Abstract

We describe propagation in a uniaxially anisotropic medium by relying on a suitable plane-wave angular-spectrum representation of the electromagnetic field. We obtain paraxial expressions for both ordinary and extraordinary components that satisfy two decoupled parabolic equations. As an application, we obtain, for a particular input beam (a quasi-Gaussian beam), analytical results that allow us to identify some relevant features of propagation in uniaxial crystals.

© 2001 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1999).
  2. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  3. A. Yariv, Optical Electronics (Holt, Rinehart & Winston, New York, 1985).
  4. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  5. J. J. Stamnes, G. C. Sherman, “Radiation of electromagnetic fields in uniaxially anisotropic media,” J. Opt. Soc. Am. 66, 780–788 (1976).
    [CrossRef]
  6. A. Ciattoni, B. Crosignani, P. Di Porto, “Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections,” Opt. Commun. 177, 9–13 (2000).
    [CrossRef]
  7. A. Ciattoni, P. Di Porto, B. Crosignani, A. Yariv, “Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am. B17, 809–819 (2000).
    [CrossRef]
  8. M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
    [CrossRef]
  9. See, for example, G. Arfken, Mathematical Methods for Physicists (Academic, New York, 1984), Sec. 16.6.

2000 (2)

A. Ciattoni, B. Crosignani, P. Di Porto, “Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections,” Opt. Commun. 177, 9–13 (2000).
[CrossRef]

A. Ciattoni, P. Di Porto, B. Crosignani, A. Yariv, “Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am. B17, 809–819 (2000).
[CrossRef]

1976 (1)

1975 (1)

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

Arfken, G.

See, for example, G. Arfken, Mathematical Methods for Physicists (Academic, New York, 1984), Sec. 16.6.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1999).

Ciattoni, A.

A. Ciattoni, P. Di Porto, B. Crosignani, A. Yariv, “Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am. B17, 809–819 (2000).
[CrossRef]

A. Ciattoni, B. Crosignani, P. Di Porto, “Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections,” Opt. Commun. 177, 9–13 (2000).
[CrossRef]

Crosignani, B.

A. Ciattoni, B. Crosignani, P. Di Porto, “Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections,” Opt. Commun. 177, 9–13 (2000).
[CrossRef]

A. Ciattoni, P. Di Porto, B. Crosignani, A. Yariv, “Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am. B17, 809–819 (2000).
[CrossRef]

Di Porto, P.

A. Ciattoni, P. Di Porto, B. Crosignani, A. Yariv, “Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am. B17, 809–819 (2000).
[CrossRef]

A. Ciattoni, B. Crosignani, P. Di Porto, “Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections,” Opt. Commun. 177, 9–13 (2000).
[CrossRef]

Lax, M.

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

Louisell, W. H.

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

McKnight, W. B.

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

Sherman, G. C.

Stamnes, J. J.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1999).

Yariv, A.

A. Ciattoni, P. Di Porto, B. Crosignani, A. Yariv, “Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am. B17, 809–819 (2000).
[CrossRef]

A. Yariv, Optical Electronics (Holt, Rinehart & Winston, New York, 1985).

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

J. Opt. Soc. Am. (2)

A. Ciattoni, P. Di Porto, B. Crosignani, A. Yariv, “Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am. B17, 809–819 (2000).
[CrossRef]

J. J. Stamnes, G. C. Sherman, “Radiation of electromagnetic fields in uniaxially anisotropic media,” J. Opt. Soc. Am. 66, 780–788 (1976).
[CrossRef]

Opt. Commun. (1)

A. Ciattoni, B. Crosignani, P. Di Porto, “Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections,” Opt. Commun. 177, 9–13 (2000).
[CrossRef]

Phys. Rev. A (1)

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

Other (5)

See, for example, G. Arfken, Mathematical Methods for Physicists (Academic, New York, 1984), Sec. 16.6.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1999).

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

A. Yariv, Optical Electronics (Holt, Rinehart & Winston, New York, 1985).

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics