Abstract

Wavelength discrimination functions (420 to 620–650 nm) were measured for four younger (mean 30.9 years) and four older (mean 72.5 years) observers. Stimuli consisted of individually determined isoluminant monochromatic lights (10 Td) presented in each half of a 2° circular bipartite field with use of a Maxwellian-view optical system. A spatial two-alternative forced-choice method was used in combination with a staircase procedure to determine discrimination thresholds across the spectrum. Small but consistent elevations in discrimination thresholds were found for older compared with younger observers. Because the retinal illuminance of the stimuli was equated across all observers, these age-related losses in discrimination are attributable to neural changes. Analyses of these data reveal a significant change in Weber fraction across adulthood for a chromatically opponent pathway receiving primarily antagonistic signals from middle-wavelength-sensitive and long-wavelength-sensitive cones but not for a short-wavelength-sensitive cone pathway.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Gilbert, “Age changes in color matching,” J. Gerontol. 12, 210–215 (1957).
    [CrossRef] [PubMed]
  2. R. Lakowski, “Is the deterioration of colour discrimination with age due to lens or retinal changes?” Farbe 11, 69–86 (1962).
  3. Y. Ohta, H. Kato, “Colour perception changes with age,” in Colour Vision Deficiencies III, Mod. Probl. Ophthalmol. 17, 345–352 (1976).
  4. G. Verriest, “Further studies on acquired deficiency of color discrimination,” J. Opt. Soc. Am. 53, 185–195 (1963).
    [CrossRef] [PubMed]
  5. V. C. Smith, J. Pokorny, A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).
    [PubMed]
  6. K. Knoblauch, F. Saunders, M. Kusuda, R. Hynes, M. Podgor, K. E. Higgins, F. M. de Monasterio, “Age and illuminance effects in the Farnsworth–Munsell 100-hue test,” Appl. Opt. 26, 1441–1448 (1987).
    [CrossRef] [PubMed]
  7. J. D. Moreland, “Matching range and age in a blue-green equation,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 129–134.
    [CrossRef]
  8. B. E. Schefrin, K. Shinomori, J. S. Werner, “Contributions of neural pathways to age-related losses in chromatic discrimination,” J. Opt. Soc. Am. A 12, 1233–1241 (1995).
    [CrossRef]
  9. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
    [CrossRef] [PubMed]
  10. J. J. Vos, Tabulated Characteristics of a Proposed 2° Fundamental Observer (Institute for Perception TNO, Soesterberg, The Netherlands, 1978).
  11. J. S. Werner, “Development of scotopic sensitivity and the absorption spectrum of the human ocular media,” J. Opt. Soc. Am. 72, 247–258 (1982).
    [CrossRef] [PubMed]
  12. D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
    [CrossRef] [PubMed]
  13. S. L. Guth, H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
    [CrossRef] [PubMed]
  14. C. R. Ingling, B. H. P. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
    [CrossRef] [PubMed]
  15. L. A. Jones, “The fundamental scale of pure hue and retinal sensitivity to hue differences,” J. Opt. Soc. Am. 1, 63–77 (1917).
    [CrossRef]
  16. H. Laurens, W. F. Hamilton, “The sensitivity of the eye to differences in wavelength,” Am. J. Physiol. 65, 547–567 (1923).
  17. W. D. Wright, F. H. G. Pitt, “Hue-discrimination in normal colour-vision,” Proc. Phys. Soc. London 46, 459–473 (1934).
    [CrossRef]
  18. R. E. Bedford, G. W. Wyszecki, “Wavelength discrimination for point sources,” J. Opt. Soc. Am. 48, 129–135 (1958).
    [CrossRef] [PubMed]
  19. M. H. Siegel, F. L. Dimmick, “Discrimination of color. II. Sensitivity as a function of spectral wavelength, 510 through 630 μm,” J. Opt. Soc. Am. 52, 1071–1074 (1962).
    [CrossRef] [PubMed]
  20. M. H. Siegel, “Discrimination of color. IV. Sensitivity as a function of spectral wavelength, 410 through 500 μm,” J. Opt. Soc. Am. 54, 821–823 (1964).
    [CrossRef] [PubMed]
  21. J. Pokorny, V. C. Smith, “Wavelength discrimination in the presence of added chromatic fields,” J. Opt. Soc. Am. 60, 562–569 (1970).
    [CrossRef] [PubMed]
  22. A. Reitner, L. T. Sharpe, E. Zrenner, “Wavelength discrimination as a function of field intensity, duration and size,” Vision Res. 32, 179–185 (1992).
    [CrossRef] [PubMed]
  23. R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
    [CrossRef]
  24. K. H. Ruddock, “The effect of age upon colour vision—I. Response in the receptoral system of the human eye,” Vision Res. 5, 37–45 (1965).
    [CrossRef] [PubMed]
  25. R. M. Boynton, Human Color Vision (Holt, Reinhart & Winston, New York, 1979).
  26. S. L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
    [CrossRef] [PubMed]
  27. J. D. Mollon, S. Astell, C. R. Cavonius, “A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones,” Vision Res. 32, 745–755 (1992).
    [CrossRef] [PubMed]
  28. W. D. Wright, “The characteristics of tritanopia,” J. Opt. Soc. Am. 42, 509–521 (1952).
    [CrossRef] [PubMed]
  29. P. K. Kaiser, R. M. Boynton, “Role of the blue mechanism in wavelength discrimination,” Vision Res. 25, 523–529 (1985).
    [CrossRef] [PubMed]
  30. H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the incremental-threshold spectral sensitivity of primates,” Science 172, 23–27 (1971).
    [CrossRef]
  31. W. Verdon, G. Haegerstrom-Portnoy, “Mechanisms underlying the detection of increments in parafoveal retina,” Vision Res. 36, 373–390 (1996).
    [CrossRef] [PubMed]
  32. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  33. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef] [PubMed]
  34. T. Yeh, J. Pokorny, V. C. Smith, “S-cone discrimination sensitivity and performance on arrangement tests,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 293–302.
    [CrossRef]
  35. T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
    [CrossRef] [PubMed]
  36. E. Miyahara, V. C. Smith, J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
    [CrossRef] [PubMed]
  37. J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
    [CrossRef] [PubMed]
  38. Y. LeGrand, Light, Colour, and Vision (Wiley, New York, 1957).
  39. Y. Le Grand, “Spectral Luminosity,” in Visual Psychophysics, D. Jameson, L. M. Hurvich, eds., Vol. VII/4 of Handbook of Sensory Physiology (Springer-Verlag, Berlin, 1972), pp. 413–433.
    [CrossRef]
  40. K. Shinomori, B. E. Schefrin, J. S. Werner, “Spectral mechanisms of spatially induced blackness: data and quantitative model,” J. Opt. Soc. Am. A 14, 372–387 (1997).
    [CrossRef]
  41. K. Knoblauch, “Theory of wavelength discrimination in tritanopia,” J. Opt. Soc. Am. A 10, 378–381 (1993).
    [CrossRef] [PubMed]

1997

1996

W. Verdon, G. Haegerstrom-Portnoy, “Mechanisms underlying the detection of increments in parafoveal retina,” Vision Res. 36, 373–390 (1996).
[CrossRef] [PubMed]

1995

1993

1992

A. Reitner, L. T. Sharpe, E. Zrenner, “Wavelength discrimination as a function of field intensity, duration and size,” Vision Res. 32, 179–185 (1992).
[CrossRef] [PubMed]

J. D. Mollon, S. Astell, C. R. Cavonius, “A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones,” Vision Res. 32, 745–755 (1992).
[CrossRef] [PubMed]

1987

1985

V. C. Smith, J. Pokorny, A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).
[PubMed]

P. K. Kaiser, R. M. Boynton, “Role of the blue mechanism in wavelength discrimination,” Vision Res. 25, 523–529 (1985).
[CrossRef] [PubMed]

1983

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

1982

1980

S. L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
[CrossRef] [PubMed]

R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

1979

1977

C. R. Ingling, B. H. P. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef] [PubMed]

1976

Y. Ohta, H. Kato, “Colour perception changes with age,” in Colour Vision Deficiencies III, Mod. Probl. Ophthalmol. 17, 345–352 (1976).

1975

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1974

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

1973

1971

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the incremental-threshold spectral sensitivity of primates,” Science 172, 23–27 (1971).
[CrossRef]

1970

1966

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

1965

K. H. Ruddock, “The effect of age upon colour vision—I. Response in the receptoral system of the human eye,” Vision Res. 5, 37–45 (1965).
[CrossRef] [PubMed]

1964

1963

1962

R. Lakowski, “Is the deterioration of colour discrimination with age due to lens or retinal changes?” Farbe 11, 69–86 (1962).

M. H. Siegel, F. L. Dimmick, “Discrimination of color. II. Sensitivity as a function of spectral wavelength, 510 through 630 μm,” J. Opt. Soc. Am. 52, 1071–1074 (1962).
[CrossRef] [PubMed]

1958

1957

J. G. Gilbert, “Age changes in color matching,” J. Gerontol. 12, 210–215 (1957).
[CrossRef] [PubMed]

1952

1934

W. D. Wright, F. H. G. Pitt, “Hue-discrimination in normal colour-vision,” Proc. Phys. Soc. London 46, 459–473 (1934).
[CrossRef]

1923

H. Laurens, W. F. Hamilton, “The sensitivity of the eye to differences in wavelength,” Am. J. Physiol. 65, 547–567 (1923).

1917

Astell, S.

J. D. Mollon, S. Astell, C. R. Cavonius, “A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones,” Vision Res. 32, 745–755 (1992).
[CrossRef] [PubMed]

Bedford, R. E.

Benzschawel, T.

Boynton, R. M.

P. K. Kaiser, R. M. Boynton, “Role of the blue mechanism in wavelength discrimination,” Vision Res. 25, 523–529 (1985).
[CrossRef] [PubMed]

R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef] [PubMed]

R. M. Boynton, Human Color Vision (Holt, Reinhart & Winston, New York, 1979).

Cavonius, C. R.

J. D. Mollon, S. Astell, C. R. Cavonius, “A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones,” Vision Res. 32, 745–755 (1992).
[CrossRef] [PubMed]

de Monasterio, F. M.

Dimmick, F. L.

Gilbert, J. G.

J. G. Gilbert, “Age changes in color matching,” J. Gerontol. 12, 210–215 (1957).
[CrossRef] [PubMed]

Guth, S. L.

Haegerstrom-Portnoy, G.

W. Verdon, G. Haegerstrom-Portnoy, “Mechanisms underlying the detection of increments in parafoveal retina,” Vision Res. 36, 373–390 (1996).
[CrossRef] [PubMed]

Hamilton, W. F.

H. Laurens, W. F. Hamilton, “The sensitivity of the eye to differences in wavelength,” Am. J. Physiol. 65, 547–567 (1923).

Harwerth, R. S.

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the incremental-threshold spectral sensitivity of primates,” Science 172, 23–27 (1971).
[CrossRef]

Higgins, K. E.

Hynes, R.

Ingling, C. R.

C. R. Ingling, B. H. P. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef] [PubMed]

Jones, L. A.

Kaiser, P. K.

P. K. Kaiser, R. M. Boynton, “Role of the blue mechanism in wavelength discrimination,” Vision Res. 25, 523–529 (1985).
[CrossRef] [PubMed]

Kambe, N.

R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

Kato, H.

Y. Ohta, H. Kato, “Colour perception changes with age,” in Colour Vision Deficiencies III, Mod. Probl. Ophthalmol. 17, 345–352 (1976).

Knoblauch, K.

Kusuda, M.

Lakowski, R.

R. Lakowski, “Is the deterioration of colour discrimination with age due to lens or retinal changes?” Farbe 11, 69–86 (1962).

Laurens, H.

H. Laurens, W. F. Hamilton, “The sensitivity of the eye to differences in wavelength,” Am. J. Physiol. 65, 547–567 (1923).

Le Grand, Y.

Y. Le Grand, “Spectral Luminosity,” in Visual Psychophysics, D. Jameson, L. M. Hurvich, eds., Vol. VII/4 of Handbook of Sensory Physiology (Springer-Verlag, Berlin, 1972), pp. 413–433.
[CrossRef]

LeGrand, Y.

Y. LeGrand, Light, Colour, and Vision (Wiley, New York, 1957).

Lodge, H. R.

MacLeod, D. I. A.

Massof, R. W.

Miyahara, E.

Mollon, J. D.

J. D. Mollon, S. Astell, C. R. Cavonius, “A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones,” Vision Res. 32, 745–755 (1992).
[CrossRef] [PubMed]

Moreland, J. D.

J. D. Moreland, “Matching range and age in a blue-green equation,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 129–134.
[CrossRef]

Norren, D. V.

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

Ohta, Y.

Y. Ohta, H. Kato, “Colour perception changes with age,” in Colour Vision Deficiencies III, Mod. Probl. Ophthalmol. 17, 345–352 (1976).

Pass, A. S.

V. C. Smith, J. Pokorny, A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).
[PubMed]

Pitt, F. H. G.

W. D. Wright, F. H. G. Pitt, “Hue-discrimination in normal colour-vision,” Proc. Phys. Soc. London 46, 459–473 (1934).
[CrossRef]

Podgor, M.

Pokorny, J.

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[CrossRef] [PubMed]

E. Miyahara, V. C. Smith, J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).
[PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, “Wavelength discrimination in the presence of added chromatic fields,” J. Opt. Soc. Am. 60, 562–569 (1970).
[CrossRef] [PubMed]

T. Yeh, J. Pokorny, V. C. Smith, “S-cone discrimination sensitivity and performance on arrangement tests,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 293–302.
[CrossRef]

Pugh, E. N.

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

Reitner, A.

A. Reitner, L. T. Sharpe, E. Zrenner, “Wavelength discrimination as a function of field intensity, duration and size,” Vision Res. 32, 179–185 (1992).
[CrossRef] [PubMed]

Ruddock, K. H.

K. H. Ruddock, “The effect of age upon colour vision—I. Response in the receptoral system of the human eye,” Vision Res. 5, 37–45 (1965).
[CrossRef] [PubMed]

Saunders, F.

Schefrin, B. E.

Sharpe, L. T.

A. Reitner, L. T. Sharpe, E. Zrenner, “Wavelength discrimination as a function of field intensity, duration and size,” Vision Res. 32, 179–185 (1992).
[CrossRef] [PubMed]

Shinomori, K.

Siegel, M. H.

Smith, V. C.

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[CrossRef] [PubMed]

E. Miyahara, V. C. Smith, J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).
[PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, “Wavelength discrimination in the presence of added chromatic fields,” J. Opt. Soc. Am. 60, 562–569 (1970).
[CrossRef] [PubMed]

T. Yeh, J. Pokorny, V. C. Smith, “S-cone discrimination sensitivity and performance on arrangement tests,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 293–302.
[CrossRef]

Sperling, H. G.

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the incremental-threshold spectral sensitivity of primates,” Science 172, 23–27 (1971).
[CrossRef]

Thornton, J. E.

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

Tsou, B. H. P.

C. R. Ingling, B. H. P. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef] [PubMed]

Verdon, W.

W. Verdon, G. Haegerstrom-Portnoy, “Mechanisms underlying the detection of increments in parafoveal retina,” Vision Res. 36, 373–390 (1996).
[CrossRef] [PubMed]

Verriest, G.

Vos, J. J.

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

J. J. Vos, Tabulated Characteristics of a Proposed 2° Fundamental Observer (Institute for Perception TNO, Soesterberg, The Netherlands, 1978).

Werner, J. S.

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

Wright, W. D.

W. D. Wright, “The characteristics of tritanopia,” J. Opt. Soc. Am. 42, 509–521 (1952).
[CrossRef] [PubMed]

W. D. Wright, F. H. G. Pitt, “Hue-discrimination in normal colour-vision,” Proc. Phys. Soc. London 46, 459–473 (1934).
[CrossRef]

Wyszecki, G. W.

Yeh, T.

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[CrossRef] [PubMed]

T. Yeh, J. Pokorny, V. C. Smith, “S-cone discrimination sensitivity and performance on arrangement tests,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 293–302.
[CrossRef]

Zrenner, E.

A. Reitner, L. T. Sharpe, E. Zrenner, “Wavelength discrimination as a function of field intensity, duration and size,” Vision Res. 32, 179–185 (1992).
[CrossRef] [PubMed]

Am. J. Ophthalmol.

V. C. Smith, J. Pokorny, A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).
[PubMed]

Am. J. Physiol.

H. Laurens, W. F. Hamilton, “The sensitivity of the eye to differences in wavelength,” Am. J. Physiol. 65, 547–567 (1923).

Appl. Opt.

Color Res. Appl.

R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

Colour Vision Deficiencies III

Y. Ohta, H. Kato, “Colour perception changes with age,” in Colour Vision Deficiencies III, Mod. Probl. Ophthalmol. 17, 345–352 (1976).

Farbe

R. Lakowski, “Is the deterioration of colour discrimination with age due to lens or retinal changes?” Farbe 11, 69–86 (1962).

J. Gerontol.

J. G. Gilbert, “Age changes in color matching,” J. Gerontol. 12, 210–215 (1957).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

G. Verriest, “Further studies on acquired deficiency of color discrimination,” J. Opt. Soc. Am. 53, 185–195 (1963).
[CrossRef] [PubMed]

J. S. Werner, “Development of scotopic sensitivity and the absorption spectrum of the human ocular media,” J. Opt. Soc. Am. 72, 247–258 (1982).
[CrossRef] [PubMed]

S. L. Guth, H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
[CrossRef] [PubMed]

R. E. Bedford, G. W. Wyszecki, “Wavelength discrimination for point sources,” J. Opt. Soc. Am. 48, 129–135 (1958).
[CrossRef] [PubMed]

M. H. Siegel, F. L. Dimmick, “Discrimination of color. II. Sensitivity as a function of spectral wavelength, 510 through 630 μm,” J. Opt. Soc. Am. 52, 1071–1074 (1962).
[CrossRef] [PubMed]

M. H. Siegel, “Discrimination of color. IV. Sensitivity as a function of spectral wavelength, 410 through 500 μm,” J. Opt. Soc. Am. 54, 821–823 (1964).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, “Wavelength discrimination in the presence of added chromatic fields,” J. Opt. Soc. Am. 60, 562–569 (1970).
[CrossRef] [PubMed]

S. L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
[CrossRef] [PubMed]

W. D. Wright, “The characteristics of tritanopia,” J. Opt. Soc. Am. 42, 509–521 (1952).
[CrossRef] [PubMed]

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef] [PubMed]

L. A. Jones, “The fundamental scale of pure hue and retinal sensitivity to hue differences,” J. Opt. Soc. Am. 1, 63–77 (1917).
[CrossRef]

J. Opt. Soc. Am. A

Proc. Phys. Soc. London

W. D. Wright, F. H. G. Pitt, “Hue-discrimination in normal colour-vision,” Proc. Phys. Soc. London 46, 459–473 (1934).
[CrossRef]

Science

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the incremental-threshold spectral sensitivity of primates,” Science 172, 23–27 (1971).
[CrossRef]

Vision Res.

W. Verdon, G. Haegerstrom-Portnoy, “Mechanisms underlying the detection of increments in parafoveal retina,” Vision Res. 36, 373–390 (1996).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

K. H. Ruddock, “The effect of age upon colour vision—I. Response in the receptoral system of the human eye,” Vision Res. 5, 37–45 (1965).
[CrossRef] [PubMed]

P. K. Kaiser, R. M. Boynton, “Role of the blue mechanism in wavelength discrimination,” Vision Res. 25, 523–529 (1985).
[CrossRef] [PubMed]

J. D. Mollon, S. Astell, C. R. Cavonius, “A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones,” Vision Res. 32, 745–755 (1992).
[CrossRef] [PubMed]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

A. Reitner, L. T. Sharpe, E. Zrenner, “Wavelength discrimination as a function of field intensity, duration and size,” Vision Res. 32, 179–185 (1992).
[CrossRef] [PubMed]

C. R. Ingling, B. H. P. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[CrossRef] [PubMed]

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[CrossRef] [PubMed]

Other

J. J. Vos, Tabulated Characteristics of a Proposed 2° Fundamental Observer (Institute for Perception TNO, Soesterberg, The Netherlands, 1978).

J. D. Moreland, “Matching range and age in a blue-green equation,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 129–134.
[CrossRef]

R. M. Boynton, Human Color Vision (Holt, Reinhart & Winston, New York, 1979).

T. Yeh, J. Pokorny, V. C. Smith, “S-cone discrimination sensitivity and performance on arrangement tests,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 293–302.
[CrossRef]

Y. LeGrand, Light, Colour, and Vision (Wiley, New York, 1957).

Y. Le Grand, “Spectral Luminosity,” in Visual Psychophysics, D. Jameson, L. M. Hurvich, eds., Vol. VII/4 of Handbook of Sensory Physiology (Springer-Verlag, Berlin, 1972), pp. 413–433.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Wavelength discrimination thresholds (Δλ) plotted as a function of wavelength for four younger subjects. Smaller and larger symbols represent thresholds assumed to be mediated by an S-cone pathway and an L/M chromatically opponent pathway, respectively. Dashed–dotted and dotted curves represent thresholds calculated with Eq. (1) that incorporate or exclude, respectively, a noise parameter within an S-cone pathway. The solid curves represent thresholds calculated for the modeled L/M-cone pathway with Eqs. (3) and (4). Arrows correspond to standard wavelengths at which thresholds could not be determined.

Fig. 2
Fig. 2

Wavelength discrimination thresholds for four older subjects. All other details are the same as in Fig. 1.

Fig. 3
Fig. 3

Mean wavelength discrimination thresholds for four younger and three older individuals shown in Figs. 1 and 2. Older observer DK is excluded for the mean. Error bars denote ±1 standard deviation. Diamonds in the top panel represent mean thresholds obtained from two of four observers. Smaller open symbols denote mean thresholds for an S-cone mechanism. Dashed–dotted and dotted curves represent thresholds calculated with Eq. (1) that incorporate or exclude, respectively, a noise parameter within an S-cone pathway. When the model was applied to the mean thresholds, the Weber fraction equaled 0.096 and the values for parameter CSn for younger and older observers were 1.4 and 2.7, respectively. Larger symbols and solid curves denote mean thresholds and calculated thresholds [Eqs. (3) and (4)] for an L/M-cone chromatically opponent pathway. (See text and Tables 2 and 3 for details).

Fig. 4
Fig. 4

Differential excitation of S cones at threshold as a function of S-cone simulation. Open and solid symbols represent thresholds from younger and older observers (except observer DK), respectively. Thresholds from individual observers are represented by the same-shaped symbols as in Figs. 1 and 2. Larger symbols and smaller symbols denote thresholds between 450 and 500 nm and thresholds at 510 nm, respectively. The dotted line represents a linear-regression fit to data between 450 and 500 nm obtained from both older and younger observers. Dashed–dotted and solid curves denote the fits obtained by the model with the common Weber fraction, 0.096, and the values for parameter CSn for younger and older observers, 1.4 and 2.7, respectively. Vertical bars at the bottom of the figure denote the amount of S-cone stimulation at each standard wavelength calculated with the averaged luminous-efficiency function.

Fig. 5
Fig. 5

Differential response of function F [Eq. (3)] at threshold as a function of F. Open and solid symbols represent thresholds below 450 and above approximately 500–510 nm from younger and older observers (except observer DK), respectively. Thresholds from individual observers are represented by the same-shaped symbols as in Figs. 1 and 2. The dashed–dotted line and the solid line represent linear-regression fits to data obtained from older and younger observers with the Weber fraction, 0.044 and 0.093, respectively. Vertical bars at the bottom of the figure denote the response of function F at each standard wavelength calculated with the averaged luminous-efficiency function and averaged α, 1.9.

Tables (3)

Tables Icon

Table 1 Descriptive Statistics and Parameters of Linear Regression As a Function of Pathway Stimulation for Discrimination Thresholds

Tables Icon

Table 2 Parameter Values for Model Fits of Eq. (1 ) to Data in Figs. 13

Tables Icon

Table 3 Parameter Values for Model Fits of Eqs. (3 ) and (4 ) to Data in Figs. 13

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ΔS/(S + CSn)a=W,
(1/C)ΔS=W[(1/C)S+Sn]
F=αM-L+L-αM,
ΔF/(F+CF)=W.
ΔL/[(L+M)+0.8|L-2M|+βS]=W.
[(ΔL-αΔM)+αΔI]/[|L-αM|+(1/k)I+(β/k)S]
=k(1+α)W.
(ΔL-αΔM)/[|L-αM|+ C]=W2.

Metrics