Abstract

Early postreceptoral color vision is thought to be organized in terms of two principal axes corresponding to opposing L- and M-cone signals (LvsM) or to S-cone signals opposed by a combination of L- and M-cone signals (SvsLM). These cone-opponent axes are now widely used in studies of color vision, but in most cases the corresponding stimulus variations are defined only theoretically, based on a standard observer. We examined the range and implications of interobserver variations in the cone-opponent axes. We used chromatic adaptation to empirically define the LvsM and SvsLM axes and used both thresholds and color contrast adaptation to determine sensitivity to the axes. We also examined the axis variations implied by individual differences in the color matching data of Stiles and Burch [Opt. Acta 6, 1 (1959)]. The axes estimated for individuals can differ measurably from the nominal standard-observer axes and can influence the interpretation of postreceptoral color organization (e.g., regarding interactions between the two axes). Thus, like luminance sensitivity, individual differences in chromatic sensitivity may be important to consider in studies of the cone-opponent axes.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
    [CrossRef] [PubMed]
  2. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
    [PubMed]
  3. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
    [CrossRef] [PubMed]
  4. M. J. Sankeralli, K. T. Mullen, “Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms,” J. Opt. Soc. Am. A 13, 906–915 (1996).
    [CrossRef]
  5. G. R. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
    [CrossRef] [PubMed]
  6. S. K. Shevell, “Redness from short-wavelength-sensitive cones does not induce greenness,” Vision Res. 32, 1551–1556 (1992).
    [CrossRef] [PubMed]
  7. C. F. Stromeyer, J. Lee, “Adaptational effects of short wave cone signals on red–green chromatic detection,” Vision Res. 28, 931–940 (1988).
    [CrossRef]
  8. M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
    [CrossRef] [PubMed]
  9. J. D. Mollon, “ ‘Tho’ she kneel’d in that place where they grew …’,” J. Exp. Biol. 146, 21–38 (1989).
    [PubMed]
  10. R. M. Boynton, A. L. Nagy, C. X. Olson, “A flaw in equations for predicting chromatic differences,” Color Res. Appl. 8, 69–74 (1983).
    [CrossRef]
  11. C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
    [CrossRef] [PubMed]
  12. M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Syst. 7, 587–634 (1996).
    [CrossRef]
  13. P. K. Kaiser, “Sensation luminance: a new name to distinguish CIE luminance from luminance dependent on an individual’s spectral sensitivity,” Vision Res. 28, 455–456 (1988).
    [CrossRef]
  14. P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
    [CrossRef] [PubMed]
  15. M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
    [CrossRef]
  16. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef] [PubMed]
  17. D. H. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, P. Kaiser, R. M. B. Boynton, eds. (Optical Society of America, Washington, D.C., 1996), pp. 563–579.
  18. P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
    [CrossRef] [PubMed]
  19. M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
    [CrossRef] [PubMed]
  20. M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
    [CrossRef]
  21. M. A. Webster, K. K. De Valois, E. Switkes, “Orientation and spatial-frequency discrimination for luminance and chromatic gratings,” J. Opt. Soc. Am. A 7, 1034–1049 (1990).
    [CrossRef] [PubMed]
  22. A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
    [CrossRef] [PubMed]
  23. M. A. Webster, J. D. Mollon, “Contrast adaptation dissociates different measures of luminous efficiency,” J. Opt. Soc. Am. A 10, 1332–1340 (1993).
    [CrossRef] [PubMed]
  24. E. Switkes, M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vision Res. 39, 1823–1831 (1999).
    [CrossRef] [PubMed]
  25. M. A. Webster, J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
    [CrossRef] [PubMed]
  26. V. C. Smith, J. Pokorny, “Chromatic discrimination axes, CRT phosphor spectra, and individual variation in color vision,” J. Opt. Soc. Am. A 12, 27–35 (1995).
    [CrossRef]
  27. D. I. A. MacLeod, M. A. Webster, “Factors influencing the color matches of normal observers,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 81–92.
  28. M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
    [CrossRef] [PubMed]
  29. W. S. Stiles, J. Burch, “N.P.L. colour matching investigation: final report (1958),” Opt. Acta6, 1–26 (1959).
    [CrossRef]
  30. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  31. A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
    [CrossRef]
  32. C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
    [CrossRef] [PubMed]
  33. C. A. Curcio, K. R. J. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
    [CrossRef] [PubMed]
  34. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
    [CrossRef] [PubMed]
  35. R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
    [CrossRef] [PubMed]
  36. M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
    [CrossRef] [PubMed]
  37. J. Krauskopf, H.-J. Wu, B. Farell, “Coherence, cardinal directions, and higher-order mechanisms,” Vision Res. 36, 1235–1245 (1996).
    [CrossRef] [PubMed]

2000 (1)

1999 (1)

E. Switkes, M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vision Res. 39, 1823–1831 (1999).
[CrossRef] [PubMed]

1998 (1)

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

1997 (1)

M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
[CrossRef]

1996 (3)

M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Syst. 7, 587–634 (1996).
[CrossRef]

M. J. Sankeralli, K. T. Mullen, “Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms,” J. Opt. Soc. Am. A 13, 906–915 (1996).
[CrossRef]

J. Krauskopf, H.-J. Wu, B. Farell, “Coherence, cardinal directions, and higher-order mechanisms,” Vision Res. 36, 1235–1245 (1996).
[CrossRef] [PubMed]

1995 (2)

1994 (1)

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

1993 (4)

1992 (1)

S. K. Shevell, “Redness from short-wavelength-sensitive cones does not induce greenness,” Vision Res. 32, 1551–1556 (1992).
[CrossRef] [PubMed]

1991 (3)

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

1990 (1)

1989 (3)

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

J. D. Mollon, “ ‘Tho’ she kneel’d in that place where they grew …’,” J. Exp. Biol. 146, 21–38 (1989).
[PubMed]

1988 (3)

C. F. Stromeyer, J. Lee, “Adaptational effects of short wave cone signals on red–green chromatic detection,” Vision Res. 28, 931–940 (1988).
[CrossRef]

P. K. Kaiser, “Sensation luminance: a new name to distinguish CIE luminance from luminance dependent on an individual’s spectral sensitivity,” Vision Res. 28, 455–456 (1988).
[CrossRef]

M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
[CrossRef] [PubMed]

1987 (2)

P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[CrossRef] [PubMed]

C. A. Curcio, K. R. J. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

1984 (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

1983 (2)

R. M. Boynton, A. L. Nagy, C. X. Olson, “A flaw in equations for predicting chromatic differences,” Color Res. Appl. 8, 69–74 (1983).
[CrossRef]

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

1982 (1)

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

1979 (1)

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1966 (1)

Abramov, I.

Allen, K. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Anstis, S. M.

Boynton, R. M.

R. M. Boynton, A. L. Nagy, C. X. Olson, “A flaw in equations for predicting chromatic differences,” Color Res. Appl. 8, 69–74 (1983).
[CrossRef]

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef] [PubMed]

Brainard, D. H.

D. H. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, P. Kaiser, R. M. B. Boynton, eds. (Optical Society of America, Washington, D.C., 1996), pp. 563–579.

Burch, J.

W. S. Stiles, J. Burch, “N.P.L. colour matching investigation: final report (1958),” Opt. Acta6, 1–26 (1959).
[CrossRef]

Cavanagh, P.

Chaparro, A.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

Chen, D.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

Cicerone, C. M.

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Cole, G. R.

Crognale, M. A.

E. Switkes, M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vision Res. 39, 1823–1831 (1999).
[CrossRef] [PubMed]

Curcio, C. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

C. A. Curcio, K. R. J. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

De Valois, K. K.

De Valois, R. L.

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

Farell, B.

J. Krauskopf, H.-J. Wu, B. Farell, “Coherence, cardinal directions, and higher-order mechanisms,” Vision Res. 36, 1235–1245 (1996).
[CrossRef] [PubMed]

Heeley, D. W.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Hendrickson, A. E.

C. A. Curcio, K. R. J. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Hine, T.

Hu, E.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

Hurley, J. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Jacobs, G. H.

Johnson, N. E.

Kaiser, P. K.

P. K. Kaiser, “Sensation luminance: a new name to distinguish CIE luminance from luminance dependent on an individual’s spectral sensitivity,” Vision Res. 28, 455–456 (1988).
[CrossRef]

Kalina, R. E.

C. A. Curcio, K. R. J. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Klock, I. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Krauskopf, J.

J. Krauskopf, H.-J. Wu, B. Farell, “Coherence, cardinal directions, and higher-order mechanisms,” Vision Res. 36, 1235–1245 (1996).
[CrossRef] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Kronauer, R. E.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

Lee, J.

C. F. Stromeyer, J. Lee, “Adaptational effects of short wave cone signals on red–green chromatic detection,” Vision Res. 28, 931–940 (1988).
[CrossRef]

Lennie, P.

P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

Lerea, C. L.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

MacLeod, D. I. A.

Malkoc, G.

McIlhagga, W.

Milam, A. H.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Miyahara, E.

Mollon, J. D.

M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
[CrossRef]

M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “Contrast adaptation dissociates different measures of luminous efficiency,” J. Opt. Soc. Am. A 10, 1332–1340 (1993).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef] [PubMed]

J. D. Mollon, “ ‘Tho’ she kneel’d in that place where they grew …’,” J. Exp. Biol. 146, 21–38 (1989).
[PubMed]

Mullen, K. T.

Nagy, A. L.

R. M. Boynton, A. L. Nagy, C. X. Olson, “A flaw in equations for predicting chromatic differences,” Color Res. Appl. 8, 69–74 (1983).
[CrossRef]

Nerger, J. L.

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Olson, C. X.

R. M. Boynton, A. L. Nagy, C. X. Olson, “A flaw in equations for predicting chromatic differences,” Color Res. Appl. 8, 69–74 (1983).
[CrossRef]

Packer, O.

C. A. Curcio, K. R. J. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Pelli, D. G.

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Pokorny, J.

V. C. Smith, J. Pokorny, “Chromatic discrimination axes, CRT phosphor spectra, and individual variation in color vision,” J. Opt. Soc. Am. A 12, 27–35 (1995).
[CrossRef]

P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Raker, V. E.

Rodriguez, C.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

Sankeralli, M. J.

Shevell, S. K.

S. K. Shevell, “Redness from short-wavelength-sensitive cones does not induce greenness,” Vision Res. 32, 1551–1556 (1992).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Sloan, K. R.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Sloan, K. R. J.

C. A. Curcio, K. R. J. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Smith, V. C.

V. C. Smith, J. Pokorny, “Chromatic discrimination axes, CRT phosphor spectra, and individual variation in color vision,” J. Opt. Soc. Am. A 12, 27–35 (1995).
[CrossRef]

P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Stiles, W. S.

W. S. Stiles, J. Burch, “N.P.L. colour matching investigation: final report (1958),” Opt. Acta6, 1–26 (1959).
[CrossRef]

Stockman, A.

Stromeyer, C. F.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

C. F. Stromeyer, J. Lee, “Adaptational effects of short wave cone signals on red–green chromatic detection,” Vision Res. 28, 931–940 (1988).
[CrossRef]

Switkes, E.

Vimal, R. L. P.

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Watson, A. B.

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Webster, M. A.

M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
[CrossRef]

M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
[CrossRef]

M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Syst. 7, 587–634 (1996).
[CrossRef]

M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “Contrast adaptation dissociates different measures of luminous efficiency,” J. Opt. Soc. Am. A 10, 1332–1340 (1993).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef] [PubMed]

M. A. Webster, K. K. De Valois, E. Switkes, “Orientation and spatial-frequency discrimination for luminance and chromatic gratings,” J. Opt. Soc. Am. A 7, 1034–1049 (1990).
[CrossRef] [PubMed]

M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
[CrossRef] [PubMed]

D. I. A. MacLeod, M. A. Webster, “Factors influencing the color matches of normal observers,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 81–92.

Wesner, M. F.

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

Williams, D. R.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Wu, H.-J.

J. Krauskopf, H.-J. Wu, B. Farell, “Coherence, cardinal directions, and higher-order mechanisms,” Vision Res. 36, 1235–1245 (1996).
[CrossRef] [PubMed]

Color Res. Appl. (1)

R. M. Boynton, A. L. Nagy, C. X. Olson, “A flaw in equations for predicting chromatic differences,” Color Res. Appl. 8, 69–74 (1983).
[CrossRef]

J. Comp. Neurol. (1)

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

J. Exp. Biol. (1)

J. D. Mollon, “ ‘Tho’ she kneel’d in that place where they grew …’,” J. Exp. Biol. 146, 21–38 (1989).
[PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (10)

M. A. Webster, E. Miyahara, G. Malkoc, V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545–1555 (2000).
[CrossRef]

P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[CrossRef] [PubMed]

M. A. Webster, D. I. A. MacLeod, “Factors underlying individual differences in the color matches of normal observers,” J. Opt. Soc. Am. A 5, 1722–1735 (1988).
[CrossRef] [PubMed]

M. A. Webster, K. K. De Valois, E. Switkes, “Orientation and spatial-frequency discrimination for luminance and chromatic gratings,” J. Opt. Soc. Am. A 7, 1034–1049 (1990).
[CrossRef] [PubMed]

G. R. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
[CrossRef] [PubMed]

P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “Contrast adaptation dissociates different measures of luminous efficiency,” J. Opt. Soc. Am. A 10, 1332–1340 (1993).
[CrossRef] [PubMed]

A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[CrossRef]

M. J. Sankeralli, K. T. Mullen, “Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms,” J. Opt. Soc. Am. A 13, 906–915 (1996).
[CrossRef]

V. C. Smith, J. Pokorny, “Chromatic discrimination axes, CRT phosphor spectra, and individual variation in color vision,” J. Opt. Soc. Am. A 12, 27–35 (1995).
[CrossRef]

J. Physiol. (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

Nature (2)

M. A. Webster, J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef] [PubMed]

Network Comput. Neural Syst. (1)

M. A. Webster, “Human colour perception and its adaptation,” Network Comput. Neural Syst. 7, 587–634 (1996).
[CrossRef]

Percept. Psychophys. (1)

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Science (1)

C. A. Curcio, K. R. J. Sloan, O. Packer, A. E. Hendrickson, R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236, 579–582 (1987).
[CrossRef] [PubMed]

Vision Res. (13)

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

J. Krauskopf, H.-J. Wu, B. Farell, “Coherence, cardinal directions, and higher-order mechanisms,” Vision Res. 36, 1235–1245 (1996).
[CrossRef] [PubMed]

E. Switkes, M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vision Res. 39, 1823–1831 (1999).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283–3298 (1997).
[CrossRef]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

P. K. Kaiser, “Sensation luminance: a new name to distinguish CIE luminance from luminance dependent on an individual’s spectral sensitivity,” Vision Res. 28, 455–456 (1988).
[CrossRef]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

S. K. Shevell, “Redness from short-wavelength-sensitive cones does not induce greenness,” Vision Res. 32, 1551–1556 (1992).
[CrossRef] [PubMed]

C. F. Stromeyer, J. Lee, “Adaptational effects of short wave cone signals on red–green chromatic detection,” Vision Res. 28, 931–940 (1988).
[CrossRef]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

Other (3)

D. H. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, P. Kaiser, R. M. B. Boynton, eds. (Optical Society of America, Washington, D.C., 1996), pp. 563–579.

D. I. A. MacLeod, M. A. Webster, “Factors influencing the color matches of normal observers,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 81–92.

W. S. Stiles, J. Burch, “N.P.L. colour matching investigation: final report (1958),” Opt. Acta6, 1–26 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Estimates of the cone-opponent axes based on chromatic adaptation. Points and fitted ellipses plot the thresholds for detecting chromatic pulses in the presence of a short- or long-wavelength adapting background. Short-wavelength backgrounds selectively elevate thresholds along the SvsLM axis, and long-wavelength backgrounds elevate thresholds along the LvsM axis. Axes were estimated from the orientation of the threshold ellipses or from contrast matching in the presence of the backgrounds (dashed lines through ellipses; see text). Each panel plots the results for a different observer. Axes for JS were estimated only by the threshold task.

Fig. 2
Fig. 2

Contrast matching task used to estimate the cone-opponent axes. Subjects were presented pairs of chromaticities (C1 and C2) that had the same contrast but differed by a fixed chromatic angle. The pair was rotated together around the color plane with staircases while subjects judged which of the two stimuli had the higher apparent contrast. Adaptation to a short-wavelength background selectively reduces sensitivity to the SvsLM axis, orienting threshold contours along this axis and reducing perceived contrast most for stimuli along the SvsLM axis. Thus the stimulus in the pair that is farthest from the SvsLM axis will appear to have the higher contrast, and the two should appear equal in contrast when the pair straddle the SvsLM axis equally.

Fig. 3
Fig. 3

Contrast adaptation task used to verify the cone-opponent axes. An asymmetric matching task was used to judge pairs of identical test stimuli under different states of adaptation. Adaptation to a modulation along the LvsM axis reduces perceived contrast along this axis and thus rotates perceived hue of test stimuli, T, toward the SvsLM axis. For hue angles clockwise from the +S axis, this causes the comparison stimulus (C, viewed under neutral adaptation) to appear redder than the test stimulus. For hue angles counterclockwise from the +S axis, the comparison stimulus instead appears bluer, and the test and comparison match in hue when they lie along the S axis.

Fig. 4
Fig. 4

Asymmetric hue matches following adaptation to the empirically defined LvsM axis (-1.6 deg, observer MW). Panels plot the psychometric functions for judging whether the comparison hue was too blue (left panel, +S axis) or too yellow (right panel, -S axis). For both poles of the SvsLM axis, hue matches occur at chromatic angles closer to the empirically defined SvsLM axis (99.5–279.5 deg) than to the nominal axis.

Fig. 5
Fig. 5

Variations in the cone-opponent axes predicted by variations in peripheral color vision. Panels plot the range of angles predicted for the LvsM or SvsLM axes, on the basis of changes in the density of preretinal filters or in the spectral peaks or optical densities of the photopigments. Labeled bars give the range predicted by a variation of +2 standard deviations around the presumed mean value for each individual factor. Histograms plot the distribution of angles predicted by combining factors to reconstruct the spectral sensitivities presumed for 49 observers in the color matching data of Stiles and Burch (Ref. 29). Open circles plot individual axes estimated in the present study. Right panel compares the range of variation across the two axes, which for the simulated Stiles–Burch observers (filled circles) is ∼15 times greater along the SvsLM axis when axes are scaled for equal multiples of threshold.  

Fig. 6
Fig. 6

Changes in color appearance following adaptation to different directions within the SvsLM and LvsM plane, for observer EM. Each panel plots the coordinates of test stimuli (open circles) and the matches made to them (filled squares) following adaptation to one of four adapting axes intermediate between the SvsLM and LvsM axes.

Fig. 7
Fig. 7

Changes in the perceived hue of the test stimuli following adaptation for the matches shown in Fig. 6. Points plot the difference in angle between the test and the match. The four panels plot the results for the four different adapting axes for observer EM. For each, the pair of lines with filled symbols show the hue shifts following the best rescaling along the nominal cardinal axes, and the lines with open symbols plot the hue rotations within a space defined by the individual observer’s SvsLM and LvsM axis directions. Vertical lines show the predicted angles at which tests should not appear rotated in hue, for the nominal axes (dashed lines) and for the individual observer’s axes (solid lines).

Tables (1)

Tables Icon

Table 1 S/LM Sensitivity Ratios Estimated from Detection Thresholds or Hue Shifts Following Adaptation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

LvsMcontrast=(rmb-0.6568)*2754
SvsLMcontrast=(bmb-0.01825)*4099

Metrics