Abstract

The human spectral luminosity function (Vλ) can be modeled as the linear sum of signals from long-wavelength-selective (L) and middle-wavelength-selective (M) cones, with L cones being weighted by a factor of ∼2. This factor of ∼2 is thought to reflect an approximate 2:1 ratio of L:M cones in the human retina, which has been supported by studies that allow for more direct counting of different cone types in the retina. In contrast to humans, several lines of retinally based evidence in macaques suggest an L:M ratio closer to 1:1. To investigate the consequences of differences in L:M cone ratios between humans and macaques, red–green equiluminance matches obtained psychophysically in humans (n=11) were compared with those obtained electrophysiologically from single neurons in the extrastriate middle temporal visual area of macaques (M. mulatta, n=5). Neurons in the middle temporal visual area were tested with sinusoidal red–green moving gratings across a range of luminance contrasts, with equiluminance being defined as the red–green contrast yielding a response minimum. Human subjects were tested under analogous conditions, by a minimally distinct motion technique, to establish psychophysical equiluminance. Although red–green equiluminance points in both humans and macaques were found to vary across individuals, the means across species differed significantly; compared with humans, macaque equiluminance points reflected relatively greater sensitivity to green. By means of a simple model based on equating the weighted sum of L and M cone signals, the observed red–green equiluminance points were found to be consistent with L:M cone ratios of approximately 2:1 in humans and 1:1 in macaques. These data thus support retinally based estimates of L:M cone ratios and further demonstrate that the information carried in the cone mosaic has functional consequences for red–green spectral sensitivity revealed perceptually and in the dorsal stream of visual cortex.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Jacobs, “Variations in color vision in non-human primates,” in Inherited and Acquired Colour Vision Deficiencies: Fundamental Aspects and Clinical Studies, D. H. Foster, ed. (Macmillan, London, 1990), pp. 199–214.
  2. H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
    [CrossRef]
  3. H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectrophotometry of human photoreceptors,” in Color Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 69–80.
  4. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye [see comments],” Nature 397, 520–522 (1999).
    [CrossRef]
  5. G. H. Jacobs, J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 107–112.
  6. S. A. Hagstrom, J. Neitz, M. Neitz, “Ratio of M/L pigment gene expression decreases with retinal eccentricity,” in Color Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 59–65.
    [CrossRef]
  7. T. Yamaguchi, A. G. Motulsky, S. S. Deeb, “Levels of expression of the red, green and red–green hybrid pigment genes in the human retina,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 21–31.
    [CrossRef]
  8. P. D. Gowdy, C. M. Cicerone, “The spatial arrangement of L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998).
    [CrossRef]
  9. J. L. Nerger, C. M. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 32, 879–888 (1992).
    [CrossRef] [PubMed]
  10. C. M. Cicerone, L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
    [CrossRef] [PubMed]
  11. R. L. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
    [CrossRef] [PubMed]
  12. M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
    [CrossRef] [PubMed]
  13. C. R. Ingling, E. Martinez-Uriegas, “Simple-opponent receptive fields are asymmetrical: G-cone centers predominate,” J. Opt. Soc. Am. A 73, 1527–1532 (1983).
    [CrossRef]
  14. H. L. De Vries, “The heredity of the relative number of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).
  15. J. J. Vos, “Colorimetric and photometric properties of a 2 degree fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
    [CrossRef]
  16. D. B. Judd, “Report of U.S. Secretariat Committee on colorimetry and artificial daylight,” in CIE Proceedings, Twelfth Session, Stockholm (Bureau Central CIE, Paris, 1951), Vol. 1, Pt. 7, pp. 1–60.
  17. P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
    [CrossRef] [PubMed]
  18. J. D. Mollon, J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992).
    [CrossRef] [PubMed]
  19. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).
  20. O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
    [PubMed]
  21. G. H. Jacobs, J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Visual Neurosci. 14, 921–928 (1997).
    [CrossRef]
  22. D. J. Calkins, S. J. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
    [CrossRef] [PubMed]
  23. N. A. Sidley, H. G. Sperling, “Photopic spectral sensitivity in the rhesus monkey,” J. Opt. Soc. Am. 57, 816–818 (1967).
    [CrossRef] [PubMed]
  24. M. L. Crawford, “Central vision of man and macaque: cone and rod sensitivity,” Brain Res. 119, 345–356 (1977).
    [CrossRef] [PubMed]
  25. R. S. Harwerth, E. L. Smith, “Rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
    [CrossRef] [PubMed]
  26. R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
    [CrossRef] [PubMed]
  27. H. Zwick, D. O. Robbins, “Is the rhesus protanomalous?” Mod. Probl. Ophthalmol. 19, 238–242 (1978).
    [PubMed]
  28. I. Behar, P. D. Bock, “Visual acuity as a function of wavelength in three catarrhine species,” Folia Primatol. 21, 277–289 (1974).
    [CrossRef] [PubMed]
  29. N. A. Sidley, H. G. Sperling, E. W. Bedarf, R. H. Hiss, “Photopic spectral sensitivity in the monkey: methods for determining, and initial results,” Science 150, 1837–1839 (1965).
    [CrossRef] [PubMed]
  30. K. R. Dobkins, T. D. Albright, “Behavioral and neural effects of chromatic isoluminance in the primate visual motion system,” Visual Neurosci. 12, 321–332 (1995).
    [CrossRef]
  31. K. R. Dobkins, T. D. Albright, “What happens if it changes color when it moves?: The nature of chromatic input to macaque visual area MT,” J. Neurosci. 14, 4854–4870 (1994).
    [PubMed]
  32. A. Thiele, K. R. Dobkins, T. D. Albright, “The contribu-tion of color to motion processing in MT,” J. Neurosci. 19, 6571–6587 (1999).
    [PubMed]
  33. A. B. Watson, K. R. K. Nielson, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. 18, 587–594 (1986).
    [CrossRef]
  34. R. M. Boynton, “History and current status of a physiologically based system of photometry and colorimetry,” J. Opt. Soc. Am. A 13, 1609–1621 (1996).
    [CrossRef]
  35. P. Cavanagh, D. I. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
    [CrossRef] [PubMed]
  36. A. Eisner, D. I. Macleod, “Blue-sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980).
    [CrossRef] [PubMed]
  37. B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
    [CrossRef] [PubMed]
  38. A. Stockman, D. I. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
    [CrossRef] [PubMed]
  39. J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Vol. 33 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1982), pp. 61–66.
  40. K. R. Dobkins, D. Y. Teller, “Infant motion:detection (M:D) ratios for chromatic-defined and luminance-defined moving stimuli,” Vision Res. 36, 3293–3310 (1996).
    [CrossRef] [PubMed]
  41. A. Stockman, D. I. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
    [CrossRef]
  42. M. L. Bieber, J. M. Kraft, J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
    [CrossRef] [PubMed]
  43. L. T. Sharpe, J. Kremers, H. Knau, T. T. J. M. Berendschot, T. Usui, “Ratios of L and M cones in the normal retina,” Perception 27, 26–27 (1998).
  44. D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000).
    [CrossRef]
  45. W. B. Cushman, J. Z. Levinson, “Phase shift in red and green counterphase flicker at high frequencies,” J. Opt. Soc. Am. 73, 1557–1561 (1983).
    [CrossRef] [PubMed]
  46. K. R. Dobkins, T. D. Albright, “What happens if it changes color when it moves?: Psychophysical experiments on the nature of chromatic input to motion detectors,” Vision Res. 33, 1019–1036 (1993).
    [CrossRef] [PubMed]
  47. N. K. Logothetis, E. R. Charles, “The minimum motion technique applied to determine isoluminance in psycho- physical experiments with monkeys,” Vision Res. 30, 829–838 (1990).
    [CrossRef]
  48. K. R. Dobkins, K. L. Gunther, D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, chromatic contrast sensitivity and luminance contrast sensitivity at various spatial and temporal frequencies?” Vision Res. (to be published).
  49. C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).
  50. M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
    [PubMed]
  51. K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
    [CrossRef] [PubMed]
  52. W. H. Merigan, J. H. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
    [CrossRef] [PubMed]
  53. D. M. Dacey, “Circuitry for color coding in the primate retina,” Proc. Natl. Acad. Sci. USA 93, 582–588 (1996).
    [CrossRef] [PubMed]
  54. B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).
  55. P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).
  56. A. Valberg, B. B. Lee, P. K. Kaiser, J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. (London) 458, 579–602 (1992).
  57. J. H. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
    [PubMed]
  58. A. Eisner, D. I. Macleod, “Flicker photometric study of chromatic adaptation: selective suppression of cone inputs by colored backgrounds,” J. Opt. Soc. Am. 71, 705–718 (1981).
    [CrossRef] [PubMed]
  59. C. F. Stromeyer, A. Chaparro, A. Tolias, R. Kronauer, “Equiluminant settings change markedly with temporal frequency,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S210 (1995).
  60. D. V. van Norren, J. J. Voss, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
    [CrossRef]
  61. J. S. Werner, D. H. Peterzell, A. J. Scheetz, “Light, vision and aging,” Opt. Vision Sci. 67, 214–229 (1990).
    [CrossRef]
  62. J. Tigges, T. P. Gordon, H. M. McClure, E. C. Hall, A. Peters, “Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center,” Am. J. Primatol. 15, 263–273 (1988).
    [CrossRef]
  63. R. S. Harwerth, E. L. Smith, L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).
  64. J. Dillon, “UV-B as a pro-aging and pro-cataract factor,” Doc. Ophthalmol. 88, 339–344 (1994).
    [CrossRef] [PubMed]
  65. P. L. Kaufman, L. Z. Bito, “The occurrence of senile cataracts, ocular hypertension and glaucoma in rhesus monkeys,” Exp. Eye Res. 34, 287–291 (1982).
    [CrossRef] [PubMed]
  66. D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).
  67. G. Wagner, R. M. Boynton, “Comparison of four methods of heterochromatic photometry,” J. Opt. Soc. Am. 62, 1508–1515 (1972).
    [CrossRef] [PubMed]
  68. S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
    [CrossRef] [PubMed]
  69. S. L. Guth, H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
    [CrossRef] [PubMed]
  70. R. A. Bush, P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
    [CrossRef]
  71. D. M. Dacey, L. C. Diller, J. Verweij, D. R. Williams, “Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina,” J. Opt. Soc. Am. A 17, 589–596 (2000).
    [CrossRef]
  72. J. D. Mollon, “‘Tho’ she kneel’d in that place where they grew…’ The uses and origins of primate colour vision,” J. Exp. Biol. 146, 21–38 (1989).
    [PubMed]
  73. C. Wehrhahn, G. Westheimer, “How vernier acuity depends on contrast,” Exp. Brain Res. 80, 618–620 (1990).
    [CrossRef] [PubMed]

2000 (2)

D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000).
[CrossRef]

D. M. Dacey, L. C. Diller, J. Verweij, D. R. Williams, “Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina,” J. Opt. Soc. Am. A 17, 589–596 (2000).
[CrossRef]

1999 (2)

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye [see comments],” Nature 397, 520–522 (1999).
[CrossRef]

A. Thiele, K. R. Dobkins, T. D. Albright, “The contribu-tion of color to motion processing in MT,” J. Neurosci. 19, 6571–6587 (1999).
[PubMed]

1998 (3)

P. D. Gowdy, C. M. Cicerone, “The spatial arrangement of L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998).
[CrossRef]

M. L. Bieber, J. M. Kraft, J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
[CrossRef] [PubMed]

L. T. Sharpe, J. Kremers, H. Knau, T. T. J. M. Berendschot, T. Usui, “Ratios of L and M cones in the normal retina,” Perception 27, 26–27 (1998).

1997 (2)

G. H. Jacobs, J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Visual Neurosci. 14, 921–928 (1997).
[CrossRef]

C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).

1996 (5)

D. M. Dacey, “Circuitry for color coding in the primate retina,” Proc. Natl. Acad. Sci. USA 93, 582–588 (1996).
[CrossRef] [PubMed]

K. R. Dobkins, D. Y. Teller, “Infant motion:detection (M:D) ratios for chromatic-defined and luminance-defined moving stimuli,” Vision Res. 36, 3293–3310 (1996).
[CrossRef] [PubMed]

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

R. A. Bush, P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
[CrossRef]

R. M. Boynton, “History and current status of a physiologically based system of photometry and colorimetry,” J. Opt. Soc. Am. A 13, 1609–1621 (1996).
[CrossRef]

1995 (2)

C. F. Stromeyer, A. Chaparro, A. Tolias, R. Kronauer, “Equiluminant settings change markedly with temporal frequency,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S210 (1995).

K. R. Dobkins, T. D. Albright, “Behavioral and neural effects of chromatic isoluminance in the primate visual motion system,” Visual Neurosci. 12, 321–332 (1995).
[CrossRef]

1994 (3)

K. R. Dobkins, T. D. Albright, “What happens if it changes color when it moves?: The nature of chromatic input to macaque visual area MT,” J. Neurosci. 14, 4854–4870 (1994).
[PubMed]

D. J. Calkins, S. J. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
[CrossRef] [PubMed]

J. Dillon, “UV-B as a pro-aging and pro-cataract factor,” Doc. Ophthalmol. 88, 339–344 (1994).
[CrossRef] [PubMed]

1993 (5)

R. S. Harwerth, E. L. Smith, L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).

P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

A. Stockman, D. I. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[CrossRef]

K. R. Dobkins, T. D. Albright, “What happens if it changes color when it moves?: Psychophysical experiments on the nature of chromatic input to motion detectors,” Vision Res. 33, 1019–1036 (1993).
[CrossRef] [PubMed]

W. H. Merigan, J. H. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef] [PubMed]

1992 (3)

J. D. Mollon, J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992).
[CrossRef] [PubMed]

J. L. Nerger, C. M. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 32, 879–888 (1992).
[CrossRef] [PubMed]

A. Valberg, B. B. Lee, P. K. Kaiser, J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. (London) 458, 579–602 (1992).

1991 (3)

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

A. Stockman, D. I. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef] [PubMed]

1990 (5)

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).

N. K. Logothetis, E. R. Charles, “The minimum motion technique applied to determine isoluminance in psycho- physical experiments with monkeys,” Vision Res. 30, 829–838 (1990).
[CrossRef]

J. H. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

J. S. Werner, D. H. Peterzell, A. J. Scheetz, “Light, vision and aging,” Opt. Vision Sci. 67, 214–229 (1990).
[CrossRef]

C. Wehrhahn, G. Westheimer, “How vernier acuity depends on contrast,” Exp. Brain Res. 80, 618–620 (1990).
[CrossRef] [PubMed]

1989 (3)

J. D. Mollon, “‘Tho’ she kneel’d in that place where they grew…’ The uses and origins of primate colour vision,” J. Exp. Biol. 146, 21–38 (1989).
[PubMed]

C. M. Cicerone, L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

R. L. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

1988 (2)

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

J. Tigges, T. P. Gordon, H. M. McClure, E. C. Hall, A. Peters, “Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center,” Am. J. Primatol. 15, 263–273 (1988).
[CrossRef]

1987 (3)

P. Cavanagh, D. I. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438 (1987).
[CrossRef] [PubMed]

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

1986 (1)

A. B. Watson, K. R. K. Nielson, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. 18, 587–594 (1986).
[CrossRef]

1985 (1)

R. S. Harwerth, E. L. Smith, “Rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
[CrossRef] [PubMed]

1984 (1)

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).

1983 (3)

W. B. Cushman, J. Z. Levinson, “Phase shift in red and green counterphase flicker at high frequencies,” J. Opt. Soc. Am. 73, 1557–1561 (1983).
[CrossRef] [PubMed]

C. R. Ingling, E. Martinez-Uriegas, “Simple-opponent receptive fields are asymmetrical: G-cone centers predominate,” J. Opt. Soc. Am. A 73, 1527–1532 (1983).
[CrossRef]

H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

1982 (1)

P. L. Kaufman, L. Z. Bito, “The occurrence of senile cataracts, ocular hypertension and glaucoma in rhesus monkeys,” Exp. Eye Res. 34, 287–291 (1982).
[CrossRef] [PubMed]

1981 (1)

1980 (1)

1978 (3)

B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[CrossRef] [PubMed]

J. J. Vos, “Colorimetric and photometric properties of a 2 degree fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

H. Zwick, D. O. Robbins, “Is the rhesus protanomalous?” Mod. Probl. Ophthalmol. 19, 238–242 (1978).
[PubMed]

1977 (1)

M. L. Crawford, “Central vision of man and macaque: cone and rod sensitivity,” Brain Res. 119, 345–356 (1977).
[CrossRef] [PubMed]

1974 (3)

I. Behar, P. D. Bock, “Visual acuity as a function of wavelength in three catarrhine species,” Folia Primatol. 21, 277–289 (1974).
[CrossRef] [PubMed]

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

D. V. van Norren, J. J. Voss, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef]

1973 (1)

1972 (1)

1969 (1)

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

1967 (1)

1965 (1)

N. A. Sidley, H. G. Sperling, E. W. Bedarf, R. H. Hiss, “Photopic spectral sensitivity in the monkey: methods for determining, and initial results,” Science 150, 1837–1839 (1965).
[CrossRef] [PubMed]

1948 (1)

H. L. De Vries, “The heredity of the relative number of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).

Ahumada, A. J.

A. B. Watson, K. R. K. Nielson, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. 18, 587–594 (1986).
[CrossRef]

Albright, T. D.

A. Thiele, K. R. Dobkins, T. D. Albright, “The contribu-tion of color to motion processing in MT,” J. Neurosci. 19, 6571–6587 (1999).
[PubMed]

K. R. Dobkins, T. D. Albright, “Behavioral and neural effects of chromatic isoluminance in the primate visual motion system,” Visual Neurosci. 12, 321–332 (1995).
[CrossRef]

K. R. Dobkins, T. D. Albright, “What happens if it changes color when it moves?: The nature of chromatic input to macaque visual area MT,” J. Neurosci. 14, 4854–4870 (1994).
[PubMed]

K. R. Dobkins, T. D. Albright, “What happens if it changes color when it moves?: Psychophysical experiments on the nature of chromatic input to motion detectors,” Vision Res. 33, 1019–1036 (1993).
[CrossRef] [PubMed]

Anstis, S. M.

Auran, J. D.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).

Baylor, D. A.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

Bedarf, E. W.

N. A. Sidley, H. G. Sperling, E. W. Bedarf, R. H. Hiss, “Photopic spectral sensitivity in the monkey: methods for determining, and initial results,” Science 150, 1837–1839 (1965).
[CrossRef] [PubMed]

Behar, I.

I. Behar, P. D. Bock, “Visual acuity as a function of wavelength in three catarrhine species,” Folia Primatol. 21, 277–289 (1974).
[CrossRef] [PubMed]

Bensinger, D. G.

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

Berendschot, T. T. J. M.

L. T. Sharpe, J. Kremers, H. Knau, T. T. J. M. Berendschot, T. Usui, “Ratios of L and M cones in the normal retina,” Perception 27, 26–27 (1998).

Bieber, M. L.

M. L. Bieber, J. M. Kraft, J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
[CrossRef] [PubMed]

Bilson, A.

A. B. Watson, K. R. K. Nielson, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. 18, 587–594 (1986).
[CrossRef]

Bito, L. Z.

P. L. Kaufman, L. Z. Bito, “The occurrence of senile cataracts, ocular hypertension and glaucoma in rhesus monkeys,” Exp. Eye Res. 34, 287–291 (1982).
[CrossRef] [PubMed]

Bock, P. D.

I. Behar, P. D. Bock, “Visual acuity as a function of wavelength in three catarrhine species,” Folia Primatol. 21, 277–289 (1974).
[CrossRef] [PubMed]

Bowmaker, J. K.

J. D. Mollon, J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992).
[CrossRef] [PubMed]

H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectrophotometry of human photoreceptors,” in Color Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 69–80.

Boynton, R. M.

Brainard, D. H.

D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000).
[CrossRef]

Brown, P. K.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).

Bush, R. A.

Calderone, J. B.

D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000).
[CrossRef]

Calkins, D. J.

D. J. Calkins, S. J. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
[CrossRef] [PubMed]

Cavanagh, P.

Chaparro, A.

C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).

C. F. Stromeyer, A. Chaparro, A. Tolias, R. Kronauer, “Equiluminant settings change markedly with temporal frequency,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S210 (1995).

Charles, E. R.

N. K. Logothetis, E. R. Charles, “The minimum motion technique applied to determine isoluminance in psycho- physical experiments with monkeys,” Vision Res. 30, 829–838 (1990).
[CrossRef]

Cicerone, C. M.

P. D. Gowdy, C. M. Cicerone, “The spatial arrangement of L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998).
[CrossRef]

J. L. Nerger, C. M. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 32, 879–888 (1992).
[CrossRef] [PubMed]

C. M. Cicerone, L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Crawford, M. L.

M. L. Crawford, “Central vision of man and macaque: cone and rod sensitivity,” Brain Res. 119, 345–356 (1977).
[CrossRef] [PubMed]

Cushman, W. B.

Dacey, D. M.

Dartnall, H. J.

H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectrophotometry of human photoreceptors,” in Color Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 69–80.

De Valois, R. L.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

De Vries, H. L.

H. L. De Vries, “The heredity of the relative number of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).

Deeb, S. S.

T. Yamaguchi, A. G. Motulsky, S. S. Deeb, “Levels of expression of the red, green and red–green hybrid pigment genes in the human retina,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 21–31.
[CrossRef]

Deegan, J. F.

G. H. Jacobs, J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Visual Neurosci. 14, 921–928 (1997).
[CrossRef]

Delori, F. C.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).

DePriest, D. D.

A. Stockman, D. I. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

J. H. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

DeSantis, L.

R. S. Harwerth, E. L. Smith, L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).

Diller, L. C.

Dillon, J.

J. Dillon, “UV-B as a pro-aging and pro-cataract factor,” Doc. Ophthalmol. 88, 339–344 (1994).
[CrossRef] [PubMed]

Dobkins, K. R.

A. Thiele, K. R. Dobkins, T. D. Albright, “The contribu-tion of color to motion processing in MT,” J. Neurosci. 19, 6571–6587 (1999).
[PubMed]

K. R. Dobkins, D. Y. Teller, “Infant motion:detection (M:D) ratios for chromatic-defined and luminance-defined moving stimuli,” Vision Res. 36, 3293–3310 (1996).
[CrossRef] [PubMed]

K. R. Dobkins, T. D. Albright, “Behavioral and neural effects of chromatic isoluminance in the primate visual motion system,” Visual Neurosci. 12, 321–332 (1995).
[CrossRef]

K. R. Dobkins, T. D. Albright, “What happens if it changes color when it moves?: The nature of chromatic input to macaque visual area MT,” J. Neurosci. 14, 4854–4870 (1994).
[PubMed]

K. R. Dobkins, T. D. Albright, “What happens if it changes color when it moves?: Psychophysical experiments on the nature of chromatic input to motion detectors,” Vision Res. 33, 1019–1036 (1993).
[CrossRef] [PubMed]

K. R. Dobkins, K. L. Gunther, D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, chromatic contrast sensitivity and luminance contrast sensitivity at various spatial and temporal frequencies?” Vision Res. (to be published).

Donley, N. J.

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

Eisner, A.

Fitzhugh, A.

A. B. Watson, K. R. K. Nielson, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. 18, 587–594 (1986).
[CrossRef]

Gordon, T. P.

J. Tigges, T. P. Gordon, H. M. McClure, E. C. Hall, A. Peters, “Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center,” Am. J. Primatol. 15, 263–273 (1988).
[CrossRef]

Gowdy, P. D.

P. D. Gowdy, C. M. Cicerone, “The spatial arrangement of L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998).
[CrossRef]

Gunther, K. L.

K. R. Dobkins, K. L. Gunther, D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, chromatic contrast sensitivity and luminance contrast sensitivity at various spatial and temporal frequencies?” Vision Res. (to be published).

Guth, S. L.

S. L. Guth, H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
[CrossRef] [PubMed]

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

Hagstrom, S. A.

S. A. Hagstrom, J. Neitz, M. Neitz, “Ratio of M/L pigment gene expression decreases with retinal eccentricity,” in Color Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 59–65.
[CrossRef]

Hall, E. C.

J. Tigges, T. P. Gordon, H. M. McClure, E. C. Hall, A. Peters, “Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center,” Am. J. Primatol. 15, 263–273 (1988).
[CrossRef]

Harwerth, R. S.

R. S. Harwerth, E. L. Smith, L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).

R. S. Harwerth, E. L. Smith, “Rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
[CrossRef] [PubMed]

Hiss, R. H.

N. A. Sidley, H. G. Sperling, E. W. Bedarf, R. H. Hiss, “Photopic spectral sensitivity in the monkey: methods for determining, and initial results,” Science 150, 1837–1839 (1965).
[CrossRef] [PubMed]

Hubel, D. H.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

Hull, E. M.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

Ingling, C. R.

C. R. Ingling, E. Martinez-Uriegas, “Simple-opponent receptive fields are asymmetrical: G-cone centers predominate,” J. Opt. Soc. Am. A 73, 1527–1532 (1983).
[CrossRef]

Jacobs, G. H.

D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000).
[CrossRef]

G. H. Jacobs, J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Visual Neurosci. 14, 921–928 (1997).
[CrossRef]

G. H. Jacobs, J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 107–112.

G. H. Jacobs, “Variations in color vision in non-human primates,” in Inherited and Acquired Colour Vision Deficiencies: Fundamental Aspects and Clinical Studies, D. H. Foster, ed. (Macmillan, London, 1990), pp. 199–214.

Johnson, N. E.

Judd, D. B.

D. B. Judd, “Report of U.S. Secretariat Committee on colorimetry and artificial daylight,” in CIE Proceedings, Twelfth Session, Stockholm (Bureau Central CIE, Paris, 1951), Vol. 1, Pt. 7, pp. 1–60.

Kaiser, P. K.

A. Valberg, B. B. Lee, P. K. Kaiser, J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. (London) 458, 579–602 (1992).

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).

Kaufman, P. L.

P. L. Kaufman, L. Z. Bito, “The occurrence of senile cataracts, ocular hypertension and glaucoma in rhesus monkeys,” Exp. Eye Res. 34, 287–291 (1982).
[CrossRef] [PubMed]

Knau, H.

L. T. Sharpe, J. Kremers, H. Knau, T. T. J. M. Berendschot, T. Usui, “Ratios of L and M cones in the normal retina,” Perception 27, 26–27 (1998).

Kraft, J. M.

M. L. Bieber, J. M. Kraft, J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
[CrossRef] [PubMed]

Kremers, J.

L. T. Sharpe, J. Kremers, H. Knau, T. T. J. M. Berendschot, T. Usui, “Ratios of L and M cones in the normal retina,” Perception 27, 26–27 (1998).

A. Valberg, B. B. Lee, P. K. Kaiser, J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. (London) 458, 579–602 (1992).

Kronauer, R.

C. F. Stromeyer, A. Chaparro, A. Tolias, R. Kronauer, “Equiluminant settings change markedly with temporal frequency,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S210 (1995).

Kronauer, R. E.

C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).

Lee, B. B.

A. Valberg, B. B. Lee, P. K. Kaiser, J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. (London) 458, 579–602 (1992).

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

Lennie, P.

Levinson, J. Z.

Livingstone, M. S.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

Lodge, H. R.

Logothetis, N. K.

N. K. Logothetis, E. R. Charles, “The minimum motion technique applied to determine isoluminance in psycho- physical experiments with monkeys,” Vision Res. 30, 829–838 (1990).
[CrossRef]

MacLeod, D. I.

Marrocco, R. T.

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

Martin, P. R.

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

Martinez-Uriegas, E.

C. R. Ingling, E. Martinez-Uriegas, “Simple-opponent receptive fields are asymmetrical: G-cone centers predominate,” J. Opt. Soc. Am. A 73, 1527–1532 (1983).
[CrossRef]

Maunsell, J. H.

W. H. Merigan, J. H. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef] [PubMed]

J. H. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

McClure, H. M.

J. Tigges, T. P. Gordon, H. M. McClure, E. C. Hall, A. Peters, “Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center,” Am. J. Primatol. 15, 263–273 (1988).
[CrossRef]

Mead, W. R.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

Merigan, W. H.

W. H. Merigan, J. H. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef] [PubMed]

Metha, A.

D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000).
[CrossRef]

Mollon, J. D.

J. D. Mollon, J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992).
[CrossRef] [PubMed]

J. D. Mollon, “‘Tho’ she kneel’d in that place where they grew…’ The uses and origins of primate colour vision,” J. Exp. Biol. 146, 21–38 (1989).
[PubMed]

H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectrophotometry of human photoreceptors,” in Color Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 69–80.

Moreland, J. D.

J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Vol. 33 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1982), pp. 61–66.

Morgan, H. C.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

Motulsky, A. G.

T. Yamaguchi, A. G. Motulsky, S. S. Deeb, “Levels of expression of the red, green and red–green hybrid pigment genes in the human retina,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 21–31.
[CrossRef]

Mullen, K. T.

K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef] [PubMed]

Nealey, T. A.

J. H. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

Neitz, J.

D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000).
[CrossRef]

G. H. Jacobs, J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 107–112.

S. A. Hagstrom, J. Neitz, M. Neitz, “Ratio of M/L pigment gene expression decreases with retinal eccentricity,” in Color Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 59–65.
[CrossRef]

Neitz, M.

D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000).
[CrossRef]

S. A. Hagstrom, J. Neitz, M. Neitz, “Ratio of M/L pigment gene expression decreases with retinal eccentricity,” in Color Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 59–65.
[CrossRef]

Nerger, J. L.

J. L. Nerger, C. M. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 32, 879–888 (1992).
[CrossRef] [PubMed]

Nerger, L.

C. M. Cicerone, L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Nguyen, K.

A. B. Watson, K. R. K. Nielson, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. 18, 587–594 (1986).
[CrossRef]

Nielson, K. R. K.

A. B. Watson, K. R. K. Nielson, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. 18, 587–594 (1986).
[CrossRef]

Nunn, B. J.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

Packer, O. S.

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

Peters, A.

J. Tigges, T. P. Gordon, H. M. McClure, E. C. Hall, A. Peters, “Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center,” Am. J. Primatol. 15, 263–273 (1988).
[CrossRef]

Peterzell, D. H.

J. S. Werner, D. H. Peterzell, A. J. Scheetz, “Light, vision and aging,” Opt. Vision Sci. 67, 214–229 (1990).
[CrossRef]

K. R. Dobkins, K. L. Gunther, D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, chromatic contrast sensitivity and luminance contrast sensitivity at various spatial and temporal frequencies?” Vision Res. (to be published).

Poirson, A.

A. B. Watson, K. R. K. Nielson, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. 18, 587–594 (1986).
[CrossRef]

Pokorny, J.

P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

R. L. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Polson, M. C.

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

Robbins, D. O.

H. Zwick, D. O. Robbins, “Is the rhesus protanomalous?” Mod. Probl. Ophthalmol. 19, 238–242 (1978).
[PubMed]

Roorda, A.

D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000).
[CrossRef]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye [see comments],” Nature 397, 520–522 (1999).
[CrossRef]

Scheetz, A. J.

J. S. Werner, D. H. Peterzell, A. J. Scheetz, “Light, vision and aging,” Opt. Vision Sci. 67, 214–229 (1990).
[CrossRef]

Schein, S. J.

D. J. Calkins, S. J. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
[CrossRef] [PubMed]

Schnapf, J. L.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

Sharpe, L. T.

L. T. Sharpe, J. Kremers, H. Knau, T. T. J. M. Berendschot, T. Usui, “Ratios of L and M cones in the normal retina,” Perception 27, 26–27 (1998).

Shevell, S. K.

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

R. L. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Sidley, N. A.

N. A. Sidley, H. G. Sperling, “Photopic spectral sensitivity in the rhesus monkey,” J. Opt. Soc. Am. 57, 816–818 (1967).
[CrossRef] [PubMed]

N. A. Sidley, H. G. Sperling, E. W. Bedarf, R. H. Hiss, “Photopic spectral sensitivity in the monkey: methods for determining, and initial results,” Science 150, 1837–1839 (1965).
[CrossRef] [PubMed]

Sieving, P. A.

Smith, E. L.

R. S. Harwerth, E. L. Smith, L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).

R. S. Harwerth, E. L. Smith, “Rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
[CrossRef] [PubMed]

Smith, V. C.

P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

R. L. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Snodderly, D. M.

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).

Sperling, H. G.

N. A. Sidley, H. G. Sperling, “Photopic spectral sensitivity in the rhesus monkey,” J. Opt. Soc. Am. 57, 816–818 (1967).
[CrossRef] [PubMed]

N. A. Sidley, H. G. Sperling, E. W. Bedarf, R. H. Hiss, “Photopic spectral sensitivity in the monkey: methods for determining, and initial results,” Science 150, 1837–1839 (1965).
[CrossRef] [PubMed]

Sterling, P.

D. J. Calkins, S. J. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
[CrossRef] [PubMed]

Stockman, A.

A. Stockman, D. I. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[CrossRef]

A. Stockman, D. I. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

Stromeyer, C. F.

C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).

C. F. Stromeyer, A. Chaparro, A. Tolias, R. Kronauer, “Equiluminant settings change markedly with temporal frequency,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S210 (1995).

Tansley, B. W.

B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[CrossRef] [PubMed]

Teller, D. Y.

K. R. Dobkins, D. Y. Teller, “Infant motion:detection (M:D) ratios for chromatic-defined and luminance-defined moving stimuli,” Vision Res. 36, 3293–3310 (1996).
[CrossRef] [PubMed]

Thiele, A.

A. Thiele, K. R. Dobkins, T. D. Albright, “The contribu-tion of color to motion processing in MT,” J. Neurosci. 19, 6571–6587 (1999).
[PubMed]

Tigges, J.

J. Tigges, T. P. Gordon, H. M. McClure, E. C. Hall, A. Peters, “Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center,” Am. J. Primatol. 15, 263–273 (1988).
[CrossRef]

Tolias, A.

C. F. Stromeyer, A. Chaparro, A. Tolias, R. Kronauer, “Equiluminant settings change markedly with temporal frequency,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S210 (1995).

Tolias, A. S.

C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).

Tsukamoto, Y.

D. J. Calkins, S. J. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
[CrossRef] [PubMed]

Usui, T.

L. T. Sharpe, J. Kremers, H. Knau, T. T. J. M. Berendschot, T. Usui, “Ratios of L and M cones in the normal retina,” Perception 27, 26–27 (1998).

Valberg, A.

A. Valberg, B. B. Lee, P. K. Kaiser, J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. (London) 458, 579–602 (1992).

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

van Norren, D. V.

D. V. van Norren, J. J. Voss, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef]

Verweij, J.

Vimal, R. L.

R. L. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Vos, J. J.

J. J. Vos, “Colorimetric and photometric properties of a 2 degree fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

Voss, J. J.

D. V. van Norren, J. J. Voss, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef]

Wagner, G.

Watson, A. B.

A. B. Watson, K. R. K. Nielson, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. 18, 587–594 (1986).
[CrossRef]

Wehrhahn, C.

C. Wehrhahn, G. Westheimer, “How vernier acuity depends on contrast,” Exp. Brain Res. 80, 618–620 (1990).
[CrossRef] [PubMed]

Werner, J. S.

M. L. Bieber, J. M. Kraft, J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
[CrossRef] [PubMed]

J. S. Werner, D. H. Peterzell, A. J. Scheetz, “Light, vision and aging,” Opt. Vision Sci. 67, 214–229 (1990).
[CrossRef]

Wesner, M. F.

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

Westheimer, G.

C. Wehrhahn, G. Westheimer, “How vernier acuity depends on contrast,” Exp. Brain Res. 80, 618–620 (1990).
[CrossRef] [PubMed]

Williams, D. R.

D. M. Dacey, L. C. Diller, J. Verweij, D. R. Williams, “Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina,” J. Opt. Soc. Am. A 17, 589–596 (2000).
[CrossRef]

D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000).
[CrossRef]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye [see comments],” Nature 397, 520–522 (1999).
[CrossRef]

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

Yamaguchi, T.

T. Yamaguchi, A. G. Motulsky, S. S. Deeb, “Levels of expression of the red, green and red–green hybrid pigment genes in the human retina,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 21–31.
[CrossRef]

Yamauchi, Y.

D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000).
[CrossRef]

Zwick, H.

H. Zwick, D. O. Robbins, “Is the rhesus protanomalous?” Mod. Probl. Ophthalmol. 19, 238–242 (1978).
[PubMed]

Am. J. Optom. Physiol. Opt. (1)

R. S. Harwerth, E. L. Smith, “Rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
[CrossRef] [PubMed]

Am. J. Primatol. (1)

J. Tigges, T. P. Gordon, H. M. McClure, E. C. Hall, A. Peters, “Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center,” Am. J. Primatol. 15, 263–273 (1988).
[CrossRef]

Annu. Rev. Neurosci. (1)

W. H. Merigan, J. H. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci. 16, 369–402 (1993).
[CrossRef] [PubMed]

Behav. Res. Methods Instrum. (1)

A. B. Watson, K. R. K. Nielson, A. Poirson, A. Fitzhugh, A. Bilson, K. Nguyen, A. J. Ahumada, “Use of a raster framebuffer in vision research,” Behav. Res. Methods Instrum. 18, 587–594 (1986).
[CrossRef]

Brain Res. (1)

M. L. Crawford, “Central vision of man and macaque: cone and rod sensitivity,” Brain Res. 119, 345–356 (1977).
[CrossRef] [PubMed]

Color Res. Appl. (1)

J. J. Vos, “Colorimetric and photometric properties of a 2 degree fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[CrossRef]

Doc. Ophthalmol. (1)

J. Dillon, “UV-B as a pro-aging and pro-cataract factor,” Doc. Ophthalmol. 88, 339–344 (1994).
[CrossRef] [PubMed]

Exp. Brain Res. (1)

C. Wehrhahn, G. Westheimer, “How vernier acuity depends on contrast,” Exp. Brain Res. 80, 618–620 (1990).
[CrossRef] [PubMed]

Exp. Eye Res. (1)

P. L. Kaufman, L. Z. Bito, “The occurrence of senile cataracts, ocular hypertension and glaucoma in rhesus monkeys,” Exp. Eye Res. 34, 287–291 (1982).
[CrossRef] [PubMed]

Folia Primatol. (1)

I. Behar, P. D. Bock, “Visual acuity as a function of wavelength in three catarrhine species,” Folia Primatol. 21, 277–289 (1974).
[CrossRef] [PubMed]

Genetica (The Hague) (1)

H. L. De Vries, “The heredity of the relative number of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).

Invest. Ophthalmol. Visual Sci. (2)

D. M. Snodderly, P. K. Brown, F. C. Delori, J. D. Auran, “The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 660–673 (1984).

R. S. Harwerth, E. L. Smith, L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).

Invest. Ophthalmol. Visual Sci. Suppl. (1)

C. F. Stromeyer, A. Chaparro, A. Tolias, R. Kronauer, “Equiluminant settings change markedly with temporal frequency,” Invest. Ophthalmol. Visual Sci. Suppl. 36, S210 (1995).

J. Exp. Biol. (1)

J. D. Mollon, “‘Tho’ she kneel’d in that place where they grew…’ The uses and origins of primate colour vision,” J. Exp. Biol. 146, 21–38 (1989).
[PubMed]

J. Neurosci. (5)

J. H. Maunsell, T. A. Nealey, D. D. DePriest, “Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,” J. Neurosci. 10, 3323–3334 (1990).
[PubMed]

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

K. R. Dobkins, T. D. Albright, “What happens if it changes color when it moves?: The nature of chromatic input to macaque visual area MT,” J. Neurosci. 14, 4854–4870 (1994).
[PubMed]

A. Thiele, K. R. Dobkins, T. D. Albright, “The contribu-tion of color to motion processing in MT,” J. Neurosci. 19, 6571–6587 (1999).
[PubMed]

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (7)

J. Opt. Soc. Am. A. (1)

D. H. Brainard, J. B. Calderone, G. H. Jacobs, A. Roorda, Y. Yamauchi, D. R. Williams, A. Metha, M. Neitz, J. Neitz, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A. 17, 607–614 (2000).
[CrossRef]

J. Physiol. (London) (5)

C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. (London) 499, 227–254 (1997).

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 422, 153–183 (1990).

A. Valberg, B. B. Lee, P. K. Kaiser, J. Kremers, “Responses of macaque ganglion cells to movement of chromatic borders,” J. Physiol. (London) 458, 579–602 (1992).

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

Mod. Probl. Ophthalmol. (1)

H. Zwick, D. O. Robbins, “Is the rhesus protanomalous?” Mod. Probl. Ophthalmol. 19, 238–242 (1978).
[PubMed]

Nature (3)

D. J. Calkins, S. J. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
[CrossRef] [PubMed]

J. D. Mollon, J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992).
[CrossRef] [PubMed]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye [see comments],” Nature 397, 520–522 (1999).
[CrossRef]

Opt. Vision Sci. (1)

J. S. Werner, D. H. Peterzell, A. J. Scheetz, “Light, vision and aging,” Opt. Vision Sci. 67, 214–229 (1990).
[CrossRef]

Perception (1)

L. T. Sharpe, J. Kremers, H. Knau, T. T. J. M. Berendschot, T. Usui, “Ratios of L and M cones in the normal retina,” Perception 27, 26–27 (1998).

Proc. Natl. Acad. Sci. USA (1)

D. M. Dacey, “Circuitry for color coding in the primate retina,” Proc. Natl. Acad. Sci. USA 93, 582–588 (1996).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. B (1)

H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

Science (1)

N. A. Sidley, H. G. Sperling, E. W. Bedarf, R. H. Hiss, “Photopic spectral sensitivity in the monkey: methods for determining, and initial results,” Science 150, 1837–1839 (1965).
[CrossRef] [PubMed]

Vision Res. (15)

R. L. De Valois, H. C. Morgan, M. C. Polson, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[CrossRef] [PubMed]

B. W. Tansley, R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[CrossRef] [PubMed]

A. Stockman, D. I. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

P. D. Gowdy, C. M. Cicerone, “The spatial arrangement of L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998).
[CrossRef]

J. L. Nerger, C. M. Cicerone, “The ratio of L cones to M cones in the human parafoveal retina,” Vision Res. 32, 879–888 (1992).
[CrossRef] [PubMed]

C. M. Cicerone, L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

R. L. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef] [PubMed]

K. R. Dobkins, D. Y. Teller, “Infant motion:detection (M:D) ratios for chromatic-defined and luminance-defined moving stimuli,” Vision Res. 36, 3293–3310 (1996).
[CrossRef] [PubMed]

K. R. Dobkins, T. D. Albright, “What happens if it changes color when it moves?: Psychophysical experiments on the nature of chromatic input to motion detectors,” Vision Res. 33, 1019–1036 (1993).
[CrossRef] [PubMed]

N. K. Logothetis, E. R. Charles, “The minimum motion technique applied to determine isoluminance in psycho- physical experiments with monkeys,” Vision Res. 30, 829–838 (1990).
[CrossRef]

D. V. van Norren, J. J. Voss, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef]

S. L. Guth, N. J. Donley, R. T. Marrocco, “On luminance additivity and related topics,” Vision Res. 9, 537–575 (1969).
[CrossRef] [PubMed]

M. L. Bieber, J. M. Kraft, J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vision Res. 38, 1961–1966 (1998).
[CrossRef] [PubMed]

Visual Neurosci. (2)

G. H. Jacobs, J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Visual Neurosci. 14, 921–928 (1997).
[CrossRef]

K. R. Dobkins, T. D. Albright, “Behavioral and neural effects of chromatic isoluminance in the primate visual motion system,” Visual Neurosci. 12, 321–332 (1995).
[CrossRef]

Other (8)

J. D. Moreland, “Spectral sensitivity measured by motion photometry,” in Vol. 33 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1982), pp. 61–66.

G. H. Jacobs, J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 107–112.

S. A. Hagstrom, J. Neitz, M. Neitz, “Ratio of M/L pigment gene expression decreases with retinal eccentricity,” in Color Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 59–65.
[CrossRef]

T. Yamaguchi, A. G. Motulsky, S. S. Deeb, “Levels of expression of the red, green and red–green hybrid pigment genes in the human retina,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed., Vol. 59 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 21–31.
[CrossRef]

H. J. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectrophotometry of human photoreceptors,” in Color Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 69–80.

G. H. Jacobs, “Variations in color vision in non-human primates,” in Inherited and Acquired Colour Vision Deficiencies: Fundamental Aspects and Clinical Studies, D. H. Foster, ed. (Macmillan, London, 1990), pp. 199–214.

D. B. Judd, “Report of U.S. Secretariat Committee on colorimetry and artificial daylight,” in CIE Proceedings, Twelfth Session, Stockholm (Bureau Central CIE, Paris, 1951), Vol. 1, Pt. 7, pp. 1–60.

K. R. Dobkins, K. L. Gunther, D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, chromatic contrast sensitivity and luminance contrast sensitivity at various spatial and temporal frequencies?” Vision Res. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Example data from an area-MT neuron presented with heterochromatic (red–green) gratings. The neuron was tested with eight different red–green luminance contrasts ranging in equal intervals (5.48%) from -24.2% to 13.9%, moving in both preferred (P) and nonpreferred (NP) directions (stimulus duration, 1.5 s). Bottom: Post-stimulus-time histograms [spikes/s (S/S)] are plotted as a function of luminance contrast in the red–green grating. Top: Corresponding DI=(P-NP)/P+NP) for each red–green pair. 0% luminance contrast denotes standard CIE (1924) human Vλ equiluminance (as measured by our PR-650 SpectraColorimeter). Neural equiluminance is defined as the luminance contrast yielding the minimal DI of a Gaussian curve fitted to the mean data, which was determined to be -8.43% for this neuron.

Fig. 2
Fig. 2

(a) Red–green equiluminance points for humans (n=11, filled symbols) and macaques (n=5, open symbols), obtained by averaging data across spatiotemporal frequency conditions. Circles and triangles represent data obtained from parafoveal and peripheral locations, respectively (see text and Tables 1 and 2). Group mean equiluminance points and standard errors are depicted by horizontal lines and shaded rectangles (height=±1 standard error of the mean), respectively. For both parafoveal and peripheral stimuli, there is a clear and significant difference between human and macaque data points. (b) L:M cone ratios for humans and macaques, derived from red–green equiluminance points shown in (a). Dashed horizontal lines represent the approximate L:M ratios of humans and macaques as determined from direct retinally based methods. [Symbols are same as in (a).]

Fig. 3
Fig. 3

Red–green equiluminance as a function of temporal frequency (2–13 Hz, top plot) and spatial frequency (0.4–1.4 cpd, bottom plot). Note that temporal frequency data are collapsed across spatial frequencies. Likewise, spatial frequency data are collapsed over temporal frequency. Combining data in this fashion was necessary because, for macaques, there was an insufficient number of neurons to allow investigation of each combination of spatial and temporal frequency. A two-factor analysis of variance conducted on the human data revealed no significant effects of spatial or temporal frequency (and no significant interaction between the two). Single-factor analysis of variance in macaques revealed no significant effect of spatial frequency, yet a significant effect of temporal frequency, on equiluminance points. At higher temporal frequencies macaques needed more green to match the red. (Symbols are same as in Fig. 2.)

Tables (3)

Tables Icon

Table 1 Stimulus Parameters Employed for Macaque Subjects (n=5)a

Tables Icon

Table 2 Stimulus Parameters Employed for Human Subjects (n=11)a

Tables Icon

Table 3 Number of Area-MT Neurons Tested at Each Spatiotemporal Frequency, and the Mean Red–Green Equiluminance Point for Those Neuronsa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F(Lr)+Mr=F(Lg)+Mg,
L:MRATIO=(Mg-Mr)/(Lr-Lg).

Metrics