Abstract
We present a numerical study of bidimensional photonic crystals with an emphasis on the behavior of the gaps versus the polarization and the conicity of the incident plane wave. We use a rigorous modal theory of diffraction at oblique incidence by a set of arbitrarily shaped parallel fibers. This theory allows the study of the refractive properties of bidimensional photonic crystals. We develop a heuristic method of homogenization that allows us to predict the position of the gaps and their behavior with respect to the polarization and the conicity angle. With this homogenization scheme, we also present some important elements for obtaining full gaps.
© 2000 Optical Society of America
Full Article |
PDF Article
OSA Recommended Articles
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (25)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription