptation to motion of a second-order pattern: the motion aftereffect is not a general result,” Vision Res. 37, 2247–2259 (1997).
    [CrossRef] [PubMed]
  80. A. M. Derrington, D. R. Badcock, “Two-stage analysis of the motion of 2-dimensional patterns: What is the first stage?” Vision Res. 32, 691–698 (1992).
    [CrossRef] [PubMed]
  81. A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the direction of second-order motion at short stimulus durations,” Vision Res. 33, 1785–1794 (1993).
    [CrossRef] [PubMed]
  82. A. M. Derrington, O. I. Ukkonen, “Second-order motion discrimination by feature-tracking,” Vision Res. 39, 1465–1475 (1999).
    [CrossRef] [PubMed]
  83. M. Edwards, D. R. Badcock, “Global motion perception: no interaction between the first- and second-order motion pathways,” Vision Res. 35, 2589–2602 (1995).
    [CrossRef] [PubMed]
  84. J. David Fleet, Keith Langley, “Computational analysis of non-Fourier motion,” Vision Res. 34, 3057–3079 (1994).
    [CrossRef] [PubMed]
  85. M. W. Greenlee, A. T. Smith, “Detection and discrimination of first- and second-order motion in patients with unilateral brain damage,” J. Neurosci. 17, 804–818 (1997).
    [PubMed]
  86. K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
    [CrossRef] [PubMed]
  87. T. Ledgeway, “Discrimination of the speed and direction of global second-order motion in stochastic displays,” Vision Res. 39, 3710–3720 (1999).
    [CrossRef]
  88. G. Mather, S. Anstis, “Second-order texture contrast resolves ambiguous apparent motion,” Perception 24, 1373–1382 (1995).
    [CrossRef] [PubMed]
  89. G. Mather, L. Murdoch, “Second-order processing of four-stroke apparent motion,” Vision Res. 39, 1795–1802 (1999).
    [CrossRef] [PubMed]
  90. I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
    [CrossRef]
  91. S. Nishida, M. Edwards, T. Sato, “Simultaneous motion contrast across space: involvement of second-order motion?” Vision Res. 37, 199–214 (1997).
    [CrossRef] [PubMed]
  92. L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).
  93. J. T. Petersik, “A comparison of varieties of ‘second-order’ motion,” Vision Res. 35, 507–517 (1995).
    [CrossRef] [PubMed]
  94. A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detections of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
    [CrossRef]
  95. A. T. Smith, “Correspondence-based and energy-based detection of second-order motion in human vision,” J. Opt. Soc. Am. A 11, 1940–1948 (1994).
    [CrossRef]
  96. A. T. Smith, T. Ledgeway, “Sensitivity to second-order motion as a function of temporal frequency and eccentricity,” Vision Res. 38, 403–410 (1998).
    [CrossRef] [PubMed]
  97. J. A. Solomon, G. Sperling, “Full-wave and half-wave rectification in second-order motion perception,” Vision Res. 34, 2239–2257 (1994).
    [CrossRef] [PubMed]
  98. L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Br. Mapping 7, 67–77 (1999).
    [CrossRef]
  99. J. D. Victor, M. M. Conte, “Motion mechanisms have only limited access to form information,” Vision Res. 30, 289–301 (1990).
    [CrossRef] [PubMed]
  100. P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture-defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
    [CrossRef] [PubMed]
  101. H. R. Wilson, “The role of second-order motion signals in coherence and transparency,” in Higher-Order Processing in the Visual System, G. R. Bock, J. A. Goode, eds. (Wiley, New York1994), pp. 227–244.
  102. J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
    [CrossRef] [PubMed]
  103. J. M. Zanker, “Second-order motion perception in the peripheral visual field,” J. Opt. Soc. Am. A 14, 1385–1392 (1997).
    [CrossRef]
  104. Y. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
    [CrossRef] [PubMed]
  105. Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
    [CrossRef] [PubMed]

2000 (3)

E. S. Olds, W. B. Cowan, P. Jolicoeur, “Partial orientation pop-out helps difficult search for orientation,” Percept. Psychophys. 62, 1341–1347 (2000).
[CrossRef]

Z. Li, “Pre-attentive segmentation in the primary visual cortex,” Spatial Vision 13, 25–50 (2000).
[CrossRef] [PubMed]

C. Chubb, J.-H. Nam, “Variance of high contrast textures is sensed using negative half-wave rectification,” Vision Res. 40, 1677–1694 (2000).
[CrossRef] [PubMed]

1999 (14)

C. Chubb, “Texture-based methods for analyzing elementary visual substances,” J. Math. Psychol. 43, 539–567 (1999).
[CrossRef] [PubMed]

L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

R. Rosenholtz, “A simple saliency model predicts a number of motion popout phenomena,” Vision Res. 39, 3157–3163 (1999).
[CrossRef]

T. V. Papathomas, A. Gorea, A. Feher, T. E. Conway, “Attention-based texture segregation,” Percept. Psychophys. 61, 1399–1410 (1999).
[CrossRef] [PubMed]

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

L. A. Olzak, P. I. Laurinen, “Multiple gain control processes in contrast-contrast phenomena,” Vision Res. 39, 3983–3987 (1999).
[CrossRef]

B. Blakeslee, M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vision Res. 39, 4361–4377 (1999).
[CrossRef]

C. W. G. Clifford, L. M. Vaina, “A computational model of selective deficits in first and second order motion processing,” Vision Res. 39, 113–130 (1999).
[CrossRef] [PubMed]

A. M. Derrington, O. I. Ukkonen, “Second-order motion discrimination by feature-tracking,” Vision Res. 39, 1465–1475 (1999).
[CrossRef] [PubMed]

T. Ledgeway, “Discrimination of the speed and direction of global second-order motion in stochastic displays,” Vision Res. 39, 3710–3720 (1999).
[CrossRef]

G. Mather, L. Murdoch, “Second-order processing of four-stroke apparent motion,” Vision Res. 39, 1795–1802 (1999).
[CrossRef] [PubMed]

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Br. Mapping 7, 67–77 (1999).
[CrossRef]

A. Baloch, S. Grossberg, E. Mingolla, C. A. M. Nogueira, “Neural model of first-order and second-order motion perception and magnocellular dynamics,” J. Opt. Soc. Am. A 16, 953–978 (1999).
[CrossRef]

1998 (4)

E. Barth, C. Zetzsche, I. Rentschler, “Intrinsic two-dimensional features as textons,” J. Opt. Soc. Am. A 15, 1723–1732 (1998).
[CrossRef]

A. T. Smith, T. Ledgeway, “Sensitivity to second-order motion as a function of temporal frequency and eccentricity,” Vision Res. 38, 403–410 (1998).
[CrossRef] [PubMed]

L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detections of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

1997 (7)

S. Nishida, M. Edwards, T. Sato, “Simultaneous motion contrast across space: involvement of second-order motion?” Vision Res. 37, 199–214 (1997).
[CrossRef] [PubMed]

M. W. Greenlee, A. T. Smith, “Detection and discrimination of first- and second-order motion in patients with unilateral brain damage,” J. Neurosci. 17, 804–818 (1997).
[PubMed]

S. J. Cropper, S. T. Hammett, “Adaptation to motion of a second-order pattern: the motion aftereffect is not a general result,” Vision Res. 37, 2247–2259 (1997).
[CrossRef] [PubMed]

K. R. Gegenfurtner, J. E. Brown, J. Rieger, “Interpolation processes in the perception of real and illusory contours,” Perception 26, 1445–1458 (1997).
[CrossRef] [PubMed]

L. A. Olzak, T. D. Wickens, “Discrimination of complex patterns: Orientation information is integrated across spatial scale; spatial-frequency and contrast information ar not,” Perception 26, 1101–1120 (1997).
[CrossRef]

J. M. Zanker, “Second-order motion perception in the peripheral visual field,” J. Opt. Soc. Am. A 14, 1385–1392 (1997).
[CrossRef]

E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
[CrossRef] [PubMed]

1996 (7)

J. P. Thomas, L. A. Olzak, “Uncertainty experiments support the roles of second-order mechanisms in spatial frequency and orientation discriminations,” J. Opt. Soc. Am. A 13, 689–696 (1996).
[CrossRef]

L.-M. Lin, H. R. Wilson, “Fourier and non-Fourier pattern discrimination compared,” Vision Res. 36, 1907–1918 (1996).
[CrossRef] [PubMed]

J. D. Victor, M. Conte, “The role of high-order phase correlations in texture processing,” Vision Res. 36, 1615–1631 (1996).
[CrossRef] [PubMed]

D. L. Ringach, R. Shapley, “Spatial and temporal properties of illusory contours and amodal boundary completion,” Vision Res. 36, 3037–3050 (1996).
[CrossRef] [PubMed]

G. Francis, S. Grossberg, “Cortical dynamics of form and motion integration: persistence, apparent motion, and illusory contours,” Vision Res. 36, 149–173 (1996).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

1995 (12)

M. Edwards, D. R. Badcock, “Global motion perception: no interaction between the first- and second-order motion pathways,” Vision Res. 35, 2589–2602 (1995).
[CrossRef] [PubMed]

G. Mather, S. Anstis, “Second-order texture contrast resolves ambiguous apparent motion,” Perception 24, 1373–1382 (1995).
[CrossRef] [PubMed]

J. T. Petersik, “A comparison of varieties of ‘second-order’ motion,” Vision Res. 35, 507–517 (1995).
[CrossRef] [PubMed]

B. Spehar, L. E. Arend, A. L. Gilchrist, “Contrast contrast: Interactions between spatial and luminance factors.” Rev. Psych. 2, 3–12 (1995).

B. Dresp, C. Bonnet, “Subthreshold summation with illusory contours,” Vision Res. 35, 1071–1078 (1995).
[CrossRef] [PubMed]

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

F. A. A. Kingdom, D. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
[CrossRef] [PubMed]

B. Singer, M. D’Zmura, “Contrast gain control: a bilinear model for chromatic selectivity,” J. Opt. Soc. Am. A 12, 667–685 (1995).
[CrossRef]

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

A. Johnston, C. W. G. Clifford, “Perceived motion of contrast modulated gratings: predictions of the multi-channel gradient model and the role of full-wave rectification,” Vision Res. 35, 1771–1783 (1995).
[CrossRef] [PubMed]

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
[CrossRef] [PubMed]

1994 (5)

J. A. Solomon, G. Sperling, “Full-wave and half-wave rectification in second-order motion perception,” Vision Res. 34, 2239–2257 (1994).
[CrossRef] [PubMed]

A. T. Smith, “Correspondence-based and energy-based detection of second-order motion in human vision,” J. Opt. Soc. Am. A 11, 1940–1948 (1994).
[CrossRef]

C. Chubb, J. Econopouly, M. S. Landy, “Histogram contrast analysis and the visual segregation of IID textures,” J. Opt. Soc. Am. A 11, 2350–2374 (1994).
[CrossRef]

P. de Weerd, J. M. Sprague, E. Vandenbussche, G. A. Orban, “Two stages in visual texture segregation: a lesion study in the cat,” J. Neurosci. 14, (3, Pt. 1), 929–948 (1994).
[PubMed]

J. David Fleet, Keith Langley, “Computational analysis of non-Fourier motion,” Vision Res. 34, 3057–3079 (1994).
[CrossRef] [PubMed]

1993 (9)

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the direction of second-order motion at short stimulus durations,” Vision Res. 33, 1785–1794 (1993).
[CrossRef] [PubMed]

E. H. Adelson, “Perceptual organization and the judgment of brightness,” Science 262, 2042–2044 (1993).
[CrossRef] [PubMed]

J. P. Thomas, L. A. Olzak, S. S. Shimozaki, “The role of Fourier components in discrimination between two types of plaid patterns,” Vision Res. 33, 1573–1579 (1993).
[CrossRef] [PubMed]

J. A. Solomon, G. Sperling, C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
[CrossRef] [PubMed]

D. S. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture-defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
[CrossRef] [PubMed]

Y. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

1992 (2)

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London 266, 509–518 (1992).
[CrossRef]

A. M. Derrington, D. R. Badcock, “Two-stage analysis of the motion of 2-dimensional patterns: What is the first stage?” Vision Res. 32, 691–698 (1992).
[CrossRef] [PubMed]

1991 (1)

M. S. Landy, J. K. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
[CrossRef] [PubMed]

1990 (2)

J. D. Victor, M. M. Conte, “Motion mechanisms have only limited access to form information,” Vision Res. 30, 289–301 (1990).
[CrossRef] [PubMed]

J. Malik, P. Perona, “Preattentive texture discrimination with early vision mechanisms,” J. Opt. Soc. Am. A 7, 923–932 (1990).
[CrossRef] [PubMed]

1989 (3)

C. Chubb, G. Sperling, J. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. U.S.A. 86, 9631–9635 (1989).
[CrossRef] [PubMed]

K. Turano, A. Pantle, “On the mechanism that encodes the movement of contrast variations: Velocity discrimination,” Vision Res. 29, 207–221 (1989).
[CrossRef] [PubMed]

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

1988 (4)

J. R. Bergen, E. H. Adelson, “Early vision and texture perception,” Nature (London) 333, 363–364 (1988).
[CrossRef]

J. D. Victor, “Models for preattentive texture discrimination: Fourier analysis and local feature processing in a unified framework,” Spatial Vision 3, 263–280 (1988).
[CrossRef] [PubMed]

J. D. Victor, “Models for preattentive texture discrimination: Fourier analysis and local feature processing in a unified framework,” Spatial Vision 3, 263–280 (1988).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
[CrossRef] [PubMed]

1987 (1)

J. Beck, A. Sutter, R. Ivry, “Spatial frequency channels and perceptual grouping in texture segregation,” Comput. Vision Graph. Image Process. 37, 299–325 (1987).
[CrossRef]

1986 (1)

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: Non-linearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
[CrossRef] [PubMed]

1985 (2)

T. Caelli, “Three processing characteristics of visual texture segmentation,” Spatial Vision 1, 19–30 (1985).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex grating patterns?” Vision Res. 25, 1869–1878 (1985).
[CrossRef] [PubMed]

1984 (1)

A. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

1976 (2)

A. Pantle, L. Picciano, “A multistable movement display: evidence for two separate motion systems in human vision,” Science 193, 500–502 (1976).
[CrossRef] [PubMed]

G. Sperling, “Movement perception in computer-driven visual displays,” Behav. Res. Methods Instrum. 8, 144–151 (1976).
[CrossRef]

1973 (2)

V. S. Ramachandran, M. V. Rao, T. R. Vidyasagar, “Apparent motion with subjective contours,” Vision Res. 13, 1399–1401 (1973).
[CrossRef] [PubMed]

B. Julesz, E. N. Gilbert, L. A. Shepp, H. L. Frisch, “Inability of humans to discriminate between visual textures that agree in second-order statistics—revisited,” Perception 2, 391–405 (1973).
[CrossRef]

1971 (1)

1970 (1)

1969 (3)

C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation of and size of retinal images,” J. Physiol. 210, 237–260 (1969).

C. Blakemore, P. Sutton, “Size adaptation: a new aftereffect,” Science 166, 245–247 (1969).
[CrossRef] [PubMed]

C. Blakemore, J. Nachmias, P. Sutton, “The perceived spatial frequency shift: evidence for frequency-selective neurons in the human brain,” J. Physiol. 210, 727–750 (1969).

1968 (5)

A. Pantle, R. W. Sekuler, “Size-detecting mechanisms in human vision,” Science 162, 1146–1148 (1968).
[CrossRef] [PubMed]

F. W. Campbell, J. G. Robson, “Applications of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
[PubMed]

G. S. Brindley, W. S. Lewing, “The sensations produced by electrical stimulation of the visual cortex,” J. Physiol. 196, 479–493 (1968).
[PubMed]

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).
[PubMed]

A. S. Gilinsky, “Orientation-specific effects of patterns of adapting light on visual acuity,” J. Opt. Soc. Am. 58, 13–18 (1968).
[CrossRef] [PubMed]

1966 (1)

J. Beck, “Effect of orientation and shape similarity in perceptual grouping,” Percept. Psychophys. 1, 300–302 (1966).
[CrossRef]

1963 (1)

T. N. Wiesel, D. H. Hubel, “Single-cell responses in striate cortex of kittens deprived of vision in one eye,” J. Neurophysiol. 26, 1002–1017 (1963).

1962 (2)

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).
[PubMed]

B. Julesz, “Visual pattern discrimination,” IRE Trans. Inf. Theory IT-8, 84–92 (1962).
[CrossRef]

1959 (1)

D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol. 148, 574–591 (1959).
[PubMed]

Adelson, E. H.

E. H. Adelson, “Perceptual organization and the judgment of brightness,” Science 262, 2042–2044 (1993).
[CrossRef] [PubMed]

J. R. Bergen, E. H. Adelson, “Early vision and texture perception,” Nature (London) 333, 363–364 (1988).
[CrossRef]

Anstis, S.

G. Mather, S. Anstis, “Second-order texture contrast resolves ambiguous apparent motion,” Perception 24, 1373–1382 (1995).
[CrossRef] [PubMed]

Arend, L. E.

B. Spehar, L. E. Arend, A. L. Gilchrist, “Contrast contrast: Interactions between spatial and luminance factors.” Rev. Psych. 2, 3–12 (1995).

Badcock, D. R.

M. Edwards, D. R. Badcock, “Global motion perception: no interaction between the first- and second-order motion pathways,” Vision Res. 35, 2589–2602 (1995).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the direction of second-order motion at short stimulus durations,” Vision Res. 33, 1785–1794 (1993).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “Two-stage analysis of the motion of 2-dimensional patterns: What is the first stage?” Vision Res. 32, 691–698 (1992).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: Non-linearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex grating patterns?” Vision Res. 25, 1869–1878 (1985).
[CrossRef] [PubMed]

Baker, C. L.

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

Y. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

Baloch, A.

Barth, E.

Beck, J.

J. Beck, A. Sutter, R. Ivry, “Spatial frequency channels and perceptual grouping in texture segregation,” Comput. Vision Graph. Image Process. 37, 299–325 (1987).
[CrossRef]

J. Beck, “Effect of orientation and shape similarity in perceptual grouping,” Percept. Psychophys. 1, 300–302 (1966).
[CrossRef]

Bergen, J. K.

M. S. Landy, J. K. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
[CrossRef] [PubMed]

Bergen, J. R.

J. R. Bergen, E. H. Adelson, “Early vision and texture perception,” Nature (London) 333, 363–364 (1988).
[CrossRef]

J. R. Bergen, M. S. Landy, “Computational modeling of visual texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press; Cambridge, Mass., 1991), pp. 253–271.

Blakemore, C.

C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation of and size of retinal images,” J. Physiol. 210, 237–260 (1969).

C. Blakemore, J. Nachmias, P. Sutton, “The perceived spatial frequency shift: evidence for frequency-selective neurons in the human brain,” J. Physiol. 210, 727–750 (1969).

C. Blakemore, P. Sutton, “Size adaptation: a new aftereffect,” Science 166, 245–247 (1969).
[CrossRef] [PubMed]

Blakeslee, B.

B. Blakeslee, M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vision Res. 39, 4361–4377 (1999).
[CrossRef]

Bonnet, C.

B. Dresp, C. Bonnet, “Subthreshold summation with illusory contours,” Vision Res. 35, 1071–1078 (1995).
[CrossRef] [PubMed]

Brindley, G. S.

G. S. Brindley, W. S. Lewing, “The sensations produced by electrical stimulation of the visual cortex,” J. Physiol. 196, 479–493 (1968).
[PubMed]

Brown, J. E.

K. R. Gegenfurtner, J. E. Brown, J. Rieger, “Interpolation processes in the perception of real and illusory contours,” Perception 26, 1445–1458 (1997).
[CrossRef] [PubMed]

Buxton, H.

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London 266, 509–518 (1992).
[CrossRef]

Caelli, T.

T. Caelli, “Three processing characteristics of visual texture segmentation,” Spatial Vision 1, 19–30 (1985).
[CrossRef] [PubMed]

Campbell, F. W.

F. W. Campbell, J. Nachmias, J. Jukes, “Spatial-frequency discrimination in human vision,” J. Opt. Soc. Am. 60, 555–559 (1970).
[CrossRef] [PubMed]

C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation of and size of retinal images,” J. Physiol. 210, 237–260 (1969).

F. W. Campbell, J. G. Robson, “Applications of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
[PubMed]

Cannon, M. W.

M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
[CrossRef] [PubMed]

Cavanagh, P.

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detections of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

Chubb, C.

C. Chubb, J.-H. Nam, “Variance of high contrast textures is sensed using negative half-wave rectification,” Vision Res. 40, 1677–1694 (2000).
[CrossRef] [PubMed]

C. Chubb, “Texture-based methods for analyzing elementary visual substances,” J. Math. Psychol. 43, 539–567 (1999).
[CrossRef] [PubMed]

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

C. Chubb, J. Econopouly, M. S. Landy, “Histogram contrast analysis and the visual segregation of IID textures,” J. Opt. Soc. Am. A 11, 2350–2374 (1994).
[CrossRef]

J. A. Solomon, G. Sperling, C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993).
[CrossRef] [PubMed]

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture-defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, J. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. U.S.A. 86, 9631–9635 (1989).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
[CrossRef] [PubMed]

Clifford, C. W. G.

C. W. G. Clifford, L. M. Vaina, “A computational model of selective deficits in first and second order motion processing,” Vision Res. 39, 113–130 (1999).
[CrossRef] [PubMed]

A. Johnston, C. W. G. Clifford, “Perceived motion of contrast modulated gratings: predictions of the multi-channel gradient model and the role of full-wave rectification,” Vision Res. 35, 1771–1783 (1995).
[CrossRef] [PubMed]

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
[CrossRef] [PubMed]

Conte, M.

J. D. Victor, M. Conte, “The role of high-order phase correlations in texture processing,” Vision Res. 36, 1615–1631 (1996).
[CrossRef] [PubMed]

Conte, M. M.

E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
[CrossRef] [PubMed]

J. D. Victor, M. M. Conte, “Motion mechanisms have only limited access to form information,” Vision Res. 30, 289–301 (1990).
[CrossRef] [PubMed]

J. D. Victor, M. M. Conte, K. Purpura, E. Katz, “Isodipole textures: a window on cortical mechanisms of form processing,” in Early Vision and Beyond, T. V. Papathomas, and all eds., (MIT Press, Cambridge, Mass.1995), p. 99–107.

Conway, T. E.

T. V. Papathomas, A. Gorea, A. Feher, T. E. Conway, “Attention-based texture segregation,” Percept. Psychophys. 61, 1399–1410 (1999).
[CrossRef] [PubMed]

Cowan, W. B.

E. S. Olds, W. B. Cowan, P. Jolicoeur, “Partial orientation pop-out helps difficult search for orientation,” Percept. Psychophys. 62, 1341–1347 (2000).
[CrossRef]

Cowey, A.

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Br. Mapping 7, 67–77 (1999).
[CrossRef]

Cropper, S. J.

S. J. Cropper, S. T. Hammett, “Adaptation to motion of a second-order pattern: the motion aftereffect is not a general result,” Vision Res. 37, 2247–2259 (1997).
[CrossRef] [PubMed]

D’Zmura, M.

David Fleet, J.

J. David Fleet, Keith Langley, “Computational analysis of non-Fourier motion,” Vision Res. 34, 3057–3079 (1994).
[CrossRef] [PubMed]

de Weerd, P.

P. de Weerd, J. M. Sprague, E. Vandenbussche, G. A. Orban, “Two stages in visual texture segregation: a lesion study in the cat,” J. Neurosci. 14, (3, Pt. 1), 929–948 (1994).
[PubMed]

Derrington, A. M.

A. M. Derrington, O. I. Ukkonen, “Second-order motion discrimination by feature-tracking,” Vision Res. 39, 1465–1475 (1999).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the direction of second-order motion at short stimulus durations,” Vision Res. 33, 1785–1794 (1993).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “Two-stage analysis of the motion of 2-dimensional patterns: What is the first stage?” Vision Res. 32, 691–698 (1992).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: Non-linearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex grating patterns?” Vision Res. 25, 1869–1878 (1985).
[CrossRef] [PubMed]

Dresp, B.

B. Dresp, C. Bonnet, “Subthreshold summation with illusory contours,” Vision Res. 35, 1071–1078 (1995).
[CrossRef] [PubMed]

Econopouly, J.

Edwards, M.

S. Nishida, M. Edwards, T. Sato, “Simultaneous motion contrast across space: involvement of second-order motion?” Vision Res. 37, 199–214 (1997).
[CrossRef] [PubMed]

M. Edwards, D. R. Badcock, “Global motion perception: no interaction between the first- and second-order motion pathways,” Vision Res. 35, 2589–2602 (1995).
[CrossRef] [PubMed]

Feher, A.

T. V. Papathomas, A. Gorea, A. Feher, T. E. Conway, “Attention-based texture segregation,” Percept. Psychophys. 61, 1399–1410 (1999).
[CrossRef] [PubMed]

Field, D. S.

D. S. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Francis, G.

G. Francis, S. Grossberg, “Cortical dynamics of form and motion integration: persistence, apparent motion, and illusory contours,” Vision Res. 36, 149–173 (1996).
[CrossRef] [PubMed]

Frisch, H. L.

B. Julesz, E. N. Gilbert, L. A. Shepp, H. L. Frisch, “Inability of humans to discriminate between visual textures that agree in second-order statistics—revisited,” Perception 2, 391–405 (1973).
[CrossRef]

Fullenkamp, S. C.

M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
[CrossRef] [PubMed]

Gegenfurtner, K. R.

K. R. Gegenfurtner, J. E. Brown, J. Rieger, “Interpolation processes in the perception of real and illusory contours,” Perception 26, 1445–1458 (1997).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

Gilbert, E. N.

B. Julesz, E. N. Gilbert, L. A. Shepp, H. L. Frisch, “Inability of humans to discriminate between visual textures that agree in second-order statistics—revisited,” Perception 2, 391–405 (1973).
[CrossRef]

Gilchrist, A. L.

B. Spehar, L. E. Arend, A. L. Gilchrist, “Contrast contrast: Interactions between spatial and luminance factors.” Rev. Psych. 2, 3–12 (1995).

Gilinsky, A. S.

Gorea, A.

T. V. Papathomas, A. Gorea, A. Feher, T. E. Conway, “Attention-based texture segregation,” Percept. Psychophys. 61, 1399–1410 (1999).
[CrossRef] [PubMed]

Graham, N.

N. Graham, “Non-linearities in texture segregation,” in Higher-Order Processing in the Visual System, G. R. Bock, J. A. Goode, eds. (Wiley, New York, 1994), pp. 309–329.

Granlund, G. H.

H. Knutsson, G. H. Granlund, “Texture analysis using two-dimensional quadrature filters,” presented at the IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image Database Management, Pasadena, Calif., Oct. 12–14, 1983.

Greenlee, M. W.

M. W. Greenlee, A. T. Smith, “Detection and discrimination of first- and second-order motion in patients with unilateral brain damage,” J. Neurosci. 17, 804–818 (1997).
[PubMed]

Grossberg, S.

A. Baloch, S. Grossberg, E. Mingolla, C. A. M. Nogueira, “Neural model of first-order and second-order motion perception and magnocellular dynamics,” J. Opt. Soc. Am. A 16, 953–978 (1999).
[CrossRef]

G. Francis, S. Grossberg, “Cortical dynamics of form and motion integration: persistence, apparent motion, and illusory contours,” Vision Res. 36, 149–173 (1996).
[CrossRef] [PubMed]

Hammett, S. T.

S. J. Cropper, S. T. Hammett, “Adaptation to motion of a second-order pattern: the motion aftereffect is not a general result,” Vision Res. 37, 2247–2259 (1997).
[CrossRef] [PubMed]

Hawken, M. J.

K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

Hayes, A.

D. S. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Henning, G. B.

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the direction of second-order motion at short stimulus durations,” Vision Res. 33, 1785–1794 (1993).
[CrossRef] [PubMed]

Hess, R. F.

D. S. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

Hubel, D. H.

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).
[PubMed]

T. N. Wiesel, D. H. Hubel, “Single-cell responses in striate cortex of kittens deprived of vision in one eye,” J. Neurophysiol. 26, 1002–1017 (1963).

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).
[PubMed]

D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol. 148, 574–591 (1959).
[PubMed]

Hwang, D.

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

Ivry, R.

J. Beck, A. Sutter, R. Ivry, “Spatial frequency channels and perceptual grouping in texture segregation,” Comput. Vision Graph. Image Process. 37, 299–325 (1987).
[CrossRef]

Johnston, A.

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
[CrossRef] [PubMed]

A. Johnston, C. W. G. Clifford, “Perceived motion of contrast modulated gratings: predictions of the multi-channel gradient model and the role of full-wave rectification,” Vision Res. 35, 1771–1783 (1995).
[CrossRef] [PubMed]

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London 266, 509–518 (1992).
[CrossRef]

Jolicoeur, P.

E. S. Olds, W. B. Cowan, P. Jolicoeur, “Partial orientation pop-out helps difficult search for orientation,” Percept. Psychophys. 62, 1341–1347 (2000).
[CrossRef]

Jukes, J.

Julesz, B.

B. Julesz, E. N. Gilbert, L. A. Shepp, H. L. Frisch, “Inability of humans to discriminate between visual textures that agree in second-order statistics—revisited,” Perception 2, 391–405 (1973).
[CrossRef]

B. Julesz, “Visual pattern discrimination,” IRE Trans. Inf. Theory IT-8, 84–92 (1962).
[CrossRef]

Katz, E.

J. D. Victor, M. M. Conte, K. Purpura, E. Katz, “Isodipole textures: a window on cortical mechanisms of form processing,” in Early Vision and Beyond, T. V. Papathomas, and all eds., (MIT Press, Cambridge, Mass.1995), p. 99–107.

Keeble, D.

F. A. A. Kingdom, D. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

Kennedy, D.

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Br. Mapping 7, 67–77 (1999).
[CrossRef]

Kingdom, F. A. A.

F. A. A. Kingdom, D. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

Knutsson, H.

H. Knutsson, G. H. Granlund, “Texture analysis using two-dimensional quadrature filters,” presented at the IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image Database Management, Pasadena, Calif., Oct. 12–14, 1983.

Koenderink, J. J.

A. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

Landy, M. S.

S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
[CrossRef] [PubMed]

C. Chubb, J. Econopouly, M. S. Landy, “Histogram contrast analysis and the visual segregation of IID textures,” J. Opt. Soc. Am. A 11, 2350–2374 (1994).
[CrossRef]

M. S. Landy, J. K. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
[CrossRef] [PubMed]

J. R. Bergen, M. S. Landy, “Computational modeling of visual texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press; Cambridge, Mass., 1991), pp. 253–271.

Langley, Keith

J. David Fleet, Keith Langley, “Computational analysis of non-Fourier motion,” Vision Res. 34, 3057–3079 (1994).
[CrossRef] [PubMed]

Laurinen, P. I.

L. A. Olzak, P. I. Laurinen, “Multiple gain control processes in contrast-contrast phenomena,” Vision Res. 39, 3983–3987 (1999).
[CrossRef]

Ledgeway, T.

T. Ledgeway, “Discrimination of the speed and direction of global second-order motion in stochastic displays,” Vision Res. 39, 3710–3720 (1999).
[CrossRef]

A. T. Smith, T. Ledgeway, “Sensitivity to second-order motion as a function of temporal frequency and eccentricity,” Vision Res. 38, 403–410 (1998).
[CrossRef] [PubMed]

Lelkens, A. M.

A. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

Lewing, W. S.

G. S. Brindley, W. S. Lewing, “The sensations produced by electrical stimulation of the visual cortex,” J. Physiol. 196, 479–493 (1968).
[PubMed]

Li, Z.

Z. Li, “Pre-attentive segmentation in the primary visual cortex,” Spatial Vision 13, 25–50 (2000).
[CrossRef] [PubMed]

Lin, L.-M.

L.-M. Lin, H. R. Wilson, “Fourier and non-Fourier pattern discrimination compared,” Vision Res. 36, 1907–1918 (1996).
[CrossRef] [PubMed]

Lu, Z.-L.

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

Malik, J.

Mareschal, I.

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

Mather, G.

G. Mather, L. Murdoch, “Second-order processing of four-stroke apparent motion,” Vision Res. 39, 1795–1802 (1999).
[CrossRef] [PubMed]

G. Mather, S. Anstis, “Second-order texture contrast resolves ambiguous apparent motion,” Perception 24, 1373–1382 (1995).
[CrossRef] [PubMed]

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

McCourt, M. E.

B. Blakeslee, M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vision Res. 39, 4361–4377 (1999).
[CrossRef]

McOwan, P. W.

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London 266, 509–518 (1992).
[CrossRef]

Mingolla, E.

Moulden, B.

F. A. A. Kingdom, D. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

B. Moulden, “Collator units: second-stage orientational filters,” in Higher-Order Processing in the Visual System, G. R. Bock, J. A. Goode, eds. (Wiley, New York, 1994), p. 170–192.

Movshon, J. A.

L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).

Murdoch, L.

G. Mather, L. Murdoch, “Second-order processing of four-stroke apparent motion,” Vision Res. 39, 1795–1802 (1999).
[CrossRef] [PubMed]

Nachmias, J.

Nam, J.-H.

C. Chubb, J.-H. Nam, “Variance of high contrast textures is sensed using negative half-wave rectification,” Vision Res. 40, 1677–1694 (2000).
[CrossRef] [PubMed]

Nishida, S.

S. Nishida, M. Edwards, T. Sato, “Simultaneous motion contrast across space: involvement of second-order motion?” Vision Res. 37, 199–214 (1997).
[CrossRef] [PubMed]

Nogueira, C. A. M.

Nothdurft, H.-C.

H.-C. Nothdurft, “Common properties of visual segmentation,” in Higher-Order Processing in the Visual System, G. R. Bock, J. A. Goode, eds. (Wiley, New York, 1994), pp. 245–268.

O’Keefe, L. P.

L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).

Olds, E. S.

E. S. Olds, W. B. Cowan, P. Jolicoeur, “Partial orientation pop-out helps difficult search for orientation,” Percept. Psychophys. 62, 1341–1347 (2000).
[CrossRef]

Olzak, L. A.

L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

L. A. Olzak, P. I. Laurinen, “Multiple gain control processes in contrast-contrast phenomena,” Vision Res. 39, 3983–3987 (1999).
[CrossRef]

L. A. Olzak, T. D. Wickens, “Discrimination of complex patterns: Orientation information is integrated across spatial scale; spatial-frequency and contrast information ar not,” Perception 26, 1101–1120 (1997).
[CrossRef]

J. P. Thomas, L. A. Olzak, “Uncertainty experiments support the roles of second-order mechanisms in spatial frequency and orientation discriminations,” J. Opt. Soc. Am. A 13, 689–696 (1996).
[CrossRef]

J. P. Thomas, L. A. Olzak, S. S. Shimozaki, “The role of Fourier components in discrimination between two types of plaid patterns,” Vision Res. 33, 1573–1579 (1993).
[CrossRef] [PubMed]

Orban, G. A.

P. de Weerd, J. M. Sprague, E. Vandenbussche, G. A. Orban, “Two stages in visual texture segregation: a lesion study in the cat,” J. Neurosci. 14, (3, Pt. 1), 929–948 (1994).
[PubMed]

Pantle, A.

K. Turano, A. Pantle, “On the mechanism that encodes the movement of contrast variations: Velocity discrimination,” Vision Res. 29, 207–221 (1989).
[CrossRef] [PubMed]

A. Pantle, L. Picciano, “A multistable movement display: evidence for two separate motion systems in human vision,” Science 193, 500–502 (1976).
[CrossRef] [PubMed]

A. Pantle, R. W. Sekuler, “Size-detecting mechanisms in human vision,” Science 162, 1146–1148 (1968).
[CrossRef] [PubMed]

Papathomas, T. V.

T. V. Papathomas, A. Gorea, A. Feher, T. E. Conway, “Attention-based texture segregation,” Percept. Psychophys. 61, 1399–1410 (1999).
[CrossRef] [PubMed]

Perona, P.

Petersik, J. T.

J. T. Petersik, “A comparison of varieties of ‘second-order’ motion,” Vision Res. 35, 507–517 (1995).
[CrossRef] [PubMed]

Picciano, L.

A. Pantle, L. Picciano, “A multistable movement display: evidence for two separate motion systems in human vision,” Science 193, 500–502 (1976).
[CrossRef] [PubMed]

Purpura, K.

J. D. Victor, M. M. Conte, K. Purpura, E. Katz, “Isodipole textures: a window on cortical mechanisms of form processing,” in Early Vision and Beyond, T. V. Papathomas, and all eds., (MIT Press, Cambridge, Mass.1995), p. 99–107.

Ramachandran, V. S.

V. S. Ramachandran, M. V. Rao, T. R. Vidyasagar, “Apparent motion with subjective contours,” Vision Res. 13, 1399–1401 (1973).
[CrossRef] [PubMed]

Rao, M. V.

V. S. Ramachandran, M. V. Rao, T. R. Vidyasagar, “Apparent motion with subjective contours,” Vision Res. 13, 1399–1401 (1973).
[CrossRef] [PubMed]

Rentschler, I.

Rieger, J.

K. R. Gegenfurtner, J. E. Brown, J. Rieger, “Interpolation processes in the perception of real and illusory contours,” Perception 26, 1445–1458 (1997).
[CrossRef] [PubMed]

Ringach, D. L.

D. L. Ringach, R. Shapley, “Spatial and temporal properties of illusory contours and amodal boundary completion,” Vision Res. 36, 3037–3050 (1996).
[CrossRef] [PubMed]

Robson, J. G.

M. B. Sachs, J. Nachmias, J. G. Robson, “Spatial-frequency channels in human vision,” J. Opt. Soc. Am. 61, 1176–1186 (1971).
[CrossRef] [PubMed]

F. W. Campbell, J. G. Robson, “Applications of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
[PubMed]

J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980), pp. 177–214.

Rosenholtz, R.

R. Rosenholtz, “A simple saliency model predicts a number of motion popout phenomena,” Vision Res. 39, 3157–3163 (1999).
[CrossRef]

Sachs, M. B.

Sato, T.

S. Nishida, M. Edwards, T. Sato, “Simultaneous motion contrast across space: involvement of second-order motion?” Vision Res. 37, 199–214 (1997).
[CrossRef] [PubMed]

Seiffert, A. E.

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detections of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

Sekuler, R. W.

A. Pantle, R. W. Sekuler, “Size-detecting mechanisms in human vision,” Science 162, 1146–1148 (1968).
[CrossRef] [PubMed]

Shapley, R.

D. L. Ringach, R. Shapley, “Spatial and temporal properties of illusory contours and amodal boundary completion,” Vision Res. 36, 3037–3050 (1996).
[CrossRef] [PubMed]

Shepp, L. A.

B. Julesz, E. N. Gilbert, L. A. Shepp, H. L. Frisch, “Inability of humans to discriminate between visual textures that agree in second-order statistics—revisited,” Perception 2, 391–405 (1973).
[CrossRef]

Shimozaki, S. S.

J. P. Thomas, L. A. Olzak, S. S. Shimozaki, “The role of Fourier components in discrimination between two types of plaid patterns,” Vision Res. 33, 1573–1579 (1993).
[CrossRef] [PubMed]

Singer, B.

Smith, A. T.

A. T. Smith, T. Ledgeway, “Sensitivity to second-order motion as a function of temporal frequency and eccentricity,” Vision Res. 38, 403–410 (1998).
[CrossRef] [PubMed]

M. W. Greenlee, A. T. Smith, “Detection and discrimination of first- and second-order motion in patients with unilateral brain damage,” J. Neurosci. 17, 804–818 (1997).
[PubMed]

A. T. Smith, “Correspondence-based and energy-based detection of second-order motion in human vision,” J. Opt. Soc. Am. A 11, 1940–1948 (1994).
[CrossRef]

Solomon, J.

C. Chubb, G. Sperling, J. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. U.S.A. 86, 9631–9635 (1989).
[CrossRef] [PubMed]

Solomon, J. A.

J. A. Solomon, G. Sperling, “Full-wave and half-wave rectification in second-order motion perception,” Vision Res. 34, 2239–2257 (1994).
[CrossRef] [PubMed]

J. A. Solomon, G. Sperling, C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993).
[CrossRef] [PubMed]

Spehar, B.

B. Spehar, L. E. Arend, A. L. Gilchrist, “Contrast contrast: Interactions between spatial and luminance factors.” Rev. Psych. 2, 3–12 (1995).

Sperling, G.

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

J. A. Solomon, G. Sperling, “Full-wave and half-wave rectification in second-order motion perception,” Vision Res. 34, 2239–2257 (1994).
[CrossRef] [PubMed]

J. A. Solomon, G. Sperling, C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993).
[CrossRef] [PubMed]

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture-defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, J. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. U.S.A. 86, 9631–9635 (1989).
[CrossRef] [PubMed]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
[CrossRef] [PubMed]

G. Sperling, “Movement perception in computer-driven visual displays,” Behav. Res. Methods Instrum. 8, 144–151 (1976).
[CrossRef]

Sprague, J. M.

P. de Weerd, J. M. Sprague, E. Vandenbussche, G. A. Orban, “Two stages in visual texture segregation: a lesion study in the cat,” J. Neurosci. 14, (3, Pt. 1), 929–948 (1994).
[PubMed]

Sutter, A.

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

J. Beck, A. Sutter, R. Ivry, “Spatial frequency channels and perceptual grouping in texture segregation,” Comput. Vision Graph. Image Process. 37, 299–325 (1987).
[CrossRef]

Sutton, P.

C. Blakemore, P. Sutton, “Size adaptation: a new aftereffect,” Science 166, 245–247 (1969).
[CrossRef] [PubMed]

C. Blakemore, J. Nachmias, P. Sutton, “The perceived spatial frequency shift: evidence for frequency-selective neurons in the human brain,” J. Physiol. 210, 727–750 (1969).

Taub, E.

E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
[CrossRef] [PubMed]

Thomas, J. P.

L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

J. P. Thomas, L. A. Olzak, “Uncertainty experiments support the roles of second-order mechanisms in spatial frequency and orientation discriminations,” J. Opt. Soc. Am. A 13, 689–696 (1996).
[CrossRef]

J. P. Thomas, L. A. Olzak, S. S. Shimozaki, “The role of Fourier components in discrimination between two types of plaid patterns,” Vision Res. 33, 1573–1579 (1993).
[CrossRef] [PubMed]

Turano, K.

K. Turano, A. Pantle, “On the mechanism that encodes the movement of contrast variations: Velocity discrimination,” Vision Res. 29, 207–221 (1989).
[CrossRef] [PubMed]

Ukkonen, O. I.

A. M. Derrington, O. I. Ukkonen, “Second-order motion discrimination by feature-tracking,” Vision Res. 39, 1465–1475 (1999).
[CrossRef] [PubMed]

Vaina, L. M.

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Br. Mapping 7, 67–77 (1999).
[CrossRef]

C. W. G. Clifford, L. M. Vaina, “A computational model of selective deficits in first and second order motion processing,” Vision Res. 39, 113–130 (1999).
[CrossRef] [PubMed]

Vandenbussche, E.

P. de Weerd, J. M. Sprague, E. Vandenbussche, G. A. Orban, “Two stages in visual texture segregation: a lesion study in the cat,” J. Neurosci. 14, (3, Pt. 1), 929–948 (1994).
[PubMed]

Victor, J. D.

E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
[CrossRef] [PubMed]

J. D. Victor, M. Conte, “The role of high-order phase correlations in texture processing,” Vision Res. 36, 1615–1631 (1996).
[CrossRef] [PubMed]

J. D. Victor, M. M. Conte, “Motion mechanisms have only limited access to form information,” Vision Res. 30, 289–301 (1990).
[CrossRef] [PubMed]

J. D. Victor, “Models for preattentive texture discrimination: Fourier analysis and local feature processing in a unified framework,” Spatial Vision 3, 263–280 (1988).
[CrossRef] [PubMed]

J. D. Victor, “Models for preattentive texture discrimination: Fourier analysis and local feature processing in a unified framework,” Spatial Vision 3, 263–280 (1988).
[CrossRef] [PubMed]

J. D. Victor, M. M. Conte, K. Purpura, E. Katz, “Isodipole textures: a window on cortical mechanisms of form processing,” in Early Vision and Beyond, T. V. Papathomas, and all eds., (MIT Press, Cambridge, Mass.1995), p. 99–107.

Vidyasagar, T. R.

V. S. Ramachandran, M. V. Rao, T. R. Vidyasagar, “Apparent motion with subjective contours,” Vision Res. 13, 1399–1401 (1973).
[CrossRef] [PubMed]

Werkhoven, P.

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture-defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

Wickens, T. D.

L. A. Olzak, T. D. Wickens, “Discrimination of complex patterns: Orientation information is integrated across spatial scale; spatial-frequency and contrast information ar not,” Perception 26, 1101–1120 (1997).
[CrossRef]

Wiesel, T. N.

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).
[PubMed]

T. N. Wiesel, D. H. Hubel, “Single-cell responses in striate cortex of kittens deprived of vision in one eye,” J. Neurophysiol. 26, 1002–1017 (1963).

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).
[PubMed]

D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol. 148, 574–591 (1959).
[PubMed]

Wilson, H. R.

L.-M. Lin, H. R. Wilson, “Fourier and non-Fourier pattern discrimination compared,” Vision Res. 36, 1907–1918 (1996).
[CrossRef] [PubMed]

H. R. Wilson, “The role of second-order motion signals in coherence and transparency,” in Higher-Order Processing in the Visual System, G. R. Bock, J. A. Goode, eds. (Wiley, New York1994), pp. 227–244.

Wolfson, S. S.

S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
[CrossRef] [PubMed]

Zanker, J. M.

J. M. Zanker, “Second-order motion perception in the peripheral visual field,” J. Opt. Soc. Am. A 14, 1385–1392 (1997).
[CrossRef]

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
[CrossRef] [PubMed]

Zetzsche, C.

Zhou, Y.

Y. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

Behav. Res. Methods Instrum. (1)

G. Sperling, “Movement perception in computer-driven visual displays,” Behav. Res. Methods Instrum. 8, 144–151 (1976).
[CrossRef]

Comput. Vision Graph. Image Process. (1)

J. Beck, A. Sutter, R. Ivry, “Spatial frequency channels and perceptual grouping in texture segregation,” Comput. Vision Graph. Image Process. 37, 299–325 (1987).
[CrossRef]

Hum. Br. Mapping (1)

L. M. Vaina, A. Cowey, D. Kennedy, “Perception of first- and second-order motion: separable neurological mechanisms?” Hum. Br. Mapping 7, 67–77 (1999).
[CrossRef]

IRE Trans. Inf. Theory (1)

B. Julesz, “Visual pattern discrimination,” IRE Trans. Inf. Theory IT-8, 84–92 (1962).
[CrossRef]

J. Math. Psychol. (1)

C. Chubb, “Texture-based methods for analyzing elementary visual substances,” J. Math. Psychol. 43, 539–567 (1999).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

T. N. Wiesel, D. H. Hubel, “Single-cell responses in striate cortex of kittens deprived of vision in one eye,” J. Neurophysiol. 26, 1002–1017 (1963).

J. Neurosci. (2)

P. de Weerd, J. M. Sprague, E. Vandenbussche, G. A. Orban, “Two stages in visual texture segregation: a lesion study in the cat,” J. Neurosci. 14, (3, Pt. 1), 929–948 (1994).
[PubMed]

M. W. Greenlee, A. T. Smith, “Detection and discrimination of first- and second-order motion in patients with unilateral brain damage,” J. Neurosci. 17, 804–818 (1997).
[PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (9)

A. T. Smith, “Correspondence-based and energy-based detection of second-order motion in human vision,” J. Opt. Soc. Am. A 11, 1940–1948 (1994).
[CrossRef]

C. Chubb, J. Econopouly, M. S. Landy, “Histogram contrast analysis and the visual segregation of IID textures,” J. Opt. Soc. Am. A 11, 2350–2374 (1994).
[CrossRef]

A. Baloch, S. Grossberg, E. Mingolla, C. A. M. Nogueira, “Neural model of first-order and second-order motion perception and magnocellular dynamics,” J. Opt. Soc. Am. A 16, 953–978 (1999).
[CrossRef]

E. Barth, C. Zetzsche, I. Rentschler, “Intrinsic two-dimensional features as textons,” J. Opt. Soc. Am. A 15, 1723–1732 (1998).
[CrossRef]

J. M. Zanker, “Second-order motion perception in the peripheral visual field,” J. Opt. Soc. Am. A 14, 1385–1392 (1997).
[CrossRef]

C. Chubb, G. Sperling, “Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception,” J. Opt. Soc. Am. A 5, 1986–2007 (1988).
[CrossRef] [PubMed]

J. Malik, P. Perona, “Preattentive texture discrimination with early vision mechanisms,” J. Opt. Soc. Am. A 7, 923–932 (1990).
[CrossRef] [PubMed]

J. P. Thomas, L. A. Olzak, “Uncertainty experiments support the roles of second-order mechanisms in spatial frequency and orientation discriminations,” J. Opt. Soc. Am. A 13, 689–696 (1996).
[CrossRef]

B. Singer, M. D’Zmura, “Contrast gain control: a bilinear model for chromatic selectivity,” J. Opt. Soc. Am. A 12, 667–685 (1995).
[CrossRef]

J. Physiol. (7)

D. H. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).
[PubMed]

C. Blakemore, F. W. Campbell, “On the existence of neurons in the human visual system selectively sensitive to the orientation of and size of retinal images,” J. Physiol. 210, 237–260 (1969).

G. S. Brindley, W. S. Lewing, “The sensations produced by electrical stimulation of the visual cortex,” J. Physiol. 196, 479–493 (1968).
[PubMed]

D. H. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol. 148, 574–591 (1959).
[PubMed]

D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).
[PubMed]

C. Blakemore, J. Nachmias, P. Sutton, “The perceived spatial frequency shift: evidence for frequency-selective neurons in the human brain,” J. Physiol. 210, 727–750 (1969).

F. W. Campbell, J. G. Robson, “Applications of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
[PubMed]

Nature (London) (1)

J. R. Bergen, E. H. Adelson, “Early vision and texture perception,” Nature (London) 333, 363–364 (1988).
[CrossRef]

Percept. Psychophys. (3)

J. Beck, “Effect of orientation and shape similarity in perceptual grouping,” Percept. Psychophys. 1, 300–302 (1966).
[CrossRef]

T. V. Papathomas, A. Gorea, A. Feher, T. E. Conway, “Attention-based texture segregation,” Percept. Psychophys. 61, 1399–1410 (1999).
[CrossRef] [PubMed]

E. S. Olds, W. B. Cowan, P. Jolicoeur, “Partial orientation pop-out helps difficult search for orientation,” Percept. Psychophys. 62, 1341–1347 (2000).
[CrossRef]

Perception (4)

L. A. Olzak, T. D. Wickens, “Discrimination of complex patterns: Orientation information is integrated across spatial scale; spatial-frequency and contrast information ar not,” Perception 26, 1101–1120 (1997).
[CrossRef]

B. Julesz, E. N. Gilbert, L. A. Shepp, H. L. Frisch, “Inability of humans to discriminate between visual textures that agree in second-order statistics—revisited,” Perception 2, 391–405 (1973).
[CrossRef]

K. R. Gegenfurtner, J. E. Brown, J. Rieger, “Interpolation processes in the perception of real and illusory contours,” Perception 26, 1445–1458 (1997).
[CrossRef] [PubMed]

G. Mather, S. Anstis, “Second-order texture contrast resolves ambiguous apparent motion,” Perception 24, 1373–1382 (1995).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. Chubb, G. Sperling, J. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. U.S.A. 86, 9631–9635 (1989).
[CrossRef] [PubMed]

Proc. R. Soc. London (1)

A. Johnston, P. W. McOwan, H. Buxton, “A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells,” Proc. R. Soc. London 266, 509–518 (1992).
[CrossRef]

Rev. Psych. (1)

B. Spehar, L. E. Arend, A. L. Gilchrist, “Contrast contrast: Interactions between spatial and luminance factors.” Rev. Psych. 2, 3–12 (1995).

Science (5)

E. H. Adelson, “Perceptual organization and the judgment of brightness,” Science 262, 2042–2044 (1993).
[CrossRef] [PubMed]

A. Pantle, R. W. Sekuler, “Size-detecting mechanisms in human vision,” Science 162, 1146–1148 (1968).
[CrossRef] [PubMed]

C. Blakemore, P. Sutton, “Size adaptation: a new aftereffect,” Science 166, 245–247 (1969).
[CrossRef] [PubMed]

Y. Zhou, C. L. Baker, “A processing stream in mammalian visual cortex neurons for non-Fourier responses,” Science 261, 98–101 (1993).
[CrossRef] [PubMed]

A. Pantle, L. Picciano, “A multistable movement display: evidence for two separate motion systems in human vision,” Science 193, 500–502 (1976).
[CrossRef] [PubMed]

Spatial Vision (5)

P. Cavanagh, G. Mather, “Motion: the long and short of it,” Spatial Vision 4, 103–129 (1989).
[CrossRef] [PubMed]

T. Caelli, “Three processing characteristics of visual texture segmentation,” Spatial Vision 1, 19–30 (1985).
[CrossRef] [PubMed]

Z. Li, “Pre-attentive segmentation in the primary visual cortex,” Spatial Vision 13, 25–50 (2000).
[CrossRef] [PubMed]

J. D. Victor, “Models for preattentive texture discrimination: Fourier analysis and local feature processing in a unified framework,” Spatial Vision 3, 263–280 (1988).
[CrossRef] [PubMed]

J. D. Victor, “Models for preattentive texture discrimination: Fourier analysis and local feature processing in a unified framework,” Spatial Vision 3, 263–280 (1988).
[CrossRef] [PubMed]

Vision Res. (47)

J. P. Thomas, L. A. Olzak, S. S. Shimozaki, “The role of Fourier components in discrimination between two types of plaid patterns,” Vision Res. 33, 1573–1579 (1993).
[CrossRef] [PubMed]

L. A. Olzak, P. I. Laurinen, “Multiple gain control processes in contrast-contrast phenomena,” Vision Res. 39, 3983–3987 (1999).
[CrossRef]

J. A. Solomon, G. Sperling, C. Chubb, “The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation,” Vision Res. 33, 2671–2683 (1993).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “Spatial interactions in apparent contrast: individual differences in enhancement and suppression effects,” Vision Res. 33, 1685–1695 (1993).
[CrossRef] [PubMed]

M. W. Cannon, S. C. Fullenkamp, “A model for inhibitory lateral interaction effects in perceived contrast,” Vision Res. 36, 1115–1125 (1996).
[CrossRef] [PubMed]

C. W. G. Clifford, L. M. Vaina, “A computational model of selective deficits in first and second order motion processing,” Vision Res. 39, 113–130 (1999).
[CrossRef] [PubMed]

S. J. Cropper, S. T. Hammett, “Adaptation to motion of a second-order pattern: the motion aftereffect is not a general result,” Vision Res. 37, 2247–2259 (1997).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “Two-stage analysis of the motion of 2-dimensional patterns: What is the first stage?” Vision Res. 32, 691–698 (1992).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, G. B. Henning, “Discriminating the direction of second-order motion at short stimulus durations,” Vision Res. 33, 1785–1794 (1993).
[CrossRef] [PubMed]

A. M. Derrington, O. I. Ukkonen, “Second-order motion discrimination by feature-tracking,” Vision Res. 39, 1465–1475 (1999).
[CrossRef] [PubMed]

M. Edwards, D. R. Badcock, “Global motion perception: no interaction between the first- and second-order motion pathways,” Vision Res. 35, 2589–2602 (1995).
[CrossRef] [PubMed]

J. David Fleet, Keith Langley, “Computational analysis of non-Fourier motion,” Vision Res. 34, 3057–3079 (1994).
[CrossRef] [PubMed]

B. Blakeslee, M. E. McCourt, “A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction,” Vision Res. 39, 4361–4377 (1999).
[CrossRef]

K. R. Gegenfurtner, M. J. Hawken, “Perceived velocity of luminance, chromatic and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

T. Ledgeway, “Discrimination of the speed and direction of global second-order motion in stochastic displays,” Vision Res. 39, 3710–3720 (1999).
[CrossRef]

D. L. Ringach, R. Shapley, “Spatial and temporal properties of illusory contours and amodal boundary completion,” Vision Res. 36, 3037–3050 (1996).
[CrossRef] [PubMed]

G. Francis, S. Grossberg, “Cortical dynamics of form and motion integration: persistence, apparent motion, and illusory contours,” Vision Res. 36, 149–173 (1996).
[CrossRef] [PubMed]

B. Dresp, C. Bonnet, “Subthreshold summation with illusory contours,” Vision Res. 35, 1071–1078 (1995).
[CrossRef] [PubMed]

V. S. Ramachandran, M. V. Rao, T. R. Vidyasagar, “Apparent motion with subjective contours,” Vision Res. 13, 1399–1401 (1973).
[CrossRef] [PubMed]

G. Mather, L. Murdoch, “Second-order processing of four-stroke apparent motion,” Vision Res. 39, 1795–1802 (1999).
[CrossRef] [PubMed]

S. Nishida, M. Edwards, T. Sato, “Simultaneous motion contrast across space: involvement of second-order motion?” Vision Res. 37, 199–214 (1997).
[CrossRef] [PubMed]

J. T. Petersik, “A comparison of varieties of ‘second-order’ motion,” Vision Res. 35, 507–517 (1995).
[CrossRef] [PubMed]

A. E. Seiffert, P. Cavanagh, “Position displacement, not velocity, is the cue to motion detections of second-order stimuli,” Vision Res. 38, 3569–3582 (1998).
[CrossRef]

A. M. Lelkens, J. J. Koenderink, “Illusory motion in visual displays,” Vision Res. 24, 1083–1090 (1984).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “Separate detectors for simple and complex grating patterns?” Vision Res. 25, 1869–1878 (1985).
[CrossRef] [PubMed]

A. M. Derrington, D. R. Badcock, “Detection of spatial beats: Non-linearity or contrast increment detection?” Vision Res. 26, 343–348 (1986).
[CrossRef] [PubMed]

K. Turano, A. Pantle, “On the mechanism that encodes the movement of contrast variations: Velocity discrimination,” Vision Res. 29, 207–221 (1989).
[CrossRef] [PubMed]

S. S. Wolfson, M. S. Landy, “Discrimination of orientation-defined texture edges,” Vision Res. 35, 2863–2877 (1995).
[CrossRef] [PubMed]

A. Sutter, D. Hwang, “A comparison of the dynamics of simple (Fourier) and complex (non-Fourier) mechanisms in texture segregation,” Vision Res. 39, 1943–1962 (1999).
[CrossRef] [PubMed]

J. D. Victor, M. Conte, “The role of high-order phase correlations in texture processing,” Vision Res. 36, 1615–1631 (1996).
[CrossRef] [PubMed]

L. A. Olzak, J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231–256 (1999).
[CrossRef] [PubMed]

D. S. Field, A. Hayes, R. F. Hess, “Contour integration by the human visual system: evidence for a local association field,” Vision Res. 33, 173–193 (1993).
[CrossRef] [PubMed]

L.-M. Lin, H. R. Wilson, “Fourier and non-Fourier pattern discrimination compared,” Vision Res. 36, 1907–1918 (1996).
[CrossRef] [PubMed]

A. Sutter, G. Sperling, C. Chubb, “Measuring the spatial frequency selectivity of second-order texture mechanisms,” Vision Res. 35, 915–924 (1995).
[CrossRef] [PubMed]

F. A. A. Kingdom, D. Keeble, B. Moulden, “Sensitivity to orientation modulation in micropattern-based textures,” Vision Res. 35, 79–91 (1995).
[CrossRef] [PubMed]

R. Rosenholtz, “A simple saliency model predicts a number of motion popout phenomena,” Vision Res. 39, 3157–3163 (1999).
[CrossRef]

M. S. Landy, J. K. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679–691 (1991).
[CrossRef] [PubMed]

C. Chubb, J.-H. Nam, “Variance of high contrast textures is sensed using negative half-wave rectification,” Vision Res. 40, 1677–1694 (2000).
[CrossRef] [PubMed]

Z.-L. Lu, G. Sperling, “The functional architecture of human visual motion perception,” Vision Res. 35, 2697–2722 (1995).
[CrossRef] [PubMed]

J. M. Zanker, “Theta motion: a paradoxical stimulus to explore higher order motion extraction,” Vision Res. 33, 553–569 (1993).
[CrossRef] [PubMed]

A. Johnston, C. W. G. Clifford, “Perceived motion of contrast modulated gratings: predictions of the multi-channel gradient model and the role of full-wave rectification,” Vision Res. 35, 1771–1783 (1995).
[CrossRef] [PubMed]

A. Johnston, C. W. G. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995).
[CrossRef] [PubMed]

E. Taub, J. D. Victor, M. M. Conte, “Nonlinear preprocessing in short-range motion,” Vision Res. 37, 1459–1477 (1997).
[CrossRef] [PubMed]

A. T. Smith, T. Ledgeway, “Sensitivity to second-order motion as a function of temporal frequency and eccentricity,” Vision Res. 38, 403–410 (1998).
[CrossRef] [PubMed]

J. A. Solomon, G. Sperling, “Full-wave and half-wave rectification in second-order motion perception,” Vision Res. 34, 2239–2257 (1994).
[CrossRef] [PubMed]

J. D. Victor, M. M. Conte, “Motion mechanisms have only limited access to form information,” Vision Res. 30, 289–301 (1990).
[CrossRef] [PubMed]

P. Werkhoven, G. Sperling, C. Chubb, “The dimensionality of texture-defined motion: a single channel theory,” Vision Res. 33, 463–485 (1993).
[CrossRef] [PubMed]

Visual Neurosci. (2)

L. P. O’Keefe, J. A. Movshon, “Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey,” Visual Neurosci. 15, 305–317 (1998).

I. Mareschal, C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999).
[CrossRef]

Other (8)

N. Graham, “Non-linearities in texture segregation,” in Higher-Order Processing in the Visual System, G. R. Bock, J. A. Goode, eds. (Wiley, New York, 1994), pp. 309–329.

J. R. Bergen, M. S. Landy, “Computational modeling of visual texture segregation,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press; Cambridge, Mass., 1991), pp. 253–271.

J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980), pp. 177–214.

H. Knutsson, G. H. Granlund, “Texture analysis using two-dimensional quadrature filters,” presented at the IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image Database Management, Pasadena, Calif., Oct. 12–14, 1983.

J. D. Victor, M. M. Conte, K. Purpura, E. Katz, “Isodipole textures: a window on cortical mechanisms of form processing,” in Early Vision and Beyond, T. V. Papathomas, and all eds., (MIT Press, Cambridge, Mass.1995), p. 99–107.

B. Moulden, “Collator units: second-stage orientational filters,” in Higher-Order Processing in the Visual System, G. R. Bock, J. A. Goode, eds. (Wiley, New York, 1994), p. 170–192.

H.-C. Nothdurft, “Common properties of visual segmentation,” in Higher-Order Processing in the Visual System, G. R. Bock, J. A. Goode, eds. (Wiley, New York, 1994), pp. 245–268.

H. R. Wilson, “The role of second-order motion signals in coherence and transparency,” in Higher-Order Processing in the Visual System, G. R. Bock, J. A. Goode, eds. (Wiley, New York1994), pp. 227–244.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics