Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Numerical studies of backscattering enhancement of electromagnetic waves from two-dimensional random rough surfaces with the forward–backward/novel spectral acceleration method

Not Accessible

Your library or personal account may give you access

Abstract

The forward–backward method with a novel spectral acceleration algorithm (FB/NSA) has been shown to be a highly efficient O(Ntot) iterative method of moments, where Ntot is the total number of unknowns to be solved, for the computation of electromagnetic (EM) wave scattering from both one-dimensional and two-dimensional (2-D) rough surfaces. The efficiency of the method makes studies of backscattering enhancement from moderately rough impedance surfaces at large incident angles tractable. Variations in the characteristics of backscattering enhancement with incident angle, surface impedance, polarization, and surface statistics are investigated by use of the 2-D FB/NSA method combined with parallel computing techniques. The surfaces considered are Gaussian random processes with an isotropic Gaussian spectrum and root-mean-square surface heights and slopes ranging from 0.5λ to λ and from 0.5 to 1.0, respectively, where λ is the EM wavelength in free space. Incident angles ranging from normal incidence up to 70° are considered in this study. It is found that backscattering enhancement depends strongly on all parameters of interest.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces based on Monte Carlo simulations

Kyung Pak, Leung Tsang, Chi H. Chan, and Joel Johnson
J. Opt. Soc. Am. A 12(11) 2491-2499 (1995)

Double-scatter cross sections for two-dimensional random rough surfaces that exhibit backscatter enhancement

Ezekiel Bahar and Magda El-Shenawee
J. Opt. Soc. Am. A 18(1) 108-116 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved