Abstract

From both a fundamental and a clinical point of view, it is necessary to know the distribution of the eye’s aberrations in the normal population and to be able to describe them as efficiently as possible. We used a modified Hartmann–Shack wave-front sensor to measure the monochromatic wave aberration of both eyes for 109 normal human subjects across a 5.7-mm pupil. We analyzed the distribution of the eye’s aberrations in the population and found that most Zernike modes are relatively uncorrelated with each other across the population. A principal components analysis was applied to our wave-aberration measurements with the resulting principal components providing only a slightly more compact description of the population data than Zernike modes. This indicates that Zernike modes are efficient basis functions for describing the eye’s wave aberration. Even though there appears to be a random variation in the eye’s aberrations from subject to subject, many aberrations in the left eye were found to be significantly correlated with their counterparts in the right eye.

© 2001 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  2. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  3. D. T. Miller, “Retinal imaging and vision at the frontiers of adaptive optics,” Phys. Today 53, 31–36 (2000).
    [CrossRef]
  4. W. T. Welford, Aberrations of Optical Systems (Hilger, Bristol, UK, 1986).
  5. W. J. Smith, Modern Optical Engineering: The Design of Optical Systems (McGraw-Hill, New York, 1990).
  6. J. C. Wyant, K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1992), Vol. XI, pp. 1–53.
  7. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
    [CrossRef] [PubMed]
  8. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]
  9. J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of the wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  10. J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave front of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
    [CrossRef]
  11. I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
    [CrossRef]
  12. J. Schwiegerling, J. E. Greivenkamp, “Using corneal height maps and polynomial decomposition to determine corneal aberrations,” Optom. Vision Sci. 74, 906–915 (1997).
    [CrossRef]
  13. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1985).
  14. G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
    [CrossRef] [PubMed]
  15. M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. J. 7, 766–795 (1962).
  16. A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).
  17. I. T. Joliffe, Principal Components Analysis (Springer–Verlag, New York, 1986).
  18. (Laser Institute of America, Orlando, Fla., 1993).
  19. H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [CrossRef]
  20. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998–1006 (1980).
    [CrossRef]
  21. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35of OSA Trends in Optics and Photonics Series(Optical Society of America, Washington, D.C., 2000), pp. 232–244.
  22. R. D. Sperduto, D. Seigel, J. Roberts, M. Rowland, “Prevalence of myopia in the United States,” Arch. Ophthalmol. (Chicago) 101, 405–407 (1983).
    [CrossRef]
  23. H. J. Wyatt, “The form of the human pupil,” Vision Res. 35, 2021–2036 (1995).
    [CrossRef] [PubMed]
  24. M. Rynders, B. Lidkea, W. Chisholm, L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995).
    [CrossRef]
  25. C. T. Naugler, M. D. Ludman, “A case-control study of fluctuating dermatoglyphic asymmetry as a risk marker for developmental delay,” Am. J. Med. Genet. 26, 11–14 (1996).
    [CrossRef]
  26. H. Cummins, C. Midlo, Finger Prints, Palms and Soles: An Introduction to Dermatoglyphics (Blakiston, Philadelphia, 1943).
  27. J. P. Carroll, “Component and correlation ametropia,” Am. J. Optom. Physiol. Opt. 59, 28–33 (1982).
    [CrossRef] [PubMed]
  28. R. Navarro, J. Santamarı́a, J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
    [CrossRef] [PubMed]
  29. S. G. El Hage, F. Berny, “Contribution of the crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973).
    [CrossRef] [PubMed]

2001 (1)

2000 (1)

D. T. Miller, “Retinal imaging and vision at the frontiers of adaptive optics,” Phys. Today 53, 31–36 (2000).
[CrossRef]

1999 (1)

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

1998 (2)

1997 (3)

1996 (1)

C. T. Naugler, M. D. Ludman, “A case-control study of fluctuating dermatoglyphic asymmetry as a risk marker for developmental delay,” Am. J. Med. Genet. 26, 11–14 (1996).
[CrossRef]

1995 (2)

1994 (1)

1985 (1)

1984 (1)

1983 (1)

R. D. Sperduto, D. Seigel, J. Roberts, M. Rowland, “Prevalence of myopia in the United States,” Arch. Ophthalmol. (Chicago) 101, 405–407 (1983).
[CrossRef]

1982 (1)

J. P. Carroll, “Component and correlation ametropia,” Am. J. Optom. Physiol. Opt. 59, 28–33 (1982).
[CrossRef] [PubMed]

1980 (1)

1977 (1)

1976 (1)

1973 (1)

1962 (1)

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. J. 7, 766–795 (1962).

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35of OSA Trends in Optics and Photonics Series(Optical Society of America, Washington, D.C., 2000), pp. 232–244.

Aragon, J. L.

Artal, P.

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
[CrossRef]

Berny, F.

Berrio, E.

Bescós, J.

Bille, J. F.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1985).

Burns, S. A.

Carroll, J. P.

J. P. Carroll, “Component and correlation ametropia,” Am. J. Optom. Physiol. Opt. 59, 28–33 (1982).
[CrossRef] [PubMed]

Charman, W. N.

Chisholm, W.

Creath, K.

J. C. Wyant, K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1992), Vol. XI, pp. 1–53.

Cummins, H.

H. Cummins, C. Midlo, Finger Prints, Palms and Soles: An Introduction to Dermatoglyphics (Blakiston, Philadelphia, 1943).

El Hage, S. G.

Geraghty, E.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Goelz, S.

Gonzalez, C.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Greivenkamp, J. E.

J. Schwiegerling, J. E. Greivenkamp, “Using corneal height maps and polynomial decomposition to determine corneal aberrations,” Optom. Vision Sci. 74, 906–915 (1997).
[CrossRef]

Grimm, B.

Guirao, A.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

He, J. C.

Hofer, H.

Howland, B.

Howland, H. C.

Iglesias, I.

Joliffe, I. T.

I. T. Joliffe, Principal Components Analysis (Springer–Verlag, New York, 1986).

Liang, J.

Lidkea, B.

Ludman, M. D.

C. T. Naugler, M. D. Ludman, “A case-control study of fluctuating dermatoglyphic asymmetry as a risk marker for developmental delay,” Am. J. Med. Genet. 26, 11–14 (1996).
[CrossRef]

Marcos, S.

Midlo, C.

H. Cummins, C. Midlo, Finger Prints, Palms and Soles: An Introduction to Dermatoglyphics (Blakiston, Philadelphia, 1943).

Miller, D. T.

Naugler, C. T.

C. T. Naugler, M. D. Ludman, “A case-control study of fluctuating dermatoglyphic asymmetry as a risk marker for developmental delay,” Am. J. Med. Genet. 26, 11–14 (1996).
[CrossRef]

Navarro, R.

Noll, R. J.

Norrby, S.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Redondo, M.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Roberts, J.

R. D. Sperduto, D. Seigel, J. Roberts, M. Rowland, “Prevalence of myopia in the United States,” Arch. Ophthalmol. (Chicago) 101, 405–407 (1983).
[CrossRef]

Rowland, M.

R. D. Sperduto, D. Seigel, J. Roberts, M. Rowland, “Prevalence of myopia in the United States,” Arch. Ophthalmol. (Chicago) 101, 405–407 (1983).
[CrossRef]

Rynders, M.

Santamari´a, J.

Schwiegerling, J.

J. Schwiegerling, J. E. Greivenkamp, “Using corneal height maps and polynomial decomposition to determine corneal aberrations,” Optom. Vision Sci. 74, 906–915 (1997).
[CrossRef]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35of OSA Trends in Optics and Photonics Series(Optical Society of America, Washington, D.C., 2000), pp. 232–244.

Seigel, D.

R. D. Sperduto, D. Seigel, J. Roberts, M. Rowland, “Prevalence of myopia in the United States,” Arch. Ophthalmol. (Chicago) 101, 405–407 (1983).
[CrossRef]

Singer, B.

Smirnov, M. S.

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. J. 7, 766–795 (1962).

Smith, W. J.

W. J. Smith, Modern Optical Engineering: The Design of Optical Systems (McGraw-Hill, New York, 1990).

Southwell, W. H.

Sperduto, R. D.

R. D. Sperduto, D. Seigel, J. Roberts, M. Rowland, “Prevalence of myopia in the United States,” Arch. Ophthalmol. (Chicago) 101, 405–407 (1983).
[CrossRef]

Thibos, L. N.

M. Rynders, B. Lidkea, W. Chisholm, L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995).
[CrossRef]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35of OSA Trends in Optics and Photonics Series(Optical Society of America, Washington, D.C., 2000), pp. 232–244.

Walsh, G.

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35of OSA Trends in Optics and Photonics Series(Optical Society of America, Washington, D.C., 2000), pp. 232–244.

Webb, R. H.

Welford, W. T.

W. T. Welford, Aberrations of Optical Systems (Hilger, Bristol, UK, 1986).

Williams, D. R.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1985).

Wyant, J. C.

J. C. Wyant, K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1992), Vol. XI, pp. 1–53.

Wyatt, H. J.

H. J. Wyatt, “The form of the human pupil,” Vision Res. 35, 2021–2036 (1995).
[CrossRef] [PubMed]

Am. J. Med. Genet. (1)

C. T. Naugler, M. D. Ludman, “A case-control study of fluctuating dermatoglyphic asymmetry as a risk marker for developmental delay,” Am. J. Med. Genet. 26, 11–14 (1996).
[CrossRef]

Am. J. Optom. Physiol. Opt. (1)

J. P. Carroll, “Component and correlation ametropia,” Am. J. Optom. Physiol. Opt. 59, 28–33 (1982).
[CrossRef] [PubMed]

Arch. Ophthalmol. (Chicago) (1)

R. D. Sperduto, D. Seigel, J. Roberts, M. Rowland, “Prevalence of myopia in the United States,” Arch. Ophthalmol. (Chicago) 101, 405–407 (1983).
[CrossRef]

Biophys. J. (1)

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophys. J. 7, 766–795 (1962).

Invest. Ophthalmol. Visual Sci. (1)

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (9)

M. Rynders, B. Lidkea, W. Chisholm, L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995).
[CrossRef]

R. Navarro, J. Santamarı́a, J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[CrossRef] [PubMed]

J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of the wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave front of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
[CrossRef] [PubMed]

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

Optom. Vision Sci. (1)

J. Schwiegerling, J. E. Greivenkamp, “Using corneal height maps and polynomial decomposition to determine corneal aberrations,” Optom. Vision Sci. 74, 906–915 (1997).
[CrossRef]

Phys. Today (1)

D. T. Miller, “Retinal imaging and vision at the frontiers of adaptive optics,” Phys. Today 53, 31–36 (2000).
[CrossRef]

Vision Res. (1)

H. J. Wyatt, “The form of the human pupil,” Vision Res. 35, 2021–2036 (1995).
[CrossRef] [PubMed]

Other (8)

H. Cummins, C. Midlo, Finger Prints, Palms and Soles: An Introduction to Dermatoglyphics (Blakiston, Philadelphia, 1943).

W. T. Welford, Aberrations of Optical Systems (Hilger, Bristol, UK, 1986).

W. J. Smith, Modern Optical Engineering: The Design of Optical Systems (McGraw-Hill, New York, 1990).

J. C. Wyant, K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1992), Vol. XI, pp. 1–53.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1985).

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb and VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35of OSA Trends in Optics and Photonics Series(Optical Society of America, Washington, D.C., 2000), pp. 232–244.

I. T. Joliffe, Principal Components Analysis (Springer–Verlag, New York, 1986).

(Laser Institute of America, Orlando, Fla., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics