Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electromagnetic fields for a spheroidal particle with an arbitrary embedded source

Not Accessible

Your library or personal account may give you access

Abstract

A spheroidal coordinate separation-of-variables solution has been developed for the determination of the internal, near-surface, and scattered fields of a spheroid (either prolate or oblate) with an embedded source of arbitrary type, location, and orientation. Presented results for (1, 0) and (1, 1) electric multipoles embedded in 2:1 axis ratio prolate and oblate spheroids (equal volume sphere size parameter equal to 20) illustrate that the presence of the spheroid interface can have a profound effect on the corresponding far-field scattering pattern. The calculation procedure could be used, for example, to model the emission of inelastic scattered light (Raman, fluorescence, etc.) from biological particles of appreciably elongated (prolatelike) or appreciably flattened (oblatelike) geometries.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved