Abstract

We examined the time course of light adaptation in the visual motion system. Subjects judged the direction of a two-frame apparent-motion display, with the two frames separated by a 50-ms interstimulus interval of the same mean luminance. The phase of the first frame was randomly determined on each trial. The grating presented in the second frame was phase shifted either leftward or rightward by π/2 with respect to the grating in the first frame. At some variable point during the first frame, the mean luminance of the pattern increased or decreased by 1–3 log units. Mean luminance levels varied from scotopic or low mesopic to photopic levels. We found that the perceived direction of motion depended jointly on the luminance level of the first frame grating and the time at which the shift in average luminance occurs. When the average luminance increases from scotopic or mesopic to photopic levels at least 0.5 s before the offset of the first frame, motion in the 3π/2 direction is perceived. When average luminance decreases to low mesopic or scotopic levels, motion in the π/2 direction is perceived if the change occurs 1.0 s or more before first frame offset, depending on the size of the luminance step. Thus light adaptation in the visual motion system is essentially complete within 1 s. This suggests a rapid change in the shape (biphasic or monophasic) of the temporal impulse response functions that feed into a first-order motion mechanism.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Hood, M. A. Finkelstein, “Visual sensitivity,” in Handbook of Perception and Human Performance, K. Boff, L. Kaufman, J. Thomas, eds. (Wiley, New York, 1986), Vol. 1, Chap. 5, pp. 1–66.
  2. J. H. van Hateren, “Processing of natural time series of intensities by the visual system of the blowfly,” Vision Res. 37, 3407–3416 (1997).
    [CrossRef]
  3. B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. London 134, 283–302 (1947).
    [CrossRef]
  4. W. S. Geisler, “Adaptation, afterimages and cone saturation,” Vision Res. 18, 279–289 (1978).
    [CrossRef] [PubMed]
  5. E. H. Adelson, “Saturation and adaptation in the rod system,” Vision Res. 22, 1299–1312 (1982).
    [CrossRef] [PubMed]
  6. M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vision Res. 27, 1981–1987 (1987).
    [CrossRef] [PubMed]
  7. T. E. von Wiegand, D. C. Hood, N. Graham, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
    [CrossRef] [PubMed]
  8. K. Nakayama, “Biological image motion processing: a review,” Vision Res. 25, 625–660 (1985).
    [CrossRef] [PubMed]
  9. M. Dawson, V. Di Lollo, “Effects of adapting luminance and stimulus contrast on the temporal and spatial limits of short-range motion,” Vision Res. 30, 415–429 (1990).
    [CrossRef] [PubMed]
  10. T. Takeuchi, K. K. De Valois, “Motion-reversal reveals two motion mechanisms functioning in scotopic vision,” Vision Res. 37, 745–755 (1997).
    [CrossRef] [PubMed]
  11. T. Takeuchi, K. K. De Valois, “Velocity discrimination in scotopic vision,” Vision Res. 40, 2011–2024 (2000).
    [CrossRef] [PubMed]
  12. D. Turner, K. K. De Valois, T. Takeuchi, “Speed perception under scotopic conditions,” Invest. Ophthalmol. Visual Sci. 38, (Suppl.), S378 (1997).
  13. K. R. Gegenfurtner, H. Mayser, L. T. Sharpe, “Seeing movement in the dark,” Nature (London) 398, 475–476 (1999).
    [CrossRef]
  14. E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
    [CrossRef]
  15. W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, “Motion detection from photopic to low scotopic luminance levels,” Vision Res. 40, 187–199 (2000).
    [CrossRef] [PubMed]
  16. O. J. Braddick, “Low-level and high-level processes in apparent motion,” Philos. Trans. R. Soc. London Ser. B 290, 137–151 (1980).
    [CrossRef]
  17. S. Shioiri, P. Cavanagh, “ISI produces reverse apparent motion,” Vision Res. 30, 757–768 (1990).
    [CrossRef] [PubMed]
  18. A. Pantle, K. Turano, “Visual resolution of motion ambiguity with periodic luminance- and contrast-domain stimuli,” Vision Res. 32, 2093–2106 (1992).
    [CrossRef] [PubMed]
  19. J. J. Strout, A. Pantle, S. L. Mills, “An energy model of interframe interval effects in single-step apparent motion,” Vision Res. 34, 3223–3240 (1994).
    [CrossRef] [PubMed]
  20. B. Stabell, U. Stabell, “Absolute spectral sensitivity at different eccentricities,” J. Opt. Soc. Am. 71, 836–840 (1981).
    [CrossRef] [PubMed]
  21. W. L. Makous, “Fourier models and the loci of adaptation,” J. Opt. Soc. Am. A 14, 2323–2345 (1997).
    [CrossRef]
  22. H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
    [CrossRef]
  23. M. J. Keck, T. D. Palella, A. Pantle, “Motion after-effect as a function of the contrast of sinusoidal gratings,” Vision Res. 16, 187–191 (1976).
    [CrossRef]
  24. K. Nakayama, G. H. Silverman, “Detection and discrimination of sinusoidal grating displacements,” J. Opt. Soc. Am. A 2, 267–274 (1985).
    [CrossRef] [PubMed]
  25. L. Poot, H. P. Snippe, J. H. van Hateren, “Dynamics of adaptation at high luminance: adaptation is faster after luminance decrements than after luminance increments,” J. Opt. Soc. Am. A 14, 2499–2508 (1997).
    [CrossRef]
  26. H. R. Wilson, “A neural model of foveal light adaptation and afterimage formation,” Visual Neurosci. 14, 403–423 (1997).
    [CrossRef]
  27. H. P. Snippe, L. Poot, J. H. van Hateren, “A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds,” Visual Neurosci. 17, 449–462 (2000).
    [CrossRef]
  28. R. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research, N. Osborne, G. Chader, eds. (Pergamon, London, 1984), pp. 263–346.
  29. E. H. Adelson, J. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [CrossRef] [PubMed]
  30. D. H. Kelly, “Theory of flicker and transient responses. I. Uniform fields,” J. Opt. Soc. Am. 61, 537–546 (1971).
    [CrossRef] [PubMed]
  31. W. H. Swanson, T. Ueno, V. C. Smith, J. Pokorny, “Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations,” J. Opt. Soc. Am. A 4, 1992–2005 (1987).
    [CrossRef] [PubMed]
  32. R. J. Snowden, R. F. Hess, S. J. Waugh, “The processing of temporal modulation at different levels of retinal illuminance,” Vision Res. 35, 775–789 (1995).
    [CrossRef] [PubMed]
  33. R. L. De Valois, N. P. Cottaris, “Inputs to directionally selective simple cells in macaque striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 95, 14488–14493 (1998).
    [CrossRef] [PubMed]
  34. R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “What are the inputs to directionally-selective cells in Macaque striate cortex?” Invest. Ophthalmol. Visual Sci. 41, (Suppl.), S333 (2000).
  35. K. Purpura, D. Tranchina, E. Kaplan, R. M. Shapley, “Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells,” Visual Neurosci. 4, 75–93 (1990).
    [CrossRef]
  36. D. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).
  37. T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
    [CrossRef] [PubMed]
  38. M. J. M. Lankheet, R. J. A. van Wezel, J. H. H. Prickaerts, W. A. van de Grind, “The dynamics of light adaptation in cat horizontal cell responses,” Vision Res. 33, 1153–1171 (1993).
    [CrossRef] [PubMed]

2000 (4)

T. Takeuchi, K. K. De Valois, “Velocity discrimination in scotopic vision,” Vision Res. 40, 2011–2024 (2000).
[CrossRef] [PubMed]

W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, “Motion detection from photopic to low scotopic luminance levels,” Vision Res. 40, 187–199 (2000).
[CrossRef] [PubMed]

H. P. Snippe, L. Poot, J. H. van Hateren, “A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds,” Visual Neurosci. 17, 449–462 (2000).
[CrossRef]

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “What are the inputs to directionally-selective cells in Macaque striate cortex?” Invest. Ophthalmol. Visual Sci. 41, (Suppl.), S333 (2000).

1999 (2)

K. R. Gegenfurtner, H. Mayser, L. T. Sharpe, “Seeing movement in the dark,” Nature (London) 398, 475–476 (1999).
[CrossRef]

E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
[CrossRef]

1998 (1)

R. L. De Valois, N. P. Cottaris, “Inputs to directionally selective simple cells in macaque striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 95, 14488–14493 (1998).
[CrossRef] [PubMed]

1997 (6)

W. L. Makous, “Fourier models and the loci of adaptation,” J. Opt. Soc. Am. A 14, 2323–2345 (1997).
[CrossRef]

L. Poot, H. P. Snippe, J. H. van Hateren, “Dynamics of adaptation at high luminance: adaptation is faster after luminance decrements than after luminance increments,” J. Opt. Soc. Am. A 14, 2499–2508 (1997).
[CrossRef]

H. R. Wilson, “A neural model of foveal light adaptation and afterimage formation,” Visual Neurosci. 14, 403–423 (1997).
[CrossRef]

D. Turner, K. K. De Valois, T. Takeuchi, “Speed perception under scotopic conditions,” Invest. Ophthalmol. Visual Sci. 38, (Suppl.), S378 (1997).

T. Takeuchi, K. K. De Valois, “Motion-reversal reveals two motion mechanisms functioning in scotopic vision,” Vision Res. 37, 745–755 (1997).
[CrossRef] [PubMed]

J. H. van Hateren, “Processing of natural time series of intensities by the visual system of the blowfly,” Vision Res. 37, 3407–3416 (1997).
[CrossRef]

1996 (1)

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[CrossRef] [PubMed]

1995 (2)

T. E. von Wiegand, D. C. Hood, N. Graham, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef] [PubMed]

R. J. Snowden, R. F. Hess, S. J. Waugh, “The processing of temporal modulation at different levels of retinal illuminance,” Vision Res. 35, 775–789 (1995).
[CrossRef] [PubMed]

1994 (1)

J. J. Strout, A. Pantle, S. L. Mills, “An energy model of interframe interval effects in single-step apparent motion,” Vision Res. 34, 3223–3240 (1994).
[CrossRef] [PubMed]

1993 (1)

M. J. M. Lankheet, R. J. A. van Wezel, J. H. H. Prickaerts, W. A. van de Grind, “The dynamics of light adaptation in cat horizontal cell responses,” Vision Res. 33, 1153–1171 (1993).
[CrossRef] [PubMed]

1992 (1)

A. Pantle, K. Turano, “Visual resolution of motion ambiguity with periodic luminance- and contrast-domain stimuli,” Vision Res. 32, 2093–2106 (1992).
[CrossRef] [PubMed]

1990 (3)

K. Purpura, D. Tranchina, E. Kaplan, R. M. Shapley, “Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells,” Visual Neurosci. 4, 75–93 (1990).
[CrossRef]

M. Dawson, V. Di Lollo, “Effects of adapting luminance and stimulus contrast on the temporal and spatial limits of short-range motion,” Vision Res. 30, 415–429 (1990).
[CrossRef] [PubMed]

S. Shioiri, P. Cavanagh, “ISI produces reverse apparent motion,” Vision Res. 30, 757–768 (1990).
[CrossRef] [PubMed]

1987 (2)

1985 (3)

1982 (1)

E. H. Adelson, “Saturation and adaptation in the rod system,” Vision Res. 22, 1299–1312 (1982).
[CrossRef] [PubMed]

1981 (1)

1980 (1)

O. J. Braddick, “Low-level and high-level processes in apparent motion,” Philos. Trans. R. Soc. London Ser. B 290, 137–151 (1980).
[CrossRef]

1978 (1)

W. S. Geisler, “Adaptation, afterimages and cone saturation,” Vision Res. 18, 279–289 (1978).
[CrossRef] [PubMed]

1976 (1)

M. J. Keck, T. D. Palella, A. Pantle, “Motion after-effect as a function of the contrast of sinusoidal gratings,” Vision Res. 16, 187–191 (1976).
[CrossRef]

1971 (2)

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

D. H. Kelly, “Theory of flicker and transient responses. I. Uniform fields,” J. Opt. Soc. Am. 61, 537–546 (1971).
[CrossRef] [PubMed]

1968 (1)

D. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

1947 (1)

B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. London 134, 283–302 (1947).
[CrossRef]

Adelson, E. H.

Benimoff, N. I.

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vision Res. 27, 1981–1987 (1987).
[CrossRef] [PubMed]

Bergen, J.

Blake, R.

E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
[CrossRef]

Braddick, O. J.

O. J. Braddick, “Low-level and high-level processes in apparent motion,” Philos. Trans. R. Soc. London Ser. B 290, 137–151 (1980).
[CrossRef]

Cavanagh, P.

S. Shioiri, P. Cavanagh, “ISI produces reverse apparent motion,” Vision Res. 30, 757–768 (1990).
[CrossRef] [PubMed]

Cottaris, N. P.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “What are the inputs to directionally-selective cells in Macaque striate cortex?” Invest. Ophthalmol. Visual Sci. 41, (Suppl.), S333 (2000).

R. L. De Valois, N. P. Cottaris, “Inputs to directionally selective simple cells in macaque striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 95, 14488–14493 (1998).
[CrossRef] [PubMed]

Crawford, B. H.

B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. London 134, 283–302 (1947).
[CrossRef]

Dawson, M.

M. Dawson, V. Di Lollo, “Effects of adapting luminance and stimulus contrast on the temporal and spatial limits of short-range motion,” Vision Res. 30, 415–429 (1990).
[CrossRef] [PubMed]

De Valois, K. K.

T. Takeuchi, K. K. De Valois, “Velocity discrimination in scotopic vision,” Vision Res. 40, 2011–2024 (2000).
[CrossRef] [PubMed]

D. Turner, K. K. De Valois, T. Takeuchi, “Speed perception under scotopic conditions,” Invest. Ophthalmol. Visual Sci. 38, (Suppl.), S378 (1997).

T. Takeuchi, K. K. De Valois, “Motion-reversal reveals two motion mechanisms functioning in scotopic vision,” Vision Res. 37, 745–755 (1997).
[CrossRef] [PubMed]

De Valois, R. L.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “What are the inputs to directionally-selective cells in Macaque striate cortex?” Invest. Ophthalmol. Visual Sci. 41, (Suppl.), S333 (2000).

R. L. De Valois, N. P. Cottaris, “Inputs to directionally selective simple cells in macaque striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 95, 14488–14493 (1998).
[CrossRef] [PubMed]

Di Lollo, V.

M. Dawson, V. Di Lollo, “Effects of adapting luminance and stimulus contrast on the temporal and spatial limits of short-range motion,” Vision Res. 30, 415–429 (1990).
[CrossRef] [PubMed]

Elfar, S. D.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “What are the inputs to directionally-selective cells in Macaque striate cortex?” Invest. Ophthalmol. Visual Sci. 41, (Suppl.), S333 (2000).

Enroth-Cugell, C.

R. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research, N. Osborne, G. Chader, eds. (Pergamon, London, 1984), pp. 263–346.

Finkelstein, M. A.

D. C. Hood, M. A. Finkelstein, “Visual sensitivity,” in Handbook of Perception and Human Performance, K. Boff, L. Kaufman, J. Thomas, eds. (Wiley, New York, 1986), Vol. 1, Chap. 5, pp. 1–66.

Gegenfurtner, K. R.

K. R. Gegenfurtner, H. Mayser, L. T. Sharpe, “Seeing movement in the dark,” Nature (London) 398, 475–476 (1999).
[CrossRef]

Geisler, W. S.

W. S. Geisler, “Adaptation, afterimages and cone saturation,” Vision Res. 18, 279–289 (1978).
[CrossRef] [PubMed]

Graham, N.

T. E. von Wiegand, D. C. Hood, N. Graham, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef] [PubMed]

Grossman, E. D.

E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
[CrossRef]

Hayhoe, M. M.

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vision Res. 27, 1981–1987 (1987).
[CrossRef] [PubMed]

Hess, R. F.

R. J. Snowden, R. F. Hess, S. J. Waugh, “The processing of temporal modulation at different levels of retinal illuminance,” Vision Res. 35, 775–789 (1995).
[CrossRef] [PubMed]

Hood, D. C.

T. E. von Wiegand, D. C. Hood, N. Graham, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef] [PubMed]

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vision Res. 27, 1981–1987 (1987).
[CrossRef] [PubMed]

D. C. Hood, M. A. Finkelstein, “Visual sensitivity,” in Handbook of Perception and Human Performance, K. Boff, L. Kaufman, J. Thomas, eds. (Wiley, New York, 1986), Vol. 1, Chap. 5, pp. 1–66.

Hubel, D.

D. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

Kaplan, E.

K. Purpura, D. Tranchina, E. Kaplan, R. M. Shapley, “Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells,” Visual Neurosci. 4, 75–93 (1990).
[CrossRef]

Keck, M. J.

M. J. Keck, T. D. Palella, A. Pantle, “Motion after-effect as a function of the contrast of sinusoidal gratings,” Vision Res. 16, 187–191 (1976).
[CrossRef]

Kelly, D. H.

Koenderink, J. J.

W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, “Motion detection from photopic to low scotopic luminance levels,” Vision Res. 40, 187–199 (2000).
[CrossRef] [PubMed]

Kremers, J.

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[CrossRef] [PubMed]

Lankheet, M. J. M.

M. J. M. Lankheet, R. J. A. van Wezel, J. H. H. Prickaerts, W. A. van de Grind, “The dynamics of light adaptation in cat horizontal cell responses,” Vision Res. 33, 1153–1171 (1993).
[CrossRef] [PubMed]

Lee, B. B.

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[CrossRef] [PubMed]

Levitt, H.

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

Mahon, L. E.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “What are the inputs to directionally-selective cells in Macaque striate cortex?” Invest. Ophthalmol. Visual Sci. 41, (Suppl.), S333 (2000).

Makous, W. L.

Mayser, H.

K. R. Gegenfurtner, H. Mayser, L. T. Sharpe, “Seeing movement in the dark,” Nature (London) 398, 475–476 (1999).
[CrossRef]

Mills, S. L.

J. J. Strout, A. Pantle, S. L. Mills, “An energy model of interframe interval effects in single-step apparent motion,” Vision Res. 34, 3223–3240 (1994).
[CrossRef] [PubMed]

Nakayama, K.

Palella, T. D.

M. J. Keck, T. D. Palella, A. Pantle, “Motion after-effect as a function of the contrast of sinusoidal gratings,” Vision Res. 16, 187–191 (1976).
[CrossRef]

Pantle, A.

J. J. Strout, A. Pantle, S. L. Mills, “An energy model of interframe interval effects in single-step apparent motion,” Vision Res. 34, 3223–3240 (1994).
[CrossRef] [PubMed]

A. Pantle, K. Turano, “Visual resolution of motion ambiguity with periodic luminance- and contrast-domain stimuli,” Vision Res. 32, 2093–2106 (1992).
[CrossRef] [PubMed]

M. J. Keck, T. D. Palella, A. Pantle, “Motion after-effect as a function of the contrast of sinusoidal gratings,” Vision Res. 16, 187–191 (1976).
[CrossRef]

Pokorny, J.

Poot, L.

H. P. Snippe, L. Poot, J. H. van Hateren, “A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds,” Visual Neurosci. 17, 449–462 (2000).
[CrossRef]

L. Poot, H. P. Snippe, J. H. van Hateren, “Dynamics of adaptation at high luminance: adaptation is faster after luminance decrements than after luminance increments,” J. Opt. Soc. Am. A 14, 2499–2508 (1997).
[CrossRef]

Prickaerts, J. H. H.

M. J. M. Lankheet, R. J. A. van Wezel, J. H. H. Prickaerts, W. A. van de Grind, “The dynamics of light adaptation in cat horizontal cell responses,” Vision Res. 33, 1153–1171 (1993).
[CrossRef] [PubMed]

Purpura, K.

K. Purpura, D. Tranchina, E. Kaplan, R. M. Shapley, “Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells,” Visual Neurosci. 4, 75–93 (1990).
[CrossRef]

Shapley, R.

R. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research, N. Osborne, G. Chader, eds. (Pergamon, London, 1984), pp. 263–346.

Shapley, R. M.

K. Purpura, D. Tranchina, E. Kaplan, R. M. Shapley, “Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells,” Visual Neurosci. 4, 75–93 (1990).
[CrossRef]

Sharpe, L. T.

K. R. Gegenfurtner, H. Mayser, L. T. Sharpe, “Seeing movement in the dark,” Nature (London) 398, 475–476 (1999).
[CrossRef]

Shioiri, S.

S. Shioiri, P. Cavanagh, “ISI produces reverse apparent motion,” Vision Res. 30, 757–768 (1990).
[CrossRef] [PubMed]

Silverman, G. H.

Smith, V. C.

Snippe, H. P.

H. P. Snippe, L. Poot, J. H. van Hateren, “A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds,” Visual Neurosci. 17, 449–462 (2000).
[CrossRef]

L. Poot, H. P. Snippe, J. H. van Hateren, “Dynamics of adaptation at high luminance: adaptation is faster after luminance decrements than after luminance increments,” J. Opt. Soc. Am. A 14, 2499–2508 (1997).
[CrossRef]

Snowden, R. J.

R. J. Snowden, R. F. Hess, S. J. Waugh, “The processing of temporal modulation at different levels of retinal illuminance,” Vision Res. 35, 775–789 (1995).
[CrossRef] [PubMed]

Stabell, B.

Stabell, U.

Strout, J. J.

J. J. Strout, A. Pantle, S. L. Mills, “An energy model of interframe interval effects in single-step apparent motion,” Vision Res. 34, 3223–3240 (1994).
[CrossRef] [PubMed]

Swanson, W. H.

Takeuchi, T.

T. Takeuchi, K. K. De Valois, “Velocity discrimination in scotopic vision,” Vision Res. 40, 2011–2024 (2000).
[CrossRef] [PubMed]

T. Takeuchi, K. K. De Valois, “Motion-reversal reveals two motion mechanisms functioning in scotopic vision,” Vision Res. 37, 745–755 (1997).
[CrossRef] [PubMed]

D. Turner, K. K. De Valois, T. Takeuchi, “Speed perception under scotopic conditions,” Invest. Ophthalmol. Visual Sci. 38, (Suppl.), S378 (1997).

Tranchina, D.

K. Purpura, D. Tranchina, E. Kaplan, R. M. Shapley, “Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells,” Visual Neurosci. 4, 75–93 (1990).
[CrossRef]

Turano, K.

A. Pantle, K. Turano, “Visual resolution of motion ambiguity with periodic luminance- and contrast-domain stimuli,” Vision Res. 32, 2093–2106 (1992).
[CrossRef] [PubMed]

Turner, D.

D. Turner, K. K. De Valois, T. Takeuchi, “Speed perception under scotopic conditions,” Invest. Ophthalmol. Visual Sci. 38, (Suppl.), S378 (1997).

Ueno, T.

van de Grind, W. A.

W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, “Motion detection from photopic to low scotopic luminance levels,” Vision Res. 40, 187–199 (2000).
[CrossRef] [PubMed]

M. J. M. Lankheet, R. J. A. van Wezel, J. H. H. Prickaerts, W. A. van de Grind, “The dynamics of light adaptation in cat horizontal cell responses,” Vision Res. 33, 1153–1171 (1993).
[CrossRef] [PubMed]

van Doorn, A. J.

W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, “Motion detection from photopic to low scotopic luminance levels,” Vision Res. 40, 187–199 (2000).
[CrossRef] [PubMed]

van Hateren, J. H.

H. P. Snippe, L. Poot, J. H. van Hateren, “A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds,” Visual Neurosci. 17, 449–462 (2000).
[CrossRef]

L. Poot, H. P. Snippe, J. H. van Hateren, “Dynamics of adaptation at high luminance: adaptation is faster after luminance decrements than after luminance increments,” J. Opt. Soc. Am. A 14, 2499–2508 (1997).
[CrossRef]

J. H. van Hateren, “Processing of natural time series of intensities by the visual system of the blowfly,” Vision Res. 37, 3407–3416 (1997).
[CrossRef]

van Wezel, R. J. A.

M. J. M. Lankheet, R. J. A. van Wezel, J. H. H. Prickaerts, W. A. van de Grind, “The dynamics of light adaptation in cat horizontal cell responses,” Vision Res. 33, 1153–1171 (1993).
[CrossRef] [PubMed]

von Wiegand, T. E.

T. E. von Wiegand, D. C. Hood, N. Graham, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef] [PubMed]

Waugh, S. J.

R. J. Snowden, R. F. Hess, S. J. Waugh, “The processing of temporal modulation at different levels of retinal illuminance,” Vision Res. 35, 775–789 (1995).
[CrossRef] [PubMed]

Wiesel, T. N.

D. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

Wilson, H. R.

H. R. Wilson, “A neural model of foveal light adaptation and afterimage formation,” Visual Neurosci. 14, 403–423 (1997).
[CrossRef]

Wilson, J. A.

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “What are the inputs to directionally-selective cells in Macaque striate cortex?” Invest. Ophthalmol. Visual Sci. 41, (Suppl.), S333 (2000).

Yeh, T.

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (2)

D. Turner, K. K. De Valois, T. Takeuchi, “Speed perception under scotopic conditions,” Invest. Ophthalmol. Visual Sci. 38, (Suppl.), S378 (1997).

R. L. De Valois, N. P. Cottaris, L. E. Mahon, S. D. Elfar, J. A. Wilson, “What are the inputs to directionally-selective cells in Macaque striate cortex?” Invest. Ophthalmol. Visual Sci. 41, (Suppl.), S333 (2000).

J. Acoust. Soc. Am. (1)

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (5)

J. Physiol. (London) (1)

D. Hubel, T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215–243 (1968).

Nature (London) (1)

K. R. Gegenfurtner, H. Mayser, L. T. Sharpe, “Seeing movement in the dark,” Nature (London) 398, 475–476 (1999).
[CrossRef]

Philos. Trans. R. Soc. London Ser. B (1)

O. J. Braddick, “Low-level and high-level processes in apparent motion,” Philos. Trans. R. Soc. London Ser. B 290, 137–151 (1980).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. L. De Valois, N. P. Cottaris, “Inputs to directionally selective simple cells in macaque striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 95, 14488–14493 (1998).
[CrossRef] [PubMed]

Proc. R. Soc. London (1)

B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. London 134, 283–302 (1947).
[CrossRef]

Vision Res. (18)

W. S. Geisler, “Adaptation, afterimages and cone saturation,” Vision Res. 18, 279–289 (1978).
[CrossRef] [PubMed]

E. H. Adelson, “Saturation and adaptation in the rod system,” Vision Res. 22, 1299–1312 (1982).
[CrossRef] [PubMed]

M. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation process,” Vision Res. 27, 1981–1987 (1987).
[CrossRef] [PubMed]

T. E. von Wiegand, D. C. Hood, N. Graham, “Testing a computational model of light-adaptation dynamics,” Vision Res. 35, 3037–3051 (1995).
[CrossRef] [PubMed]

K. Nakayama, “Biological image motion processing: a review,” Vision Res. 25, 625–660 (1985).
[CrossRef] [PubMed]

M. Dawson, V. Di Lollo, “Effects of adapting luminance and stimulus contrast on the temporal and spatial limits of short-range motion,” Vision Res. 30, 415–429 (1990).
[CrossRef] [PubMed]

T. Takeuchi, K. K. De Valois, “Motion-reversal reveals two motion mechanisms functioning in scotopic vision,” Vision Res. 37, 745–755 (1997).
[CrossRef] [PubMed]

T. Takeuchi, K. K. De Valois, “Velocity discrimination in scotopic vision,” Vision Res. 40, 2011–2024 (2000).
[CrossRef] [PubMed]

S. Shioiri, P. Cavanagh, “ISI produces reverse apparent motion,” Vision Res. 30, 757–768 (1990).
[CrossRef] [PubMed]

A. Pantle, K. Turano, “Visual resolution of motion ambiguity with periodic luminance- and contrast-domain stimuli,” Vision Res. 32, 2093–2106 (1992).
[CrossRef] [PubMed]

J. J. Strout, A. Pantle, S. L. Mills, “An energy model of interframe interval effects in single-step apparent motion,” Vision Res. 34, 3223–3240 (1994).
[CrossRef] [PubMed]

E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
[CrossRef]

W. A. van de Grind, J. J. Koenderink, A. J. van Doorn, “Motion detection from photopic to low scotopic luminance levels,” Vision Res. 40, 187–199 (2000).
[CrossRef] [PubMed]

R. J. Snowden, R. F. Hess, S. J. Waugh, “The processing of temporal modulation at different levels of retinal illuminance,” Vision Res. 35, 775–789 (1995).
[CrossRef] [PubMed]

J. H. van Hateren, “Processing of natural time series of intensities by the visual system of the blowfly,” Vision Res. 37, 3407–3416 (1997).
[CrossRef]

M. J. Keck, T. D. Palella, A. Pantle, “Motion after-effect as a function of the contrast of sinusoidal gratings,” Vision Res. 16, 187–191 (1976).
[CrossRef]

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[CrossRef] [PubMed]

M. J. M. Lankheet, R. J. A. van Wezel, J. H. H. Prickaerts, W. A. van de Grind, “The dynamics of light adaptation in cat horizontal cell responses,” Vision Res. 33, 1153–1171 (1993).
[CrossRef] [PubMed]

Visual Neurosci. (3)

K. Purpura, D. Tranchina, E. Kaplan, R. M. Shapley, “Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells,” Visual Neurosci. 4, 75–93 (1990).
[CrossRef]

H. R. Wilson, “A neural model of foveal light adaptation and afterimage formation,” Visual Neurosci. 14, 403–423 (1997).
[CrossRef]

H. P. Snippe, L. Poot, J. H. van Hateren, “A temporal model for early vision that explains detection thresholds for light pulses on flickering backgrounds,” Visual Neurosci. 17, 449–462 (2000).
[CrossRef]

Other (2)

R. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research, N. Osborne, G. Chader, eds. (Pergamon, London, 1984), pp. 263–346.

D. C. Hood, M. A. Finkelstein, “Visual sensitivity,” in Handbook of Perception and Human Performance, K. Boff, L. Kaufman, J. Thomas, eds. (Wiley, New York, 1986), Vol. 1, Chap. 5, pp. 1–66.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Averaged responses of five subjects for perceived direction of two-frame apparent motion in experiment 2. (A) Percent response in the π/2 direction is plotted as a function of the multiple of direction discrimination contrast threshold. A response greater than 50% indicates that the veridical motion direction (π/2 direction) was perceived on the majority of trials; less than 50% means that motion reversal (3π/2 direction) was perceived on the majority of trials. Symbols identify the average luminance level: 2.0 log Tp (solid circles), 0.0 log Tp (open squares), -1.0 log Tp (solid triangles). No ISI was inserted. Each data point is based on 200 trials. (B) The ISI was 50 ms. Other conditions were as in (A).

Fig. 2
Fig. 2

Averaged responses of five subjects for perceived direction of apparent motion in experiment 2. Data showing percent response in the π/2 direction at 6× direction discrimination contrast threshold were taken from Fig. 1(B). Percent response in the π/2 direction is plotted as a function of average luminance (log Tp). The ISI was 50 ms. Arrows indicate the differences between responses in the π/2 direction at different average luminances.

Fig. 3
Fig. 3

Upper row, average luminance and contrast profiles of the two-frame motion stimulus with an ISI in a single trial, the stimulus that was used in experiment 3. At some variable point in frame 1, specified by the timing value t, the average luminance (A) decreased or (B) increased while luminance contrast was maintained at a constant multiple of direction discrimination threshold. The physical contrast thus changed when the background luminance was shifted. Lower row, schematic description of a space–time plot of the stimulus. (A) Luminance decrements, (B) luminance increments. For clarity, the scale of the temporal domain does not reflect the actual values used: The durations of the first and second frames were equated, the duration of the ISI was exaggerated, and the temporal window in each frame was not represented in the figure.

Fig. 4
Fig. 4

Averaged data from five subjects for experiment 3 when the ISI was zero. Percent response in the π/2 direction is plotted as a function of the timing value t. Symbols identify the shift in average luminance: from 2.0 to -1.0 log Tp (solid circles), from -1.0 to 2.0 log Tp (open circles). Each data point is based on 600 trials (120 trials per subject).

Fig. 5
Fig. 5

Averaged data from five subjects for experiment 3 when the ISI was 50 ms. (A) Percent response in the π/2 direction is plotted as a function the timing value t. The average luminance decreased from 2.0 to -1.0 log Tp. Dashed horizontal lines, percent response in the π/2 direction at average luminance levels of 2.0 or -1.0 log Tp, taken from Fig. 2; dashed curve, logistic function fitted by a least-squares method. Each data point is based on 600 trials (120 trials per subject). (B) Results for the condition in which the average luminance decreased from 2.0 to 0.0 log Tp. Other conditions were as in (A). (C) Results for the condition in which the average luminance decreased from 0.0 to -1.0 log Tp. Other conditions were as in (A).

Fig. 6
Fig. 6

Results of experiment 3, in which a 50-ms ISI was inserted. (A) The average luminance increased from -1.0 to 2.0 log Tp. Other conditions were as in Fig. 5(A). (B) The average luminance increased from 0.0 to 2.0 log Tp. Other conditions were as in Fig. 5(B). (C) The average luminance increased from -1.0 to 0.0 log Tp. Other conditions were as in Fig. 5(C).

Fig. 7
Fig. 7

(A) Averaged estimated latency of light adaptation for five subjects for three luminance decrements, from 2.0 to 0.0 log Tp, from 2.0 to -1.0 log Tp, and from 0.0 to -1.0 log Tp. Error bars show the standard deviation. (B) The estimated latency of light adaptation in case of luminance increment. Other conditions were as in (A).

Metrics