Abstract

Although the spatial and temporal properties of rod-mediated vision have been extensively characterized, little is known about scotopic motion perception. To provide such information, we determined thresholds for the detection and identification of the direction of motion of sinusoidal grating patches moving at speeds from 1 to 32 deg/s, under scotopic light levels, in four different types of observers: three normals, a rod monochromat (who lacks all cone vision), an S-cone monochromat (who lacks M- and L-cone vision), and four deuteranopes (who lack M-cone vision). The deuteranopes, whose motion perception does not differ from that of normals, allowed us to measure rod and L-cone thresholds under silent substitution conditions and to compare directly the perceived velocity for moving stimuli detected by either rod or cone vision at the same light level. We find, for rod as for cone vision, that the direction of motion can be reliably identified very near to detection threshold. In contrast, the perceived velocity of rod-mediated stimuli is reduced by approximately 20% relative to cone-mediated stimuli at temporal frequencies below 4 Hz and at all intensity levels investigated (0.92 to -1.12 log cd m-2). Most likely, the difference in velocity perception is distal in origin because rod and cone signals converge in the retina and further processing of their combined signals in the visual cortex is presumably identical. To account for the difference, we propose a model of velocity, in which the greater temporal averaging of rod signals in the retina leads to an attenuation of the motion signal in the detectors tuned to high velocities.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Hess, L. T. Sharpe, K. Nordby, eds., Night Vision: Basic, Clinical, and Applied Aspects (Cambridge U. Press, Cambridge, UK, 1990).
  2. T. Takeuchi, K. K. De Valois, “Velocity discrimination in scotopic vision,” Invest. Ophthalmol. Visual Sci. 39, 1077 (1998).
  3. K. R. Gegenfurtner, H. Mayser, L. T. Sharpe, “Seeing movement in the dark,” Nature 398, 475–476 (1999).
    [CrossRef] [PubMed]
  4. E. Grossman, R. Blake, T. Palmieri, “Motion perception at scotopic light levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).
  5. J. D. Conner, D. I. A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 689–699 (1977).
    [CrossRef]
  6. R. F. Hess, K. Nordby, “Spatial and temporal limits of vision in the achromat,” J. Physiol. (London) 371, 365–385 (1986).
  7. R. J. Snowden, R. F. Hess, S. J. Waugh, “The processing of temporal modulation at different levels of retinal illuminance,” Vision Res. 35, 775–789 (1995).
    [CrossRef] [PubMed]
  8. S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).
  9. T. D. Albright, “Direction and orientation selectivity of neurons in visual area MT of the macaque,” J. Neurophysiol. 52, 1106–1130 (1985).
  10. D. J. Felleman, D. C. Van Essen, “Distributed hierarchical processing in the primate cerebral cortex,” Cereb. Cortex 1, 1–47 (1991).
    [CrossRef] [PubMed]
  11. A. B. Watson, A. J. Ahumada, J. E. Farrell, “Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays,” J. Opt. Soc. Am. A 3, 300–307 (1986).
    [CrossRef]
  12. S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
    [CrossRef] [PubMed]
  13. R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
    [CrossRef] [PubMed]
  14. K. R. Gegenfurtner, M. J. Hawken, “Interactions of color and motion in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
    [CrossRef] [PubMed]
  15. J. H. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
    [PubMed]
  16. V. P. Ferrera, T. A. Nealey, J. H. R. Maunsell, “Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways,” J. Neurosci. 14, 2080–2088 (1994).
    [PubMed]
  17. V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–877 (1983).
    [PubMed]
  18. V. Virsu, B. B. Lee, O. D. Creutzfeldt, “Mesopic spectral responses and the Purkinje shift of macaque lateral geniculate cells,” Vision Res. 27, 191–200 (1987).
    [CrossRef]
  19. K. Purpura, E. Kaplan, R. M. Shapley, “Background light and the contrast gain of primate retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
    [CrossRef]
  20. B. B. Lee, V. C. Smith, J. Pokorny, J. Kremers, “Rod inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
    [CrossRef]
  21. P. Lennie, M. D. Fairchild, “Ganglion cell pathways for rod vision,” Vision Res. 34, 477–482 (1994).
    [CrossRef] [PubMed]
  22. P. Sterling, M. Freed, R. G. Smith, “Microcircuitry and functional architecture of the cat retina,” Trends Neurosci. 9, 186–193 (1986).
    [CrossRef]
  23. N. W. Daw, R. J. Jensen, W. J. Brunken, “Rod pathways in mammalian retinae,” Trends Neurosci. 13, 110–115 (1990).
    [CrossRef] [PubMed]
  24. H. Kolb, R. Nelson, “Rod pathways in the retina of the cat,” Vision Res. 23, 301–302 (1983).
    [CrossRef] [PubMed]
  25. H. Wässle, B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71, 447–480 (1991).
    [PubMed]
  26. E. Soucy, Y. Wang, S. Nirenberg, J. Nathans, M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21, 481–493 (1998).
    [CrossRef] [PubMed]
  27. J. D. Conner, “The temporal properties of rod vision,” J. Physiol. (London) 332, 139–155 (1982).
  28. L. T. Sharpe, A. Stockman, D. I. A. MacLeod, “Rod flicker perception: scotopic duality, phase lags and destructive interference,” Vision Res. 29, 1539–1559 (1989).
    [CrossRef] [PubMed]
  29. A. Stockman, L. T. Sharpe, E. Zrenner, K. Nordby, “Slow and fast pathways in the human rod visual system: ERG and psychophysics,” J. Opt. Soc. Am. A 8, 1657–1665 (1991).
    [CrossRef] [PubMed]
  30. L. T. Sharpe, C. C. Fach, A. Stockman, “The spectral properties of the two rod pathways,” Vision Res. 33, 2705–2720 (1993).
    [CrossRef] [PubMed]
  31. L. T. Sharpe, J. Hofmeister, C. C. Fach, A. Stockman, “Spatial relations of flicker signals in the two rod pathways,” J. Physiol. (London) 474, 421–431 (1994).
  32. A. Stockman, L. T. Sharpe, K. Rüther, K. Nordby, “Two signals in the human rod visual system: a model based on electrophysiological data,” Visual Neurosci. 12, 951–970 (1995).
    [CrossRef]
  33. L. T. Sharpe, A. Stockman, “Rod pathways: the importance of seeing nothing,” Trends Neurosci. 22, 497–504 (1999).
    [CrossRef] [PubMed]
  34. H. Mayser, T. Eckle, D. I. Braun, K. R. Gegenfurtner, L. T. Sharpe, “Motion perception at scotopic levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).
  35. L. T. Sharpe, K. Nordby, “The photoreceptors in the achromat,” in Night Vision: Basic, Clinical, and Applied Aspects, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, Cambridge, UK, 1990), pp. 335–389.
  36. S. Kohl, T. Marx, I. Giddings, H. Jägle, S. G. Jacobson, E. Apfelstedt-Sylla, E. Zrenner, L. T. Sharpe, B. Wissinger, “Total colorblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel,” Nature Gen. 19, 257–259 (1998).
    [CrossRef]
  37. J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
    [PubMed]
  38. A. Stockman, L. T. Sharpe, C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitivity cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
    [CrossRef] [PubMed]
  39. L. T. Sharpe, A. Stockman, H. Jägle, J. Nathans, “Opsin genes, cone photopigments and color vision,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 3–51.
  40. L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green, and red–green hybrid photopigments in the human retina: correlations between deduced protein sequences and spectral sensitivities measured psychophysically,” J. Neurosci. 18, 10053–10069 (1998).
    [PubMed]
  41. H. Jägle, L. T. Sharpe, J. Nathans, “Rayleigh matches and X-chromosome-linked pigment genes,” available from Herbert Jägle at Universitätsaugenklinik, Forschungsstelle für Experimentelle Ophthalmologie, Röntgenweg 11, D-72076 Tübingen, Germany.
  42. D. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
    [CrossRef]
  43. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  44. H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992).
    [CrossRef]
  45. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  46. A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
    [CrossRef] [PubMed]
  47. P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983).
    [CrossRef] [PubMed]
  48. D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
    [CrossRef] [PubMed]
  49. P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
    [CrossRef] [PubMed]
  50. K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
    [CrossRef] [PubMed]
  51. J. Palmer, L. A. Mobley, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios and the summation of luminance and chromatic signals,” J. Opt. Soc. Am. A 10, 1353–1362 (1993).
    [CrossRef] [PubMed]
  52. A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance, and encentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
    [CrossRef]
  53. K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
    [CrossRef] [PubMed]
  54. C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485.1, 221–243 (1995).
  55. H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
    [CrossRef]
  56. B. A. Wandell, A. B. Poirson, H. A. Baseler, G. M. Boynton, A. Huk, S. Gandhi, L. T. Sharpe, “Color signals in human motion-selective cortex,” Neuron 24, 901–909 (1999).
    [CrossRef]
  57. A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
    [CrossRef] [PubMed]
  58. P. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
    [CrossRef] [PubMed]
  59. L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
    [CrossRef] [PubMed]
  60. M. J. Hawken, K. R. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
    [CrossRef]
  61. K. R. Gegenfurtner, M. J. Hawken, “Perceived speed of luminance, chromatic and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
    [CrossRef] [PubMed]
  62. R. F. Dougherty, W. A. Press, B. A. Wandell, “Perceived speed of colored stimuli,” Neuron 24, 893–899 (1999).
    [CrossRef]
  63. B. Hassenstein, W. Reichardt, “Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsanalyse des Rüsselkäfers, Chlorophanus,” Z. Naturforsch. B 11, 513–524 (1956).
  64. E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [CrossRef] [PubMed]
  65. A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
    [CrossRef] [PubMed]
  66. J. P. H. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
    [CrossRef] [PubMed]
  67. C. H. Graham, R. M. Brown, F. A. Mote, “The relation of size of stimulus and intensity in the human eye. I. Intensity threshold for white light,” J. Exp. Psychol. 24, 555–573 (1939).
    [CrossRef]
  68. H. B. Barlow, “Temporal and spatial summation in human vision at different background intensities,” J. Physiol. (London) 141, 337–350 (1958).
  69. R. A. Weale, “Retinal summation and human visual threshold,” Nature 181, 154–156 (1958).
    [CrossRef] [PubMed]
  70. P. E. Hallett, F. H. C. Marriott, F. C. Rodger, “The relationship of visual threshold to retinal position and area,” J. Physiol. (London) 160, 364–373 (1962).
  71. P. E. Hallet, “Spatial summation,” Vision Res. 3, 9–24 (1963).
    [CrossRef]
  72. E. Baumgardt, “Threshold quantal problems,” in Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Heidelberg, 1972), Vol. II/4, Visual Psychophysics, pp. 29–55.
  73. A. M. Scholtes, M. A. Bouman, “Psychophysical experiments on spatial summation at threshold level of the human peripheral retina,” Vision Res. 17, 867–873 (1977).
    [CrossRef] [PubMed]
  74. L. T. Sharpe, P. Whittle, K. Nordby, “Spatial integration and sensitivity changes in rod vision,” J. Physiol. (London) 461, 235–246 (1993).
  75. E. Baumgardt, “Visual spatial and temporal summation,” Nature 184, 1951–1952 (1959).
    [CrossRef] [PubMed]
  76. B. M. Hillmann, “Relationship between stimulus size and threshold intensity in the fovea measured at four exposure times,” J. Opt. Soc. Am. 48, 422–428 (1958).
    [CrossRef] [PubMed]
  77. B. Chen, D. I. A. MacLeod, A. Stockman, “Improvement in human vision under bright light: grain or gain?” J. Physiol. (London) 394, 17–38 (1987).
  78. C. H. Graham, R. Margaria, “Area and the intensity-time relation in peripheral retina,” Am. J. Physiol. 113, 299–305 (1935).
  79. R. M. Herrick, “Foveal luminance discrimination as a function of the duration of the decrement or increment in luminance,” J. Comp. Physiol. Psychol. 49, 437–443 (1956).
    [CrossRef] [PubMed]
  80. E. Baumgardt, B. M. Hillmann, “Duration and size as determinants of peripheral retinal response,” J. Opt. Soc. Am. A 51, 340–344 (1961).
    [CrossRef]
  81. L. T. Sharpe, C. Fach, K. Nordby, “Temporal summation in the achromat,” Vision Res. 28, 1263–1269 (1988).
    [CrossRef] [PubMed]
  82. L. T. Sharpe, A. Stockman, C. C. Fach, U. Markstahler, “Temporal and spatial summation in the human rod visual system,” J. Physiol. (London) 463, 325–348 (1993).
  83. C. Friedburg, L. T. Sharpe, E. Zrenner, “Cone and rod temporal summation during dark adaptation,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 728 (1996).
  84. J. Krauskopf, J. D. Mollon, “The dependence of the temporal integration properties of individual chromatic mechanisms in the human eye,” J. Physiol. (London) 219, 611–623 (1971).
  85. H. G. Sperling, C. L. Jolliffe, “Intensity-time relationship at threshold for spectral stimuli in human vision,” J. Opt. Soc. Am. 55, 191–199 (1965).
    [CrossRef]
  86. T. Uetsuki, M. Ikeda, “Adaptation and critical duration for Stiles π-mechanisms,” J. Opt. Soc. Am. 61, 821–828 (1971).
    [CrossRef] [PubMed]
  87. D. J. Heeger, “Model for the extraction of image flow,” J. Opt. Soc. Am. A 4, 1455–1471 (1987).
    [CrossRef] [PubMed]
  88. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
    [CrossRef] [PubMed]
  89. T. Takeuchi, K. K. De Valois, “Motion-reversal reveals two motion mechanisms functioning in scotopic vision,” Vision Res. 37, 745–755 (1998).
    [CrossRef]
  90. D. M. Turner, K. K. De Valois, T. Takeuchi, “Speed perception under scotopic conditions,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 378 (1997).
  91. J. Hotson, D. Braun, W. Herzberg, D. Boman, “Transcranial magnetic stimulation of extrastriate cortex degrades human direction discrimination,” Vision Res. 34, 2115–2124 (1994).
    [CrossRef] [PubMed]
  92. R. B. H. Tootell, J. D. Mendola, N. K. Hadjikhani, A. K. Liu, A. M. Dale, “The representation of the ipsilateral visual field in human cerebral cortex,” Proc. Natl. Acad. Sci. USA 95, 818–824 (1998).
    [CrossRef] [PubMed]
  93. T. Schenk, J. Zihl, “Visual motion perception after brain damage. I. Deficits in global motion perception,” Neuropsychologia 35, 1289–1297 (1997).
    [CrossRef] [PubMed]
  94. E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
    [CrossRef]
  95. W. H. Warren, K. J. Kurtz, “The role of central and peripheral vision in perceiving the direction of self-motion,” Percept. Psychophys. 51, 443–454 (1992).
    [CrossRef] [PubMed]
  96. R. J. Snowden, N. Stimpson, R. A. Ruddle, “Speed perception fogs up as visibility drops,” Nature 392, 450 (1998).
    [CrossRef] [PubMed]

1999 (6)

L. T. Sharpe, A. Stockman, “Rod pathways: the importance of seeing nothing,” Trends Neurosci. 22, 497–504 (1999).
[CrossRef] [PubMed]

A. Stockman, L. T. Sharpe, C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitivity cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
[CrossRef] [PubMed]

K. R. Gegenfurtner, H. Mayser, L. T. Sharpe, “Seeing movement in the dark,” Nature 398, 475–476 (1999).
[CrossRef] [PubMed]

B. A. Wandell, A. B. Poirson, H. A. Baseler, G. M. Boynton, A. Huk, S. Gandhi, L. T. Sharpe, “Color signals in human motion-selective cortex,” Neuron 24, 901–909 (1999).
[CrossRef]

R. F. Dougherty, W. A. Press, B. A. Wandell, “Perceived speed of colored stimuli,” Neuron 24, 893–899 (1999).
[CrossRef]

E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
[CrossRef]

1998 (9)

T. Takeuchi, K. K. De Valois, “Motion-reversal reveals two motion mechanisms functioning in scotopic vision,” Vision Res. 37, 745–755 (1998).
[CrossRef]

R. B. H. Tootell, J. D. Mendola, N. K. Hadjikhani, A. K. Liu, A. M. Dale, “The representation of the ipsilateral visual field in human cerebral cortex,” Proc. Natl. Acad. Sci. USA 95, 818–824 (1998).
[CrossRef] [PubMed]

R. J. Snowden, N. Stimpson, R. A. Ruddle, “Speed perception fogs up as visibility drops,” Nature 392, 450 (1998).
[CrossRef] [PubMed]

E. Grossman, R. Blake, T. Palmieri, “Motion perception at scotopic light levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).

T. Takeuchi, K. K. De Valois, “Velocity discrimination in scotopic vision,” Invest. Ophthalmol. Visual Sci. 39, 1077 (1998).

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green, and red–green hybrid photopigments in the human retina: correlations between deduced protein sequences and spectral sensitivities measured psychophysically,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

H. Mayser, T. Eckle, D. I. Braun, K. R. Gegenfurtner, L. T. Sharpe, “Motion perception at scotopic levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).

S. Kohl, T. Marx, I. Giddings, H. Jägle, S. G. Jacobson, E. Apfelstedt-Sylla, E. Zrenner, L. T. Sharpe, B. Wissinger, “Total colorblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel,” Nature Gen. 19, 257–259 (1998).
[CrossRef]

E. Soucy, Y. Wang, S. Nirenberg, J. Nathans, M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21, 481–493 (1998).
[CrossRef] [PubMed]

1997 (3)

B. B. Lee, V. C. Smith, J. Pokorny, J. Kremers, “Rod inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
[CrossRef]

T. Schenk, J. Zihl, “Visual motion perception after brain damage. I. Deficits in global motion perception,” Neuropsychologia 35, 1289–1297 (1997).
[CrossRef] [PubMed]

D. M. Turner, K. K. De Valois, T. Takeuchi, “Speed perception under scotopic conditions,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 378 (1997).

1996 (3)

K. R. Gegenfurtner, M. J. Hawken, “Interactions of color and motion in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Perceived speed of luminance, chromatic and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

C. Friedburg, L. T. Sharpe, E. Zrenner, “Cone and rod temporal summation during dark adaptation,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 728 (1996).

1995 (4)

R. J. Snowden, R. F. Hess, S. J. Waugh, “The processing of temporal modulation at different levels of retinal illuminance,” Vision Res. 35, 775–789 (1995).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485.1, 221–243 (1995).

A. Stockman, L. T. Sharpe, K. Rüther, K. Nordby, “Two signals in the human rod visual system: a model based on electrophysiological data,” Visual Neurosci. 12, 951–970 (1995).
[CrossRef]

1994 (6)

L. T. Sharpe, J. Hofmeister, C. C. Fach, A. Stockman, “Spatial relations of flicker signals in the two rod pathways,” J. Physiol. (London) 474, 421–431 (1994).

V. P. Ferrera, T. A. Nealey, J. H. R. Maunsell, “Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways,” J. Neurosci. 14, 2080–2088 (1994).
[PubMed]

P. Lennie, M. D. Fairchild, “Ganglion cell pathways for rod vision,” Vision Res. 34, 477–482 (1994).
[CrossRef] [PubMed]

M. J. Hawken, K. R. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

J. Hotson, D. Braun, W. Herzberg, D. Boman, “Transcranial magnetic stimulation of extrastriate cortex degrades human direction discrimination,” Vision Res. 34, 2115–2124 (1994).
[CrossRef] [PubMed]

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance, and encentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

1993 (6)

J. Palmer, L. A. Mobley, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios and the summation of luminance and chromatic signals,” J. Opt. Soc. Am. A 10, 1353–1362 (1993).
[CrossRef] [PubMed]

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, C. C. Fach, U. Markstahler, “Temporal and spatial summation in the human rod visual system,” J. Physiol. (London) 463, 325–348 (1993).

L. T. Sharpe, P. Whittle, K. Nordby, “Spatial integration and sensitivity changes in rod vision,” J. Physiol. (London) 461, 235–246 (1993).

L. T. Sharpe, C. C. Fach, A. Stockman, “The spectral properties of the two rod pathways,” Vision Res. 33, 2705–2720 (1993).
[CrossRef] [PubMed]

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

1992 (5)

H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992).
[CrossRef]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

W. H. Warren, K. J. Kurtz, “The role of central and peripheral vision in perceiving the direction of self-motion,” Percept. Psychophys. 51, 443–454 (1992).
[CrossRef] [PubMed]

1991 (4)

A. Stockman, L. T. Sharpe, E. Zrenner, K. Nordby, “Slow and fast pathways in the human rod visual system: ERG and psychophysics,” J. Opt. Soc. Am. A 8, 1657–1665 (1991).
[CrossRef] [PubMed]

D. J. Felleman, D. C. Van Essen, “Distributed hierarchical processing in the primate cerebral cortex,” Cereb. Cortex 1, 1–47 (1991).
[CrossRef] [PubMed]

H. Wässle, B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71, 447–480 (1991).
[PubMed]

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef] [PubMed]

1990 (4)

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

N. W. Daw, R. J. Jensen, W. J. Brunken, “Rod pathways in mammalian retinae,” Trends Neurosci. 13, 110–115 (1990).
[CrossRef] [PubMed]

J. H. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

1989 (2)

L. T. Sharpe, A. Stockman, D. I. A. MacLeod, “Rod flicker perception: scotopic duality, phase lags and destructive interference,” Vision Res. 29, 1539–1559 (1989).
[CrossRef] [PubMed]

D. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
[CrossRef]

1988 (2)

K. Purpura, E. Kaplan, R. M. Shapley, “Background light and the contrast gain of primate retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef]

L. T. Sharpe, C. Fach, K. Nordby, “Temporal summation in the achromat,” Vision Res. 28, 1263–1269 (1988).
[CrossRef] [PubMed]

1987 (3)

B. Chen, D. I. A. MacLeod, A. Stockman, “Improvement in human vision under bright light: grain or gain?” J. Physiol. (London) 394, 17–38 (1987).

V. Virsu, B. B. Lee, O. D. Creutzfeldt, “Mesopic spectral responses and the Purkinje shift of macaque lateral geniculate cells,” Vision Res. 27, 191–200 (1987).
[CrossRef]

D. J. Heeger, “Model for the extraction of image flow,” J. Opt. Soc. Am. A 4, 1455–1471 (1987).
[CrossRef] [PubMed]

1986 (3)

A. B. Watson, A. J. Ahumada, J. E. Farrell, “Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays,” J. Opt. Soc. Am. A 3, 300–307 (1986).
[CrossRef]

P. Sterling, M. Freed, R. G. Smith, “Microcircuitry and functional architecture of the cat retina,” Trends Neurosci. 9, 186–193 (1986).
[CrossRef]

R. F. Hess, K. Nordby, “Spatial and temporal limits of vision in the achromat,” J. Physiol. (London) 371, 365–385 (1986).

1985 (5)

T. D. Albright, “Direction and orientation selectivity of neurons in visual area MT of the macaque,” J. Neurophysiol. 52, 1106–1130 (1985).

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[CrossRef] [PubMed]

E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
[CrossRef] [PubMed]

J. P. H. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
[CrossRef] [PubMed]

A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
[CrossRef] [PubMed]

1983 (3)

V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–877 (1983).
[PubMed]

H. Kolb, R. Nelson, “Rod pathways in the retina of the cat,” Vision Res. 23, 301–302 (1983).
[CrossRef] [PubMed]

P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983).
[CrossRef] [PubMed]

1982 (2)

J. D. Conner, “The temporal properties of rod vision,” J. Physiol. (London) 332, 139–155 (1982).

P. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

1980 (1)

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

1977 (2)

J. D. Conner, D. I. A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 689–699 (1977).
[CrossRef]

A. M. Scholtes, M. A. Bouman, “Psychophysical experiments on spatial summation at threshold level of the human peripheral retina,” Vision Res. 17, 867–873 (1977).
[CrossRef] [PubMed]

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1974 (1)

S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).

1971 (3)

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

J. Krauskopf, J. D. Mollon, “The dependence of the temporal integration properties of individual chromatic mechanisms in the human eye,” J. Physiol. (London) 219, 611–623 (1971).

T. Uetsuki, M. Ikeda, “Adaptation and critical duration for Stiles π-mechanisms,” J. Opt. Soc. Am. 61, 821–828 (1971).
[CrossRef] [PubMed]

1965 (1)

1963 (1)

P. E. Hallet, “Spatial summation,” Vision Res. 3, 9–24 (1963).
[CrossRef]

1962 (1)

P. E. Hallett, F. H. C. Marriott, F. C. Rodger, “The relationship of visual threshold to retinal position and area,” J. Physiol. (London) 160, 364–373 (1962).

1961 (1)

E. Baumgardt, B. M. Hillmann, “Duration and size as determinants of peripheral retinal response,” J. Opt. Soc. Am. A 51, 340–344 (1961).
[CrossRef]

1959 (1)

E. Baumgardt, “Visual spatial and temporal summation,” Nature 184, 1951–1952 (1959).
[CrossRef] [PubMed]

1958 (3)

H. B. Barlow, “Temporal and spatial summation in human vision at different background intensities,” J. Physiol. (London) 141, 337–350 (1958).

R. A. Weale, “Retinal summation and human visual threshold,” Nature 181, 154–156 (1958).
[CrossRef] [PubMed]

B. M. Hillmann, “Relationship between stimulus size and threshold intensity in the fovea measured at four exposure times,” J. Opt. Soc. Am. 48, 422–428 (1958).
[CrossRef] [PubMed]

1956 (2)

R. M. Herrick, “Foveal luminance discrimination as a function of the duration of the decrement or increment in luminance,” J. Comp. Physiol. Psychol. 49, 437–443 (1956).
[CrossRef] [PubMed]

B. Hassenstein, W. Reichardt, “Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsanalyse des Rüsselkäfers, Chlorophanus,” Z. Naturforsch. B 11, 513–524 (1956).

1939 (1)

C. H. Graham, R. M. Brown, F. A. Mote, “The relation of size of stimulus and intensity in the human eye. I. Intensity threshold for white light,” J. Exp. Psychol. 24, 555–573 (1939).
[CrossRef]

1935 (1)

C. H. Graham, R. Margaria, “Area and the intensity-time relation in peripheral retina,” Am. J. Physiol. 113, 299–305 (1935).

Adelson, E. H.

Ahumada, A. J.

Albright, T. D.

T. D. Albright, “Direction and orientation selectivity of neurons in visual area MT of the macaque,” J. Neurophysiol. 52, 1106–1130 (1985).

Alcorn, D.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Anderson, S. J.

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[CrossRef] [PubMed]

Anstis, S.

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef] [PubMed]

Apfelstedt-Sylla, E.

S. Kohl, T. Marx, I. Giddings, H. Jägle, S. G. Jacobson, E. Apfelstedt-Sylla, E. Zrenner, L. T. Sharpe, B. Wissinger, “Total colorblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel,” Nature Gen. 19, 257–259 (1998).
[CrossRef]

Badcock, D. R.

Barlow, H. B.

H. B. Barlow, “Temporal and spatial summation in human vision at different background intensities,” J. Physiol. (London) 141, 337–350 (1958).

Baseler, H. A.

B. A. Wandell, A. B. Poirson, H. A. Baseler, G. M. Boynton, A. Huk, S. Gandhi, L. T. Sharpe, “Color signals in human motion-selective cortex,” Neuron 24, 901–909 (1999).
[CrossRef]

Baumgardt, E.

E. Baumgardt, B. M. Hillmann, “Duration and size as determinants of peripheral retinal response,” J. Opt. Soc. Am. A 51, 340–344 (1961).
[CrossRef]

E. Baumgardt, “Visual spatial and temporal summation,” Nature 184, 1951–1952 (1959).
[CrossRef] [PubMed]

E. Baumgardt, “Threshold quantal problems,” in Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Heidelberg, 1972), Vol. II/4, Visual Psychophysics, pp. 29–55.

Bech-Hansen, T.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Bergen, J. R.

Blake, R.

E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
[CrossRef]

E. Grossman, R. Blake, T. Palmieri, “Motion perception at scotopic light levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).

Boman, D.

J. Hotson, D. Braun, W. Herzberg, D. Boman, “Transcranial magnetic stimulation of extrastriate cortex degrades human direction discrimination,” Vision Res. 34, 2115–2124 (1994).
[CrossRef] [PubMed]

Boulton, J. C.

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

Bouman, M. A.

A. M. Scholtes, M. A. Bouman, “Psychophysical experiments on spatial summation at threshold level of the human peripheral retina,” Vision Res. 17, 867–873 (1977).
[CrossRef] [PubMed]

Boycott, B. B.

H. Wässle, B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71, 447–480 (1991).
[PubMed]

Boynton, G. M.

B. A. Wandell, A. B. Poirson, H. A. Baseler, G. M. Boynton, A. Huk, S. Gandhi, L. T. Sharpe, “Color signals in human motion-selective cortex,” Neuron 24, 901–909 (1999).
[CrossRef]

Brainard, D.

D. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
[CrossRef]

Braun, D.

J. Hotson, D. Braun, W. Herzberg, D. Boman, “Transcranial magnetic stimulation of extrastriate cortex degrades human direction discrimination,” Vision Res. 34, 2115–2124 (1994).
[CrossRef] [PubMed]

Braun, D. I.

H. Mayser, T. Eckle, D. I. Braun, K. R. Gegenfurtner, L. T. Sharpe, “Motion perception at scotopic levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).

Brown, R. M.

C. H. Graham, R. M. Brown, F. A. Mote, “The relation of size of stimulus and intensity in the human eye. I. Intensity threshold for white light,” J. Exp. Psychol. 24, 555–573 (1939).
[CrossRef]

Brunken, W. J.

N. W. Daw, R. J. Jensen, W. J. Brunken, “Rod pathways in mammalian retinae,” Trends Neurosci. 13, 110–115 (1990).
[CrossRef] [PubMed]

Burr, D. C.

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[CrossRef] [PubMed]

Cavanagh, P.

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef] [PubMed]

Chaparro, A.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485.1, 221–243 (1995).

Chen, B.

B. Chen, D. I. A. MacLeod, A. Stockman, “Improvement in human vision under bright light: grain or gain?” J. Physiol. (London) 394, 17–38 (1987).

Conner, J. D.

J. D. Conner, “The temporal properties of rod vision,” J. Physiol. (London) 332, 139–155 (1982).

J. D. Conner, D. I. A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 689–699 (1977).
[CrossRef]

Creutzfeldt, O. D.

V. Virsu, B. B. Lee, O. D. Creutzfeldt, “Mesopic spectral responses and the Purkinje shift of macaque lateral geniculate cells,” Vision Res. 27, 191–200 (1987).
[CrossRef]

Dale, A. M.

R. B. H. Tootell, J. D. Mendola, N. K. Hadjikhani, A. K. Liu, A. M. Dale, “The representation of the ipsilateral visual field in human cerebral cortex,” Proc. Natl. Acad. Sci. USA 95, 818–824 (1998).
[CrossRef] [PubMed]

Daw, N. W.

N. W. Daw, R. J. Jensen, W. J. Brunken, “Rod pathways in mammalian retinae,” Trends Neurosci. 13, 110–115 (1990).
[CrossRef] [PubMed]

De Valois, K. K.

T. Takeuchi, K. K. De Valois, “Motion-reversal reveals two motion mechanisms functioning in scotopic vision,” Vision Res. 37, 745–755 (1998).
[CrossRef]

T. Takeuchi, K. K. De Valois, “Velocity discrimination in scotopic vision,” Invest. Ophthalmol. Visual Sci. 39, 1077 (1998).

D. M. Turner, K. K. De Valois, T. Takeuchi, “Speed perception under scotopic conditions,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 378 (1997).

DePriest, D. D.

J. H. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

Derrington, A. M.

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

Dougherty, R. F.

R. F. Dougherty, W. A. Press, B. A. Wandell, “Perceived speed of colored stimuli,” Neuron 24, 893–899 (1999).
[CrossRef]

Eckle, T.

H. Mayser, T. Eckle, D. I. Braun, K. R. Gegenfurtner, L. T. Sharpe, “Motion perception at scotopic levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).

Eskew, R. T.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485.1, 221–243 (1995).

Fach, C.

L. T. Sharpe, C. Fach, K. Nordby, “Temporal summation in the achromat,” Vision Res. 28, 1263–1269 (1988).
[CrossRef] [PubMed]

Fach, C. C.

A. Stockman, L. T. Sharpe, C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitivity cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
[CrossRef] [PubMed]

L. T. Sharpe, J. Hofmeister, C. C. Fach, A. Stockman, “Spatial relations of flicker signals in the two rod pathways,” J. Physiol. (London) 474, 421–431 (1994).

L. T. Sharpe, A. Stockman, C. C. Fach, U. Markstahler, “Temporal and spatial summation in the human rod visual system,” J. Physiol. (London) 463, 325–348 (1993).

L. T. Sharpe, C. C. Fach, A. Stockman, “The spectral properties of the two rod pathways,” Vision Res. 33, 2705–2720 (1993).
[CrossRef] [PubMed]

Fairchild, M. D.

P. Lennie, M. D. Fairchild, “Ganglion cell pathways for rod vision,” Vision Res. 34, 477–482 (1994).
[CrossRef] [PubMed]

Farrell, J. E.

Felleman, D. J.

D. J. Felleman, D. C. Van Essen, “Distributed hierarchical processing in the primate cerebral cortex,” Cereb. Cortex 1, 1–47 (1991).
[CrossRef] [PubMed]

Ferrera, V. P.

V. P. Ferrera, T. A. Nealey, J. H. R. Maunsell, “Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways,” J. Neurosci. 14, 2080–2088 (1994).
[PubMed]

Freed, M.

P. Sterling, M. Freed, R. G. Smith, “Microcircuitry and functional architecture of the cat retina,” Trends Neurosci. 9, 186–193 (1986).
[CrossRef]

Friedburg, C.

C. Friedburg, L. T. Sharpe, E. Zrenner, “Cone and rod temporal summation during dark adaptation,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 728 (1996).

Gandhi, S.

B. A. Wandell, A. B. Poirson, H. A. Baseler, G. M. Boynton, A. Huk, S. Gandhi, L. T. Sharpe, “Color signals in human motion-selective cortex,” Neuron 24, 901–909 (1999).
[CrossRef]

Gegenfurtner, K. R.

K. R. Gegenfurtner, H. Mayser, L. T. Sharpe, “Seeing movement in the dark,” Nature 398, 475–476 (1999).
[CrossRef] [PubMed]

H. Mayser, T. Eckle, D. I. Braun, K. R. Gegenfurtner, L. T. Sharpe, “Motion perception at scotopic levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).

K. R. Gegenfurtner, M. J. Hawken, “Perceived speed of luminance, chromatic and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Interactions of color and motion in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
[CrossRef] [PubMed]

M. J. Hawken, K. R. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Giddings, I.

S. Kohl, T. Marx, I. Giddings, H. Jägle, S. G. Jacobson, E. Apfelstedt-Sylla, E. Zrenner, L. T. Sharpe, B. Wissinger, “Total colorblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel,” Nature Gen. 19, 257–259 (1998).
[CrossRef]

Graham, C. H.

C. H. Graham, R. M. Brown, F. A. Mote, “The relation of size of stimulus and intensity in the human eye. I. Intensity threshold for white light,” J. Exp. Psychol. 24, 555–573 (1939).
[CrossRef]

C. H. Graham, R. Margaria, “Area and the intensity-time relation in peripheral retina,” Am. J. Physiol. 113, 299–305 (1935).

Grossman, E.

E. Grossman, R. Blake, T. Palmieri, “Motion perception at scotopic light levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).

Grossman, E. D.

E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
[CrossRef]

Hadjikhani, N. K.

R. B. H. Tootell, J. D. Mendola, N. K. Hadjikhani, A. K. Liu, A. M. Dale, “The representation of the ipsilateral visual field in human cerebral cortex,” Proc. Natl. Acad. Sci. USA 95, 818–824 (1998).
[CrossRef] [PubMed]

Hallet, P. E.

P. E. Hallet, “Spatial summation,” Vision Res. 3, 9–24 (1963).
[CrossRef]

Hallett, P. E.

P. E. Hallett, F. H. C. Marriott, F. C. Rodger, “The relationship of visual threshold to retinal position and area,” J. Physiol. (London) 160, 364–373 (1962).

Hansen, E.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Hassenstein, B.

B. Hassenstein, W. Reichardt, “Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsanalyse des Rüsselkäfers, Chlorophanus,” Z. Naturforsch. B 11, 513–524 (1956).

Hawken, M. J.

K. R. Gegenfurtner, M. J. Hawken, “Interactions of color and motion in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Perceived speed of luminance, chromatic and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
[CrossRef] [PubMed]

M. J. Hawken, K. R. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Heckenlively, J.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Heeger, D. J.

Henning, G. B.

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

Herrick, R. M.

R. M. Herrick, “Foveal luminance discrimination as a function of the duration of the decrement or increment in luminance,” J. Comp. Physiol. Psychol. 49, 437–443 (1956).
[CrossRef] [PubMed]

Herzberg, W.

J. Hotson, D. Braun, W. Herzberg, D. Boman, “Transcranial magnetic stimulation of extrastriate cortex degrades human direction discrimination,” Vision Res. 34, 2115–2124 (1994).
[CrossRef] [PubMed]

Hess, R. F.

R. J. Snowden, R. F. Hess, S. J. Waugh, “The processing of temporal modulation at different levels of retinal illuminance,” Vision Res. 35, 775–789 (1995).
[CrossRef] [PubMed]

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

R. F. Hess, K. Nordby, “Spatial and temporal limits of vision in the achromat,” J. Physiol. (London) 371, 365–385 (1986).

Hillmann, B. M.

E. Baumgardt, B. M. Hillmann, “Duration and size as determinants of peripheral retinal response,” J. Opt. Soc. Am. A 51, 340–344 (1961).
[CrossRef]

B. M. Hillmann, “Relationship between stimulus size and threshold intensity in the fovea measured at four exposure times,” J. Opt. Soc. Am. 48, 422–428 (1958).
[CrossRef] [PubMed]

Hofmeister, J.

L. T. Sharpe, J. Hofmeister, C. C. Fach, A. Stockman, “Spatial relations of flicker signals in the two rod pathways,” J. Physiol. (London) 474, 421–431 (1994).

Hotson, J.

J. Hotson, D. Braun, W. Herzberg, D. Boman, “Transcranial magnetic stimulation of extrastriate cortex degrades human direction discrimination,” Vision Res. 34, 2115–2124 (1994).
[CrossRef] [PubMed]

Huk, A.

B. A. Wandell, A. B. Poirson, H. A. Baseler, G. M. Boynton, A. Huk, S. Gandhi, L. T. Sharpe, “Color signals in human motion-selective cortex,” Neuron 24, 901–909 (1999).
[CrossRef]

Ikeda, M.

Irtel, H.

H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992).
[CrossRef]

Jacobson, S. G.

S. Kohl, T. Marx, I. Giddings, H. Jägle, S. G. Jacobson, E. Apfelstedt-Sylla, E. Zrenner, L. T. Sharpe, B. Wissinger, “Total colorblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel,” Nature Gen. 19, 257–259 (1998).
[CrossRef]

Jägle, H.

S. Kohl, T. Marx, I. Giddings, H. Jägle, S. G. Jacobson, E. Apfelstedt-Sylla, E. Zrenner, L. T. Sharpe, B. Wissinger, “Total colorblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel,” Nature Gen. 19, 257–259 (1998).
[CrossRef]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green, and red–green hybrid photopigments in the human retina: correlations between deduced protein sequences and spectral sensitivities measured psychophysically,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

H. Jägle, L. T. Sharpe, J. Nathans, “Rayleigh matches and X-chromosome-linked pigment genes,” available from Herbert Jägle at Universitätsaugenklinik, Forschungsstelle für Experimentelle Ophthalmologie, Röntgenweg 11, D-72076 Tübingen, Germany.

L. T. Sharpe, A. Stockman, H. Jägle, J. Nathans, “Opsin genes, cone photopigments and color vision,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 3–51.

Jensen, R. J.

N. W. Daw, R. J. Jensen, W. J. Brunken, “Rod pathways in mammalian retinae,” Trends Neurosci. 13, 110–115 (1990).
[CrossRef] [PubMed]

Jolliffe, C. L.

Kaplan, E.

K. Purpura, E. Kaplan, R. M. Shapley, “Background light and the contrast gain of primate retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef]

Klausen, G.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green, and red–green hybrid photopigments in the human retina: correlations between deduced protein sequences and spectral sensitivities measured psychophysically,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

Klingaman, R.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Knau, H.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green, and red–green hybrid photopigments in the human retina: correlations between deduced protein sequences and spectral sensitivities measured psychophysically,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

Kohl, S.

S. Kohl, T. Marx, I. Giddings, H. Jägle, S. G. Jacobson, E. Apfelstedt-Sylla, E. Zrenner, L. T. Sharpe, B. Wissinger, “Total colorblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel,” Nature Gen. 19, 257–259 (1998).
[CrossRef]

Kolb, H.

H. Kolb, R. Nelson, “Rod pathways in the retina of the cat,” Vision Res. 23, 301–302 (1983).
[CrossRef] [PubMed]

Krauskopf, J.

J. Krauskopf, J. D. Mollon, “The dependence of the temporal integration properties of individual chromatic mechanisms in the human eye,” J. Physiol. (London) 219, 611–623 (1971).

Kremers, J.

B. B. Lee, V. C. Smith, J. Pokorny, J. Kremers, “Rod inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
[CrossRef]

Kronauer, R. E.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485.1, 221–243 (1995).

Kurtz, K. J.

W. H. Warren, K. J. Kurtz, “The role of central and peripheral vision in perceiving the direction of self-motion,” Percept. Psychophys. 51, 443–454 (1992).
[CrossRef] [PubMed]

LaRoche, G. R.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Lee, B. B.

B. B. Lee, V. C. Smith, J. Pokorny, J. Kremers, “Rod inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

V. Virsu, B. B. Lee, O. D. Creutzfeldt, “Mesopic spectral responses and the Purkinje shift of macaque lateral geniculate cells,” Vision Res. 27, 191–200 (1987).
[CrossRef]

V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–877 (1983).
[PubMed]

Lennie, P.

P. Lennie, M. D. Fairchild, “Ganglion cell pathways for rod vision,” Vision Res. 34, 477–482 (1994).
[CrossRef] [PubMed]

Levitt, H.

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

Lewis, R. A.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Lindsey, D. T.

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

Liu, A. K.

R. B. H. Tootell, J. D. Mendola, N. K. Hadjikhani, A. K. Liu, A. M. Dale, “The representation of the ipsilateral visual field in human cerebral cortex,” Proc. Natl. Acad. Sci. USA 95, 818–824 (1998).
[CrossRef] [PubMed]

MacLeod, D. I. A.

L. T. Sharpe, A. Stockman, D. I. A. MacLeod, “Rod flicker perception: scotopic duality, phase lags and destructive interference,” Vision Res. 29, 1539–1559 (1989).
[CrossRef] [PubMed]

B. Chen, D. I. A. MacLeod, A. Stockman, “Improvement in human vision under bright light: grain or gain?” J. Physiol. (London) 394, 17–38 (1987).

J. D. Conner, D. I. A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 689–699 (1977).
[CrossRef]

Margaria, R.

C. H. Graham, R. Margaria, “Area and the intensity-time relation in peripheral retina,” Am. J. Physiol. 113, 299–305 (1935).

Markstahler, U.

L. T. Sharpe, A. Stockman, C. C. Fach, U. Markstahler, “Temporal and spatial summation in the human rod visual system,” J. Physiol. (London) 463, 325–348 (1993).

Marriott, F. H. C.

P. E. Hallett, F. H. C. Marriott, F. C. Rodger, “The relationship of visual threshold to retinal position and area,” J. Physiol. (London) 160, 364–373 (1962).

Martin, P. R.

Marx, T.

S. Kohl, T. Marx, I. Giddings, H. Jägle, S. G. Jacobson, E. Apfelstedt-Sylla, E. Zrenner, L. T. Sharpe, B. Wissinger, “Total colorblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel,” Nature Gen. 19, 257–259 (1998).
[CrossRef]

Maumenee, I. H.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Maunsell, J. H.

J. H. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

Maunsell, J. H. R.

V. P. Ferrera, T. A. Nealey, J. H. R. Maunsell, “Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways,” J. Neurosci. 14, 2080–2088 (1994).
[PubMed]

Mayser, H.

K. R. Gegenfurtner, H. Mayser, L. T. Sharpe, “Seeing movement in the dark,” Nature 398, 475–476 (1999).
[CrossRef] [PubMed]

H. Mayser, T. Eckle, D. I. Braun, K. R. Gegenfurtner, L. T. Sharpe, “Motion perception at scotopic levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).

Meister, M.

E. Soucy, Y. Wang, S. Nirenberg, J. Nathans, M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21, 481–493 (1998).
[CrossRef] [PubMed]

Mendola, J. D.

R. B. H. Tootell, J. D. Mendola, N. K. Hadjikhani, A. K. Liu, A. M. Dale, “The representation of the ipsilateral visual field in human cerebral cortex,” Proc. Natl. Acad. Sci. USA 95, 818–824 (1998).
[CrossRef] [PubMed]

Metha, A. B.

Mobley, L. A.

Mollon, J. D.

J. Krauskopf, J. D. Mollon, “The dependence of the temporal integration properties of individual chromatic mechanisms in the human eye,” J. Physiol. (London) 219, 611–623 (1971).

Mote, F. A.

C. H. Graham, R. M. Brown, F. A. Mote, “The relation of size of stimulus and intensity in the human eye. I. Intensity threshold for white light,” J. Exp. Psychol. 24, 555–573 (1939).
[CrossRef]

Mullen, K. T.

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

Murphy, B. J.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

Murphy, W.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Nachmias, J.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

Nathans, J.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green, and red–green hybrid photopigments in the human retina: correlations between deduced protein sequences and spectral sensitivities measured psychophysically,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

E. Soucy, Y. Wang, S. Nirenberg, J. Nathans, M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21, 481–493 (1998).
[CrossRef] [PubMed]

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

H. Jägle, L. T. Sharpe, J. Nathans, “Rayleigh matches and X-chromosome-linked pigment genes,” available from Herbert Jägle at Universitätsaugenklinik, Forschungsstelle für Experimentelle Ophthalmologie, Röntgenweg 11, D-72076 Tübingen, Germany.

L. T. Sharpe, A. Stockman, H. Jägle, J. Nathans, “Opsin genes, cone photopigments and color vision,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 3–51.

Nealey, T. A.

V. P. Ferrera, T. A. Nealey, J. H. R. Maunsell, “Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways,” J. Neurosci. 14, 2080–2088 (1994).
[PubMed]

J. H. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

Nelson, R.

H. Kolb, R. Nelson, “Rod pathways in the retina of the cat,” Vision Res. 23, 301–302 (1983).
[CrossRef] [PubMed]

Nirenberg, S.

E. Soucy, Y. Wang, S. Nirenberg, J. Nathans, M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21, 481–493 (1998).
[CrossRef] [PubMed]

Nordby, K.

A. Stockman, L. T. Sharpe, K. Rüther, K. Nordby, “Two signals in the human rod visual system: a model based on electrophysiological data,” Visual Neurosci. 12, 951–970 (1995).
[CrossRef]

L. T. Sharpe, P. Whittle, K. Nordby, “Spatial integration and sensitivity changes in rod vision,” J. Physiol. (London) 461, 235–246 (1993).

A. Stockman, L. T. Sharpe, E. Zrenner, K. Nordby, “Slow and fast pathways in the human rod visual system: ERG and psychophysics,” J. Opt. Soc. Am. A 8, 1657–1665 (1991).
[CrossRef] [PubMed]

L. T. Sharpe, C. Fach, K. Nordby, “Temporal summation in the achromat,” Vision Res. 28, 1263–1269 (1988).
[CrossRef] [PubMed]

R. F. Hess, K. Nordby, “Spatial and temporal limits of vision in the achromat,” J. Physiol. (London) 371, 365–385 (1986).

L. T. Sharpe, K. Nordby, “The photoreceptors in the achromat,” in Night Vision: Basic, Clinical, and Applied Aspects, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, Cambridge, UK, 1990), pp. 335–389.

Pagan, R.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Palmer, J.

Palmieri, T.

E. Grossman, R. Blake, T. Palmieri, “Motion perception at scotopic light levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).

Poirson, A. B.

B. A. Wandell, A. B. Poirson, H. A. Baseler, G. M. Boynton, A. Huk, S. Gandhi, L. T. Sharpe, “Color signals in human motion-selective cortex,” Neuron 24, 901–909 (1999).
[CrossRef]

Pokorny, J.

B. B. Lee, V. C. Smith, J. Pokorny, J. Kremers, “Rod inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Press, W. A.

R. F. Dougherty, W. A. Press, B. A. Wandell, “Perceived speed of colored stimuli,” Neuron 24, 893–899 (1999).
[CrossRef]

Purpura, K.

K. Purpura, E. Kaplan, R. M. Shapley, “Background light and the contrast gain of primate retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef]

Reichardt, W.

B. Hassenstein, W. Reichardt, “Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsanalyse des Rüsselkäfers, Chlorophanus,” Z. Naturforsch. B 11, 513–524 (1956).

Reitner, A.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green, and red–green hybrid photopigments in the human retina: correlations between deduced protein sequences and spectral sensitivities measured psychophysically,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

Rodger, F. C.

P. E. Hallett, F. H. C. Marriott, F. C. Rodger, “The relationship of visual threshold to retinal position and area,” J. Physiol. (London) 160, 364–373 (1962).

Rosenberg, T.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Ruddle, R. A.

R. J. Snowden, N. Stimpson, R. A. Ruddle, “Speed perception fogs up as visibility drops,” Nature 392, 450 (1998).
[CrossRef] [PubMed]

Rüther, K.

A. Stockman, L. T. Sharpe, K. Rüther, K. Nordby, “Two signals in the human rod visual system: a model based on electrophysiological data,” Visual Neurosci. 12, 951–970 (1995).
[CrossRef]

Ryu, A.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485.1, 221–243 (1995).

Sadowski, B.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Schenk, T.

T. Schenk, J. Zihl, “Visual motion perception after brain damage. I. Deficits in global motion perception,” Neuropsychologia 35, 1289–1297 (1997).
[CrossRef] [PubMed]

Scholtes, A. M.

A. M. Scholtes, M. A. Bouman, “Psychophysical experiments on spatial summation at threshold level of the human peripheral retina,” Vision Res. 17, 867–873 (1977).
[CrossRef] [PubMed]

Schwartz, M.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Shapley, R. M.

K. Purpura, E. Kaplan, R. M. Shapley, “Background light and the contrast gain of primate retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef]

Sharpe, L. T.

L. T. Sharpe, A. Stockman, “Rod pathways: the importance of seeing nothing,” Trends Neurosci. 22, 497–504 (1999).
[CrossRef] [PubMed]

B. A. Wandell, A. B. Poirson, H. A. Baseler, G. M. Boynton, A. Huk, S. Gandhi, L. T. Sharpe, “Color signals in human motion-selective cortex,” Neuron 24, 901–909 (1999).
[CrossRef]

A. Stockman, L. T. Sharpe, C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitivity cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
[CrossRef] [PubMed]

K. R. Gegenfurtner, H. Mayser, L. T. Sharpe, “Seeing movement in the dark,” Nature 398, 475–476 (1999).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green, and red–green hybrid photopigments in the human retina: correlations between deduced protein sequences and spectral sensitivities measured psychophysically,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

S. Kohl, T. Marx, I. Giddings, H. Jägle, S. G. Jacobson, E. Apfelstedt-Sylla, E. Zrenner, L. T. Sharpe, B. Wissinger, “Total colorblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel,” Nature Gen. 19, 257–259 (1998).
[CrossRef]

H. Mayser, T. Eckle, D. I. Braun, K. R. Gegenfurtner, L. T. Sharpe, “Motion perception at scotopic levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).

C. Friedburg, L. T. Sharpe, E. Zrenner, “Cone and rod temporal summation during dark adaptation,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 728 (1996).

A. Stockman, L. T. Sharpe, K. Rüther, K. Nordby, “Two signals in the human rod visual system: a model based on electrophysiological data,” Visual Neurosci. 12, 951–970 (1995).
[CrossRef]

L. T. Sharpe, J. Hofmeister, C. C. Fach, A. Stockman, “Spatial relations of flicker signals in the two rod pathways,” J. Physiol. (London) 474, 421–431 (1994).

L. T. Sharpe, A. Stockman, C. C. Fach, U. Markstahler, “Temporal and spatial summation in the human rod visual system,” J. Physiol. (London) 463, 325–348 (1993).

L. T. Sharpe, P. Whittle, K. Nordby, “Spatial integration and sensitivity changes in rod vision,” J. Physiol. (London) 461, 235–246 (1993).

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

L. T. Sharpe, C. C. Fach, A. Stockman, “The spectral properties of the two rod pathways,” Vision Res. 33, 2705–2720 (1993).
[CrossRef] [PubMed]

A. Stockman, L. T. Sharpe, E. Zrenner, K. Nordby, “Slow and fast pathways in the human rod visual system: ERG and psychophysics,” J. Opt. Soc. Am. A 8, 1657–1665 (1991).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, D. I. A. MacLeod, “Rod flicker perception: scotopic duality, phase lags and destructive interference,” Vision Res. 29, 1539–1559 (1989).
[CrossRef] [PubMed]

L. T. Sharpe, C. Fach, K. Nordby, “Temporal summation in the achromat,” Vision Res. 28, 1263–1269 (1988).
[CrossRef] [PubMed]

L. T. Sharpe, K. Nordby, “The photoreceptors in the achromat,” in Night Vision: Basic, Clinical, and Applied Aspects, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, Cambridge, UK, 1990), pp. 335–389.

H. Jägle, L. T. Sharpe, J. Nathans, “Rayleigh matches and X-chromosome-linked pigment genes,” available from Herbert Jägle at Universitätsaugenklinik, Forschungsstelle für Experimentelle Ophthalmologie, Röntgenweg 11, D-72076 Tübingen, Germany.

L. T. Sharpe, A. Stockman, H. Jägle, J. Nathans, “Opsin genes, cone photopigments and color vision,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 3–51.

Smith, R. G.

P. Sterling, M. Freed, R. G. Smith, “Microcircuitry and functional architecture of the cat retina,” Trends Neurosci. 9, 186–193 (1986).
[CrossRef]

Smith, V. C.

B. B. Lee, V. C. Smith, J. Pokorny, J. Kremers, “Rod inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Snowden, R. J.

R. J. Snowden, N. Stimpson, R. A. Ruddle, “Speed perception fogs up as visibility drops,” Nature 392, 450 (1998).
[CrossRef] [PubMed]

R. J. Snowden, R. F. Hess, S. J. Waugh, “The processing of temporal modulation at different levels of retinal illuminance,” Vision Res. 35, 775–789 (1995).
[CrossRef] [PubMed]

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

Soucy, E.

E. Soucy, Y. Wang, S. Nirenberg, J. Nathans, M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21, 481–493 (1998).
[CrossRef] [PubMed]

Sperling, G.

Sperling, H. G.

Sterling, P.

P. Sterling, M. Freed, R. G. Smith, “Microcircuitry and functional architecture of the cat retina,” Trends Neurosci. 9, 186–193 (1986).
[CrossRef]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Stimpson, N.

R. J. Snowden, N. Stimpson, R. A. Ruddle, “Speed perception fogs up as visibility drops,” Nature 392, 450 (1998).
[CrossRef] [PubMed]

Stockman, A.

A. Stockman, L. T. Sharpe, C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitivity cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, “Rod pathways: the importance of seeing nothing,” Trends Neurosci. 22, 497–504 (1999).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green, and red–green hybrid photopigments in the human retina: correlations between deduced protein sequences and spectral sensitivities measured psychophysically,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

A. Stockman, L. T. Sharpe, K. Rüther, K. Nordby, “Two signals in the human rod visual system: a model based on electrophysiological data,” Visual Neurosci. 12, 951–970 (1995).
[CrossRef]

L. T. Sharpe, J. Hofmeister, C. C. Fach, A. Stockman, “Spatial relations of flicker signals in the two rod pathways,” J. Physiol. (London) 474, 421–431 (1994).

L. T. Sharpe, A. Stockman, C. C. Fach, U. Markstahler, “Temporal and spatial summation in the human rod visual system,” J. Physiol. (London) 463, 325–348 (1993).

L. T. Sharpe, C. C. Fach, A. Stockman, “The spectral properties of the two rod pathways,” Vision Res. 33, 2705–2720 (1993).
[CrossRef] [PubMed]

A. Stockman, L. T. Sharpe, E. Zrenner, K. Nordby, “Slow and fast pathways in the human rod visual system: ERG and psychophysics,” J. Opt. Soc. Am. A 8, 1657–1665 (1991).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, D. I. A. MacLeod, “Rod flicker perception: scotopic duality, phase lags and destructive interference,” Vision Res. 29, 1539–1559 (1989).
[CrossRef] [PubMed]

B. Chen, D. I. A. MacLeod, A. Stockman, “Improvement in human vision under bright light: grain or gain?” J. Physiol. (London) 394, 17–38 (1987).

L. T. Sharpe, A. Stockman, H. Jägle, J. Nathans, “Opsin genes, cone photopigments and color vision,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 3–51.

Stone, L. S.

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

Stromeyer, C. F.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485.1, 221–243 (1995).

Takeuchi, T.

T. Takeuchi, K. K. De Valois, “Velocity discrimination in scotopic vision,” Invest. Ophthalmol. Visual Sci. 39, 1077 (1998).

T. Takeuchi, K. K. De Valois, “Motion-reversal reveals two motion mechanisms functioning in scotopic vision,” Vision Res. 37, 745–755 (1998).
[CrossRef]

D. M. Turner, K. K. De Valois, T. Takeuchi, “Speed perception under scotopic conditions,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 378 (1997).

Tang, C.

M. J. Hawken, K. R. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Teller, D. Y.

J. Palmer, L. A. Mobley, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios and the summation of luminance and chromatic signals,” J. Opt. Soc. Am. A 10, 1353–1362 (1993).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

Thompson, P.

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983).
[CrossRef] [PubMed]

P. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

Thompson, P. G.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

Tootell, R. B. H.

R. B. H. Tootell, J. D. Mendola, N. K. Hadjikhani, A. K. Liu, A. M. Dale, “The representation of the ipsilateral visual field in human cerebral cortex,” Proc. Natl. Acad. Sci. USA 95, 818–824 (1998).
[CrossRef] [PubMed]

Traboulsi, E.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Turner, D. M.

D. M. Turner, K. K. De Valois, T. Takeuchi, “Speed perception under scotopic conditions,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 378 (1997).

Uetsuki, T.

Valberg, A.

Van Essen, D. C.

D. J. Felleman, D. C. Van Essen, “Distributed hierarchical processing in the primate cerebral cortex,” Cereb. Cortex 1, 1–47 (1991).
[CrossRef] [PubMed]

van Santen, J. P. H.

Vingrys, A. J.

Virsu, V.

V. Virsu, B. B. Lee, O. D. Creutzfeldt, “Mesopic spectral responses and the Purkinje shift of macaque lateral geniculate cells,” Vision Res. 27, 191–200 (1987).
[CrossRef]

V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–877 (1983).
[PubMed]

Wandell, B. A.

B. A. Wandell, A. B. Poirson, H. A. Baseler, G. M. Boynton, A. Huk, S. Gandhi, L. T. Sharpe, “Color signals in human motion-selective cortex,” Neuron 24, 901–909 (1999).
[CrossRef]

R. F. Dougherty, W. A. Press, B. A. Wandell, “Perceived speed of colored stimuli,” Neuron 24, 893–899 (1999).
[CrossRef]

Wang, Y.

E. Soucy, Y. Wang, S. Nirenberg, J. Nathans, M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21, 481–493 (1998).
[CrossRef] [PubMed]

Warren, W. H.

W. H. Warren, K. J. Kurtz, “The role of central and peripheral vision in perceiving the direction of self-motion,” Percept. Psychophys. 51, 443–454 (1992).
[CrossRef] [PubMed]

Wässle, H.

H. Wässle, B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71, 447–480 (1991).
[PubMed]

Watson, A. B.

Waugh, S. J.

R. J. Snowden, R. F. Hess, S. J. Waugh, “The processing of temporal modulation at different levels of retinal illuminance,” Vision Res. 35, 775–789 (1995).
[CrossRef] [PubMed]

Weale, R. A.

R. A. Weale, “Retinal summation and human visual threshold,” Nature 181, 154–156 (1958).
[CrossRef] [PubMed]

Weleber, R.

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Whittle, P.

L. T. Sharpe, P. Whittle, K. Nordby, “Spatial integration and sensitivity changes in rod vision,” J. Physiol. (London) 461, 235–246 (1993).

Wissinger, B.

S. Kohl, T. Marx, I. Giddings, H. Jägle, S. G. Jacobson, E. Apfelstedt-Sylla, E. Zrenner, L. T. Sharpe, B. Wissinger, “Total colorblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel,” Nature Gen. 19, 257–259 (1998).
[CrossRef]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Zeki, S. M.

S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).

Zihl, J.

T. Schenk, J. Zihl, “Visual motion perception after brain damage. I. Deficits in global motion perception,” Neuropsychologia 35, 1289–1297 (1997).
[CrossRef] [PubMed]

Zrenner, E.

S. Kohl, T. Marx, I. Giddings, H. Jägle, S. G. Jacobson, E. Apfelstedt-Sylla, E. Zrenner, L. T. Sharpe, B. Wissinger, “Total colorblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel,” Nature Gen. 19, 257–259 (1998).
[CrossRef]

C. Friedburg, L. T. Sharpe, E. Zrenner, “Cone and rod temporal summation during dark adaptation,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 728 (1996).

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

A. Stockman, L. T. Sharpe, E. Zrenner, K. Nordby, “Slow and fast pathways in the human rod visual system: ERG and psychophysics,” J. Opt. Soc. Am. A 8, 1657–1665 (1991).
[CrossRef] [PubMed]

Am. J. Hum. Genet. (1)

J. Nathans, I. H. Maumenee, E. Zrenner, B. Sadowski, L. T. Sharpe, R. A. Lewis, E. Hansen, T. Rosenberg, M. Schwartz, J. Heckenlively, E. Traboulsi, R. Klingaman, T. Bech-Hansen, G. R. LaRoche, D. Alcorn, R. Pagan, W. Murphy, R. Weleber, “Genetic heterogeneity among blue-cone monochromats,” Am. J. Hum. Genet. 53, 987–1000 (1993).
[PubMed]

Am. J. Physiol. (1)

C. H. Graham, R. Margaria, “Area and the intensity-time relation in peripheral retina,” Am. J. Physiol. 113, 299–305 (1935).

Behav. Res. Methods Instrum. Comput. (1)

H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992).
[CrossRef]

Cereb. Cortex (1)

D. J. Felleman, D. C. Van Essen, “Distributed hierarchical processing in the primate cerebral cortex,” Cereb. Cortex 1, 1–47 (1991).
[CrossRef] [PubMed]

Color Res. Appl. (1)

D. Brainard, “Calibration of a computer controlled color monitor,” Color Res. Appl. 14, 23–34 (1989).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (1)

T. Takeuchi, K. K. De Valois, “Velocity discrimination in scotopic vision,” Invest. Ophthalmol. Visual Sci. 39, 1077 (1998).

Invest. Ophthalmol. Visual Sci. Suppl. (4)

E. Grossman, R. Blake, T. Palmieri, “Motion perception at scotopic light levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).

H. Mayser, T. Eckle, D. I. Braun, K. R. Gegenfurtner, L. T. Sharpe, “Motion perception at scotopic levels,” Invest. Ophthalmol. Visual Sci. Suppl. 39, 1076 (1998).

C. Friedburg, L. T. Sharpe, E. Zrenner, “Cone and rod temporal summation during dark adaptation,” Invest. Ophthalmol. Visual Sci. Suppl. 37, 728 (1996).

D. M. Turner, K. K. De Valois, T. Takeuchi, “Speed perception under scotopic conditions,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 378 (1997).

J. Acoust. Soc. Am. (1)

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

J. Comp. Physiol. Psychol. (1)

R. M. Herrick, “Foveal luminance discrimination as a function of the duration of the decrement or increment in luminance,” J. Comp. Physiol. Psychol. 49, 437–443 (1956).
[CrossRef] [PubMed]

J. Exp. Psychol. (1)

C. H. Graham, R. M. Brown, F. A. Mote, “The relation of size of stimulus and intensity in the human eye. I. Intensity threshold for white light,” J. Exp. Psychol. 24, 555–573 (1939).
[CrossRef]

J. Neurophysiol. (2)

T. D. Albright, “Direction and orientation selectivity of neurons in visual area MT of the macaque,” J. Neurophysiol. 52, 1106–1130 (1985).

V. Virsu, B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–877 (1983).
[PubMed]

J. Neurosci. (3)

J. H. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

V. P. Ferrera, T. A. Nealey, J. H. R. Maunsell, “Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways,” J. Neurosci. 14, 2080–2088 (1994).
[PubMed]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green, and red–green hybrid photopigments in the human retina: correlations between deduced protein sequences and spectral sensitivities measured psychophysically,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (10)

A. B. Metha, A. J. Vingrys, D. R. Badcock, “Detection and discrimination of moving stimuli: the effects of color, luminance, and encentricity,” J. Opt. Soc. Am. A 11, 1697–1709 (1994).
[CrossRef]

E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
[CrossRef] [PubMed]

J. P. H. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
[CrossRef] [PubMed]

A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
[CrossRef] [PubMed]

A. B. Watson, A. J. Ahumada, J. E. Farrell, “Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays,” J. Opt. Soc. Am. A 3, 300–307 (1986).
[CrossRef]

D. J. Heeger, “Model for the extraction of image flow,” J. Opt. Soc. Am. A 4, 1455–1471 (1987).
[CrossRef] [PubMed]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef] [PubMed]

A. Stockman, L. T. Sharpe, E. Zrenner, K. Nordby, “Slow and fast pathways in the human rod visual system: ERG and psychophysics,” J. Opt. Soc. Am. A 8, 1657–1665 (1991).
[CrossRef] [PubMed]

J. Palmer, L. A. Mobley, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios and the summation of luminance and chromatic signals,” J. Opt. Soc. Am. A 10, 1353–1362 (1993).
[CrossRef] [PubMed]

E. Baumgardt, B. M. Hillmann, “Duration and size as determinants of peripheral retinal response,” J. Opt. Soc. Am. A 51, 340–344 (1961).
[CrossRef]

J. Physiol. (London) (11)

P. E. Hallett, F. H. C. Marriott, F. C. Rodger, “The relationship of visual threshold to retinal position and area,” J. Physiol. (London) 160, 364–373 (1962).

L. T. Sharpe, P. Whittle, K. Nordby, “Spatial integration and sensitivity changes in rod vision,” J. Physiol. (London) 461, 235–246 (1993).

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485.1, 221–243 (1995).

H. B. Barlow, “Temporal and spatial summation in human vision at different background intensities,” J. Physiol. (London) 141, 337–350 (1958).

S. M. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiol. (London) 236, 549–573 (1974).

R. F. Hess, K. Nordby, “Spatial and temporal limits of vision in the achromat,” J. Physiol. (London) 371, 365–385 (1986).

J. D. Conner, “The temporal properties of rod vision,” J. Physiol. (London) 332, 139–155 (1982).

L. T. Sharpe, J. Hofmeister, C. C. Fach, A. Stockman, “Spatial relations of flicker signals in the two rod pathways,” J. Physiol. (London) 474, 421–431 (1994).

L. T. Sharpe, A. Stockman, C. C. Fach, U. Markstahler, “Temporal and spatial summation in the human rod visual system,” J. Physiol. (London) 463, 325–348 (1993).

J. Krauskopf, J. D. Mollon, “The dependence of the temporal integration properties of individual chromatic mechanisms in the human eye,” J. Physiol. (London) 219, 611–623 (1971).

B. Chen, D. I. A. MacLeod, A. Stockman, “Improvement in human vision under bright light: grain or gain?” J. Physiol. (London) 394, 17–38 (1987).

Nature (4)

R. J. Snowden, N. Stimpson, R. A. Ruddle, “Speed perception fogs up as visibility drops,” Nature 392, 450 (1998).
[CrossRef] [PubMed]

K. R. Gegenfurtner, H. Mayser, L. T. Sharpe, “Seeing movement in the dark,” Nature 398, 475–476 (1999).
[CrossRef] [PubMed]

R. A. Weale, “Retinal summation and human visual threshold,” Nature 181, 154–156 (1958).
[CrossRef] [PubMed]

E. Baumgardt, “Visual spatial and temporal summation,” Nature 184, 1951–1952 (1959).
[CrossRef] [PubMed]

Nature (London) (1)

M. J. Hawken, K. R. Gegenfurtner, C. Tang, “Contrast dependence of colour and luminance motion mechanisms in human vision,” Nature (London) 367, 268–270 (1994).
[CrossRef]

Nature Gen. (1)

S. Kohl, T. Marx, I. Giddings, H. Jägle, S. G. Jacobson, E. Apfelstedt-Sylla, E. Zrenner, L. T. Sharpe, B. Wissinger, “Total colorblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel,” Nature Gen. 19, 257–259 (1998).
[CrossRef]

Neuron (3)

B. A. Wandell, A. B. Poirson, H. A. Baseler, G. M. Boynton, A. Huk, S. Gandhi, L. T. Sharpe, “Color signals in human motion-selective cortex,” Neuron 24, 901–909 (1999).
[CrossRef]

R. F. Dougherty, W. A. Press, B. A. Wandell, “Perceived speed of colored stimuli,” Neuron 24, 893–899 (1999).
[CrossRef]

E. Soucy, Y. Wang, S. Nirenberg, J. Nathans, M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21, 481–493 (1998).
[CrossRef] [PubMed]

Neuropsychologia (1)

T. Schenk, J. Zihl, “Visual motion perception after brain damage. I. Deficits in global motion perception,” Neuropsychologia 35, 1289–1297 (1997).
[CrossRef] [PubMed]

Percept. Psychophys. (1)

W. H. Warren, K. J. Kurtz, “The role of central and peripheral vision in perceiving the direction of self-motion,” Percept. Psychophys. 51, 443–454 (1992).
[CrossRef] [PubMed]

Physiol. Rev. (1)

H. Wässle, B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71, 447–480 (1991).
[PubMed]

Proc. Natl. Acad. Sci. USA (2)

K. Purpura, E. Kaplan, R. M. Shapley, “Background light and the contrast gain of primate retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988).
[CrossRef]

R. B. H. Tootell, J. D. Mendola, N. K. Hadjikhani, A. K. Liu, A. M. Dale, “The representation of the ipsilateral visual field in human cerebral cortex,” Proc. Natl. Acad. Sci. USA 95, 818–824 (1998).
[CrossRef] [PubMed]

Science (1)

J. D. Conner, D. I. A. MacLeod, “Rod photoreceptors detect rapid flicker,” Science 195, 689–699 (1977).
[CrossRef]

Trends Neurosci. (4)

K. R. Gegenfurtner, M. J. Hawken, “Interactions of color and motion in the visual pathways,” Trends Neurosci. 19, 394–401 (1996).
[CrossRef] [PubMed]

P. Sterling, M. Freed, R. G. Smith, “Microcircuitry and functional architecture of the cat retina,” Trends Neurosci. 9, 186–193 (1986).
[CrossRef]

N. W. Daw, R. J. Jensen, W. J. Brunken, “Rod pathways in mammalian retinae,” Trends Neurosci. 13, 110–115 (1990).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, “Rod pathways: the importance of seeing nothing,” Trends Neurosci. 22, 497–504 (1999).
[CrossRef] [PubMed]

Vision Res. (27)

A. Stockman, L. T. Sharpe, C. C. Fach, “The spectral sensitivity of the human short-wavelength sensitivity cones derived from thresholds and color matches,” Vision Res. 39, 2901–2927 (1999).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

P. Thompson, “Discrimination of moving gratings at and above detection threshold,” Vision Res. 23, 1533–1538 (1983).
[CrossRef] [PubMed]

D. T. Lindsey, D. Y. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vision Res. 30, 1751–1761 (1990).
[CrossRef] [PubMed]

P. Cavanagh, S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vision Res. 31, 2109–2148 (1991).
[CrossRef] [PubMed]

K. T. Mullen, J. C. Boulton, “Absence of smooth motion perception in color vision,” Vision Res. 32, 483–488 (1992).
[CrossRef] [PubMed]

H. Kolb, R. Nelson, “Rod pathways in the retina of the cat,” Vision Res. 23, 301–302 (1983).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, D. I. A. MacLeod, “Rod flicker perception: scotopic duality, phase lags and destructive interference,” Vision Res. 29, 1539–1559 (1989).
[CrossRef] [PubMed]

L. T. Sharpe, C. C. Fach, A. Stockman, “The spectral properties of the two rod pathways,” Vision Res. 33, 2705–2720 (1993).
[CrossRef] [PubMed]

B. B. Lee, V. C. Smith, J. Pokorny, J. Kremers, “Rod inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
[CrossRef]

P. Lennie, M. D. Fairchild, “Ganglion cell pathways for rod vision,” Vision Res. 34, 477–482 (1994).
[CrossRef] [PubMed]

V. Virsu, B. B. Lee, O. D. Creutzfeldt, “Mesopic spectral responses and the Purkinje shift of macaque lateral geniculate cells,” Vision Res. 27, 191–200 (1987).
[CrossRef]

S. J. Anderson, D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147–1154 (1985).
[CrossRef] [PubMed]

R. F. Hess, R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47–59 (1992).
[CrossRef] [PubMed]

R. J. Snowden, R. F. Hess, S. J. Waugh, “The processing of temporal modulation at different levels of retinal illuminance,” Vision Res. 35, 775–789 (1995).
[CrossRef] [PubMed]

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

P. Thompson, “Perceived rate of movement depends on contrast,” Vision Res. 22, 377–380 (1982).
[CrossRef] [PubMed]

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
[CrossRef] [PubMed]

K. R. Gegenfurtner, M. J. Hawken, “Perceived speed of luminance, chromatic and non-Fourier stimuli: influence of contrast and temporal frequency,” Vision Res. 36, 1281–1290 (1996).
[CrossRef] [PubMed]

P. E. Hallet, “Spatial summation,” Vision Res. 3, 9–24 (1963).
[CrossRef]

L. T. Sharpe, C. Fach, K. Nordby, “Temporal summation in the achromat,” Vision Res. 28, 1263–1269 (1988).
[CrossRef] [PubMed]

J. Hotson, D. Braun, W. Herzberg, D. Boman, “Transcranial magnetic stimulation of extrastriate cortex degrades human direction discrimination,” Vision Res. 34, 2115–2124 (1994).
[CrossRef] [PubMed]

A. M. Scholtes, M. A. Bouman, “Psychophysical experiments on spatial summation at threshold level of the human peripheral retina,” Vision Res. 17, 867–873 (1977).
[CrossRef] [PubMed]

T. Takeuchi, K. K. De Valois, “Motion-reversal reveals two motion mechanisms functioning in scotopic vision,” Vision Res. 37, 745–755 (1998).
[CrossRef]

E. D. Grossman, R. Blake, “Perception of coherent motion, biological motion and form-from-motion under dim-light conditions,” Vision Res. 39, 3721–3727 (1999).
[CrossRef]

Visual Neurosci. (1)

A. Stockman, L. T. Sharpe, K. Rüther, K. Nordby, “Two signals in the human rod visual system: a model based on electrophysiological data,” Visual Neurosci. 12, 951–970 (1995).
[CrossRef]

Z. Naturforsch. B (1)

B. Hassenstein, W. Reichardt, “Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsanalyse des Rüsselkäfers, Chlorophanus,” Z. Naturforsch. B 11, 513–524 (1956).

Other (6)

E. Baumgardt, “Threshold quantal problems,” in Handbook of Sensory Physiology, D. Jameson, L. M. Hurvich, eds. (Springer-Verlag, Heidelberg, 1972), Vol. II/4, Visual Psychophysics, pp. 29–55.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

R. F. Hess, L. T. Sharpe, K. Nordby, eds., Night Vision: Basic, Clinical, and Applied Aspects (Cambridge U. Press, Cambridge, UK, 1990).

L. T. Sharpe, A. Stockman, H. Jägle, J. Nathans, “Opsin genes, cone photopigments and color vision,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 3–51.

H. Jägle, L. T. Sharpe, J. Nathans, “Rayleigh matches and X-chromosome-linked pigment genes,” available from Herbert Jägle at Universitätsaugenklinik, Forschungsstelle für Experimentelle Ophthalmologie, Röntgenweg 11, D-72076 Tübingen, Germany.

L. T. Sharpe, K. Nordby, “The photoreceptors in the achromat,” in Night Vision: Basic, Clinical, and Applied Aspects, R. F. Hess, L. T. Sharpe, K. Nordby, eds. (Cambridge U. Press, Cambridge, UK, 1990), pp. 335–389.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Thresholds for detection and identification of 1-c/deg moving-grating stimuli for observer KN, a rod monochromat. The x axis plots temporal frequency, and the y axis plots sensitivity as the inverse of contrast at threshold. Open symbols, thresholds for detection; solid symbols, thresholds for identification. Squares, thresholds measured at a space–time-averaged luminance of 0.92 log cd m-2; triangles, thresholds measured at -1.12 log cd m-2.

Fig. 2
Fig. 2

Detection and identification thresholds for S-cone monochromat PS, who has only functioning rods and S cones. Triangles, thresholds measured at -1.12 log cd m-2; circles, those measured at -2.25 log cd m-2. Otherwise, symbols as in Fig. 1. As described in Section 2, stimuli for PS were modulated so as to isolate rod vision by the silent substitution technique.

Fig. 3
Fig. 3

Detection and identification thresholds for color-normal observer (TE). Squares, triangles, and circles, thresholds measured at 0.92, -1.12, and -3.20 log cd m-2, respectively. Otherwise, symbols as in Fig. 1. The smaller solid circle at 0.5 Hz indicates that this threshold was extrapolated from responses to contrasts lower than 100%.

Fig. 4
Fig. 4

Detection (open symbols) and identification (solid symbols) thresholds for deuteranope AZ for four different space–time-averaged luminances: 0.92, -0.10, -1.12, and -2.25 cd m-2. L-cone-activating and rod-activating stimuli are indicated by squares and circles, respectively.

Fig. 5
Fig. 5

Perceived speed as a function of contrast for deuteranope AZ for three different space–time-averaged luminances: 0.92, -0.10, and -1.12 log cd m-2. Temporal frequency was 1 Hz. Absolute contrast (in % rod or % L-cone contrast) is plotted on the x axis. Relative speed (standard/comparison) is plotted on the y axis. Circles, conditions for which a rod standard stimulus was used; squares, conditions for which a L-cone standard stimulus was used. Solid symbols, conditions for which standard and comparison stimuli activated the same classes of photoreceptor (i.e., either rods or L cones); open symbols, conditions for which standard and comparison stimuli activated different classes of photoreceptor.

Fig. 6
Fig. 6

Perceived speed averaged across deuteranopes, AZ, MM, GE, and SH, for temporal frequencies of 0.5, 1, 2, and 4 Hz. Perceived speed for a 10% contrast rod stimulus is compared with the perceived speed for a 10% contrast L-cone stimulus. Error bars, ±1 standard error of the mean. Dashed lines at a perceived speed of 1.0 indicates where rod motion perception would be veridical (i.e., identical with cone motion perception).

Metrics