Abstract

Relational color constancy, which refers to the constancy of perceived relations between surface colors under changes in illuminant, may be based on the computation of spatial ratios of cone excitations. As this activity need occur only within rather than between cone pathways, relational color constancy might be assumed to be based on relative luminance processing. This hypothesis was tested in a psychophysical experiment in which observers viewed simulated images of Mondrian patterns undergoing colorimetric changes that could be attributed either to an illuminant change or to a nonilluminant change; the images were isoluminant, achromatic, or unmodified. Observers reliably discriminated the two types of changes in all three conditions, implying that relational color constancy is not based on luminance cues alone. A computer simulation showed that in these isoluminant and achromatic images spatial ratios of cone excitations and of combinations of cone excitations were almost invariant under illuminant changes and that discrimination performance could be predicted from deviations in these ratios.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts (Joseph Johnson, London, 1807), Vol. I, Lecture XXXVIII.
  2. H. von Helmholtz, Handbuch der Physiologischen Optik, 1st ed. (Leopold Voss, Leipzig, 1867), Vol. II; Helmholtz’s Treatise on Physiological Optics, translation of 3rd ed., J. P. C. Southall, ed. (Optical Society of America, Washington, D.C., 1924), pp. 286–287 (republished by Dover, New York, 1962).
  3. E. H. Land, “Color vision and the natural image. Part I,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959).
    [CrossRef]
  4. E. H. Land, “Color vision and the natural image. Part II,” Proc. Natl. Acad. Sci. USA 45, 636–644 (1959).
    [CrossRef]
  5. E. H. Land, J. J. McCann, “Lightness and Retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
    [CrossRef] [PubMed]
  6. L. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
    [CrossRef] [PubMed]
  7. L. Arend, A. Reeves, J. Schirillo, R. Goldstein, “Simultaneous color constancy: papers with diverse Munsell values,” J. Opt. Soc. Am. A 8, 661–672 (1991).
    [CrossRef] [PubMed]
  8. D. I. Bramwell, A. C. Hurlbert, “The role of object recognition in colour constancy,” Perception 22, 62–63 (1993).
  9. D. I. Bramwell, A. C. Hurlbert, “Measurements of colour constancy using a forced-choice matching technique,” Perception 25, 229–241 (1996).
    [CrossRef]
  10. M. P. Lucassen, J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vision Res. 33, 739–757 (1993).
    [CrossRef] [PubMed]
  11. M. P. Lucassen, J. Walraven, “Color constancy under natural and artificial illumination,” Vision Res. 36, 2699–2711 (1996).
    [CrossRef] [PubMed]
  12. F. W. Cornelissen, E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vision Res. 35, 2431–2448 (1995).
    [CrossRef] [PubMed]
  13. D. H. Brainard, W. A. Brunt, J. M. Speigle, “Color constancy in the nearly natural image. I. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997).
    [CrossRef]
  14. K. Bäuml, “Illuminant changes under different surface collections: examining some principles of color appearance,” J. Opt. Soc. Am. A 12, 261–271 (1995).
    [CrossRef]
  15. K. Bäuml, “Simultaneous color constancy: how surface color perception varies with the illuminant,” Vision Res. 39, 1531–1550 (1999).
    [CrossRef] [PubMed]
  16. K. Bäuml, “Color constancy: the role of image surfaces in illuminant adjustment,” J. Opt. Soc. Am. A 16, 1521–1530 (1999).
    [CrossRef]
  17. J. M. Kraft, D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. 96, 307–312 (1999).
    [CrossRef] [PubMed]
  18. B. J. Craven, D. H. Foster, “An operational approach to colour constancy,” Vision Res. 32, 1359–1366 (1992).
    [CrossRef] [PubMed]
  19. D. H. Foster, B. J. Craven, E. R. H. Sale, “Immediate colour constancy,” Ophthalmic Physiol. Opt. 12, 157–160 (1992).
    [CrossRef] [PubMed]
  20. D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 257, 115–121 (1994).
    [CrossRef]
  21. S. M. C. Nascimento, D. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. Lond, Ser. B 264, 1395–1402 (1997).
    [CrossRef]
  22. A. L. Gilchrist, A. Jacobsen, “Lightness constancy through a veiling luminance,” J. Exp. Psychol.: Hum. Percept. Perform. 9, 936–944 (1983).
  23. L. E. Arend, R. Goldstein, “Simultaneous constancy, lightness and brightness,” J. Opt. Soc. Am. A 4, 2281–2285 (1987).
    [CrossRef] [PubMed]
  24. L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast: 1. Illuminance variation,” Percept. Psychophys. 54, 446–456 (1993).
    [CrossRef] [PubMed]
  25. M. D’Zmura, A. Mangalick, “Detection of contrary chromatic change,” J. Opt. Soc. Am. A 11, 543–546 (1994).
    [CrossRef]
  26. R. S. Berns, M. E. Gorzynski, R. J. Motta, “CRT colorimetry. Part II: Metrology,” Color Res. Appl. 18, 315–325 (1993).
    [CrossRef]
  27. J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
    [CrossRef]
  28. Munsell Book of Color—Matte Finish Collection (Munsell Color Corp., Baltimore, Md., 1976).
  29. T. Jaaskelainen, J. Parkkinen, S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990).
    [CrossRef]
  30. D. B. Judd, D. L. MacAdam, G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964).
    [CrossRef]
  31. L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
    [CrossRef] [PubMed]
  32. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
    [CrossRef] [PubMed]
  33. L. T. Maloney, “Color constancy and color perception: the linear-models framework,” in Attention and Performance XIV, D. E. Meyer, S. Kornblum, eds. (MIT Press, Cambridge, Mass., 1993), pp. 59–78.
  34. M. D’Zmura, G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993).
    [CrossRef]
  35. M. D’Zmura, G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993).
    [CrossRef]
  36. M. D’Zmura, G. Iverson, “Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 11, 2389–2400 (1994).
    [CrossRef]
  37. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  38. P. K. Kaiser, “Sensation luminance: a new name to distinguish CIE luminance from luminance dependent on an individual’s spectral sensitivity,” Vision Res. 28, 455–456 (1988).
    [CrossRef]
  39. V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
    [CrossRef] [PubMed]
  40. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  41. G. D. Finlayson, M. S. Drew, B. V. Funt, “Spectral sharpening: sensor transformations for improved color constancy,” J. Opt. Soc. Am. A 11, 1553–1563 (1994).
    [CrossRef]
  42. G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
    [CrossRef]
  43. Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
    [CrossRef] [PubMed]
  44. R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, Englewood Cliffs, N.J., 1973).
  45. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of Macaque,” J. Physiol. (London) 357, 241–265 (1984).
  46. R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
    [CrossRef] [PubMed]
  47. G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London, Ser. B 220, 89–113 (1983).
    [CrossRef]
  48. Q. Zaidi, B. Spehar, J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
    [CrossRef]
  49. Q. Zaidi, “Decorrelation of L- and M-cone signals,” J. Opt. Soc. Am. A 14, 3430–3431 (1997).
    [CrossRef]
  50. Q. Zaidi, “Identification of illuminant and object colors: heuristic-based algorithms,” J. Opt. Soc. Am. A 15, 1767–1776 (1998).
    [CrossRef]
  51. H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
    [CrossRef] [PubMed]
  52. D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?” Vision Res. 23, 787–797 (1983).
    [CrossRef] [PubMed]

1999 (3)

K. Bäuml, “Simultaneous color constancy: how surface color perception varies with the illuminant,” Vision Res. 39, 1531–1550 (1999).
[CrossRef] [PubMed]

K. Bäuml, “Color constancy: the role of image surfaces in illuminant adjustment,” J. Opt. Soc. Am. A 16, 1521–1530 (1999).
[CrossRef]

J. M. Kraft, D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. 96, 307–312 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (4)

1996 (2)

M. P. Lucassen, J. Walraven, “Color constancy under natural and artificial illumination,” Vision Res. 36, 2699–2711 (1996).
[CrossRef] [PubMed]

D. I. Bramwell, A. C. Hurlbert, “Measurements of colour constancy using a forced-choice matching technique,” Perception 25, 229–241 (1996).
[CrossRef]

1995 (2)

F. W. Cornelissen, E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vision Res. 35, 2431–2448 (1995).
[CrossRef] [PubMed]

K. Bäuml, “Illuminant changes under different surface collections: examining some principles of color appearance,” J. Opt. Soc. Am. A 12, 261–271 (1995).
[CrossRef]

1994 (5)

1993 (8)

Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast: 1. Illuminance variation,” Percept. Psychophys. 54, 446–456 (1993).
[CrossRef] [PubMed]

M. D’Zmura, G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993).
[CrossRef]

M. D’Zmura, G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993).
[CrossRef]

R. S. Berns, M. E. Gorzynski, R. J. Motta, “CRT colorimetry. Part II: Metrology,” Color Res. Appl. 18, 315–325 (1993).
[CrossRef]

M. P. Lucassen, J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vision Res. 33, 739–757 (1993).
[CrossRef] [PubMed]

D. I. Bramwell, A. C. Hurlbert, “The role of object recognition in colour constancy,” Perception 22, 62–63 (1993).

1992 (2)

B. J. Craven, D. H. Foster, “An operational approach to colour constancy,” Vision Res. 32, 1359–1366 (1992).
[CrossRef] [PubMed]

D. H. Foster, B. J. Craven, E. R. H. Sale, “Immediate colour constancy,” Ophthalmic Physiol. Opt. 12, 157–160 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

1989 (1)

1988 (1)

P. K. Kaiser, “Sensation luminance: a new name to distinguish CIE luminance from luminance dependent on an individual’s spectral sensitivity,” Vision Res. 28, 455–456 (1988).
[CrossRef]

1987 (1)

1986 (3)

1984 (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of Macaque,” J. Physiol. (London) 357, 241–265 (1984).

1983 (3)

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London, Ser. B 220, 89–113 (1983).
[CrossRef]

D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?” Vision Res. 23, 787–797 (1983).
[CrossRef] [PubMed]

A. L. Gilchrist, A. Jacobsen, “Lightness constancy through a veiling luminance,” J. Exp. Psychol.: Hum. Percept. Perform. 9, 936–944 (1983).

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1972 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

1971 (2)

E. H. Land, J. J. McCann, “Lightness and Retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
[CrossRef] [PubMed]

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

1964 (1)

1959 (2)

E. H. Land, “Color vision and the natural image. Part I,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959).
[CrossRef]

E. H. Land, “Color vision and the natural image. Part II,” Proc. Natl. Acad. Sci. USA 45, 636–644 (1959).
[CrossRef]

Arend, L.

Arend, L. E.

L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast: 1. Illuminance variation,” Percept. Psychophys. 54, 446–456 (1993).
[CrossRef] [PubMed]

L. E. Arend, R. Goldstein, “Simultaneous constancy, lightness and brightness,” J. Opt. Soc. Am. A 4, 2281–2285 (1987).
[CrossRef] [PubMed]

Bäuml, K.

Berns, R. S.

R. S. Berns, M. E. Gorzynski, R. J. Motta, “CRT colorimetry. Part II: Metrology,” Color Res. Appl. 18, 315–325 (1993).
[CrossRef]

Brainard, D. H.

J. M. Kraft, D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. 96, 307–312 (1999).
[CrossRef] [PubMed]

D. H. Brainard, W. A. Brunt, J. M. Speigle, “Color constancy in the nearly natural image. I. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997).
[CrossRef]

Bramwell, D. I.

D. I. Bramwell, A. C. Hurlbert, “Measurements of colour constancy using a forced-choice matching technique,” Perception 25, 229–241 (1996).
[CrossRef]

D. I. Bramwell, A. C. Hurlbert, “The role of object recognition in colour constancy,” Perception 22, 62–63 (1993).

Brenner, E.

F. W. Cornelissen, E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vision Res. 35, 2431–2448 (1995).
[CrossRef] [PubMed]

Brent, R. P.

R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, Englewood Cliffs, N.J., 1973).

Brunt, W. A.

Buchsbaum, G.

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London, Ser. B 220, 89–113 (1983).
[CrossRef]

Cornelissen, F. W.

F. W. Cornelissen, E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vision Res. 35, 2431–2448 (1995).
[CrossRef] [PubMed]

Craven, B. J.

B. J. Craven, D. H. Foster, “An operational approach to colour constancy,” Vision Res. 32, 1359–1366 (1992).
[CrossRef] [PubMed]

D. H. Foster, B. J. Craven, E. R. H. Sale, “Immediate colour constancy,” Ophthalmic Physiol. Opt. 12, 157–160 (1992).
[CrossRef] [PubMed]

D’Zmura, M.

De Valois, K. K.

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

De Valois, R. L.

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

DeBonet, J.

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of Macaque,” J. Physiol. (London) 357, 241–265 (1984).

Drew, M. S.

Finlayson, G. D.

Foster, D.

S. M. C. Nascimento, D. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. Lond, Ser. B 264, 1395–1402 (1997).
[CrossRef]

Foster, D. H.

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 257, 115–121 (1994).
[CrossRef]

B. J. Craven, D. H. Foster, “An operational approach to colour constancy,” Vision Res. 32, 1359–1366 (1992).
[CrossRef] [PubMed]

D. H. Foster, B. J. Craven, E. R. H. Sale, “Immediate colour constancy,” Ophthalmic Physiol. Opt. 12, 157–160 (1992).
[CrossRef] [PubMed]

D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?” Vision Res. 23, 787–797 (1983).
[CrossRef] [PubMed]

Funt, B. V.

Gilchrist, A. L.

A. L. Gilchrist, A. Jacobsen, “Lightness constancy through a veiling luminance,” J. Exp. Psychol.: Hum. Percept. Perform. 9, 936–944 (1983).

Goldstein, R.

Gorzynski, M. E.

R. S. Berns, M. E. Gorzynski, R. J. Motta, “CRT colorimetry. Part II: Metrology,” Color Res. Appl. 18, 315–325 (1993).
[CrossRef]

Gottschalk, A.

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London, Ser. B 220, 89–113 (1983).
[CrossRef]

Hallikainen, J.

Harwerth, R. S.

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Hurlbert, A. C.

D. I. Bramwell, A. C. Hurlbert, “Measurements of colour constancy using a forced-choice matching technique,” Perception 25, 229–241 (1996).
[CrossRef]

D. I. Bramwell, A. C. Hurlbert, “The role of object recognition in colour constancy,” Perception 22, 62–63 (1993).

Iverson, G.

Jaaskelainen, T.

Jacobsen, A.

A. L. Gilchrist, A. Jacobsen, “Lightness constancy through a veiling luminance,” J. Exp. Psychol.: Hum. Percept. Perform. 9, 936–944 (1983).

Judd, D. B.

Kaiser, P. K.

P. K. Kaiser, “Sensation luminance: a new name to distinguish CIE luminance from luminance dependent on an individual’s spectral sensitivity,” Vision Res. 28, 455–456 (1988).
[CrossRef]

Kraft, J. M.

J. M. Kraft, D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. 96, 307–312 (1999).
[CrossRef] [PubMed]

Krauskopf, J.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of Macaque,” J. Physiol. (London) 357, 241–265 (1984).

Land, E. H.

E. H. Land, J. J. McCann, “Lightness and Retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
[CrossRef] [PubMed]

E. H. Land, “Color vision and the natural image. Part I,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959).
[CrossRef]

E. H. Land, “Color vision and the natural image. Part II,” Proc. Natl. Acad. Sci. USA 45, 636–644 (1959).
[CrossRef]

Lennie, P.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of Macaque,” J. Physiol. (London) 357, 241–265 (1984).

Lucassen, M. P.

M. P. Lucassen, J. Walraven, “Color constancy under natural and artificial illumination,” Vision Res. 36, 2699–2711 (1996).
[CrossRef] [PubMed]

M. P. Lucassen, J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vision Res. 33, 739–757 (1993).
[CrossRef] [PubMed]

MacAdam, D. L.

Maloney, L. T.

Mangalick, A.

McCann, J. J.

Motta, R. J.

R. S. Berns, M. E. Gorzynski, R. J. Motta, “CRT colorimetry. Part II: Metrology,” Color Res. Appl. 18, 315–325 (1993).
[CrossRef]

Nascimento, S. M. C.

S. M. C. Nascimento, D. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. Lond, Ser. B 264, 1395–1402 (1997).
[CrossRef]

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 257, 115–121 (1994).
[CrossRef]

Parkkinen, J.

Parkkinen, J. P. S.

Pokorny, J.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

Reeves, A.

Sale, E. R. H.

D. H. Foster, B. J. Craven, E. R. H. Sale, “Immediate colour constancy,” Ophthalmic Physiol. Opt. 12, 157–160 (1992).
[CrossRef] [PubMed]

Schirillo, J.

Shapiro, A. G.

Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
[CrossRef] [PubMed]

Smith, V. C.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

Snelgar, R. S.

D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?” Vision Res. 23, 787–797 (1983).
[CrossRef] [PubMed]

Spehar, B.

Q. Zaidi, B. Spehar, J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
[CrossRef]

L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast: 1. Illuminance variation,” Percept. Psychophys. 54, 446–456 (1993).
[CrossRef] [PubMed]

Speigle, J. M.

Sperling, H. G.

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Toyooka, S.

von Helmholtz, H.

H. von Helmholtz, Handbuch der Physiologischen Optik, 1st ed. (Leopold Voss, Leipzig, 1867), Vol. II; Helmholtz’s Treatise on Physiological Optics, translation of 3rd ed., J. P. C. Southall, ed. (Optical Society of America, Washington, D.C., 1924), pp. 286–287 (republished by Dover, New York, 1962).

Walraven, J.

M. P. Lucassen, J. Walraven, “Color constancy under natural and artificial illumination,” Vision Res. 36, 2699–2711 (1996).
[CrossRef] [PubMed]

M. P. Lucassen, J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vision Res. 33, 739–757 (1993).
[CrossRef] [PubMed]

Wandell, B. A.

Wyszecki, G.

Young, T.

T. Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts (Joseph Johnson, London, 1807), Vol. I, Lecture XXXVIII.

Zaidi, Q.

Biol. Cybern. (1)

Q. Zaidi, A. G. Shapiro, “Adaptive orthogonalization of opponent-color signals,” Biol. Cybern. 69, 415–428 (1993).
[CrossRef] [PubMed]

Color Res. Appl. (1)

R. S. Berns, M. E. Gorzynski, R. J. Motta, “CRT colorimetry. Part II: Metrology,” Color Res. Appl. 18, 315–325 (1993).
[CrossRef]

J. Exp. Psychol.: Hum. Percept. Perform. (1)

A. L. Gilchrist, A. Jacobsen, “Lightness constancy through a veiling luminance,” J. Exp. Psychol.: Hum. Percept. Perform. 9, 936–944 (1983).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (19)

L. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
[CrossRef] [PubMed]

L. Arend, A. Reeves, J. Schirillo, R. Goldstein, “Simultaneous color constancy: papers with diverse Munsell values,” J. Opt. Soc. Am. A 8, 661–672 (1991).
[CrossRef] [PubMed]

D. H. Brainard, W. A. Brunt, J. M. Speigle, “Color constancy in the nearly natural image. I. Asymmetric matches,” J. Opt. Soc. Am. A 14, 2091–2110 (1997).
[CrossRef]

K. Bäuml, “Illuminant changes under different surface collections: examining some principles of color appearance,” J. Opt. Soc. Am. A 12, 261–271 (1995).
[CrossRef]

K. Bäuml, “Color constancy: the role of image surfaces in illuminant adjustment,” J. Opt. Soc. Am. A 16, 1521–1530 (1999).
[CrossRef]

L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
[CrossRef] [PubMed]

L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
[CrossRef] [PubMed]

M. D’Zmura, G. Iverson, “Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2148–2165 (1993).
[CrossRef]

M. D’Zmura, G. Iverson, “Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 10, 2166–2180 (1993).
[CrossRef]

M. D’Zmura, G. Iverson, “Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces,” J. Opt. Soc. Am. A 11, 2389–2400 (1994).
[CrossRef]

L. E. Arend, R. Goldstein, “Simultaneous constancy, lightness and brightness,” J. Opt. Soc. Am. A 4, 2281–2285 (1987).
[CrossRef] [PubMed]

J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
[CrossRef]

M. D’Zmura, A. Mangalick, “Detection of contrary chromatic change,” J. Opt. Soc. Am. A 11, 543–546 (1994).
[CrossRef]

G. D. Finlayson, M. S. Drew, B. V. Funt, “Spectral sharpening: sensor transformations for improved color constancy,” J. Opt. Soc. Am. A 11, 1553–1563 (1994).
[CrossRef]

G. D. Finlayson, M. S. Drew, B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994).
[CrossRef]

Q. Zaidi, B. Spehar, J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621 (1997).
[CrossRef]

Q. Zaidi, “Decorrelation of L- and M-cone signals,” J. Opt. Soc. Am. A 14, 3430–3431 (1997).
[CrossRef]

Q. Zaidi, “Identification of illuminant and object colors: heuristic-based algorithms,” J. Opt. Soc. Am. A 15, 1767–1776 (1998).
[CrossRef]

T. Jaaskelainen, J. Parkkinen, S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990).
[CrossRef]

J. Physiol. (London) (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of Macaque,” J. Physiol. (London) 357, 241–265 (1984).

Ophthalmic Physiol. Opt. (1)

D. H. Foster, B. J. Craven, E. R. H. Sale, “Immediate colour constancy,” Ophthalmic Physiol. Opt. 12, 157–160 (1992).
[CrossRef] [PubMed]

Percept. Psychophys. (1)

L. E. Arend, B. Spehar, “Lightness, brightness, and brightness contrast: 1. Illuminance variation,” Percept. Psychophys. 54, 446–456 (1993).
[CrossRef] [PubMed]

Perception (2)

D. I. Bramwell, A. C. Hurlbert, “The role of object recognition in colour constancy,” Perception 22, 62–63 (1993).

D. I. Bramwell, A. C. Hurlbert, “Measurements of colour constancy using a forced-choice matching technique,” Perception 25, 229–241 (1996).
[CrossRef]

Proc. Natl. Acad. Sci. (1)

J. M. Kraft, D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. 96, 307–312 (1999).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

E. H. Land, “Color vision and the natural image. Part I,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959).
[CrossRef]

E. H. Land, “Color vision and the natural image. Part II,” Proc. Natl. Acad. Sci. USA 45, 636–644 (1959).
[CrossRef]

Proc. R. Soc. Lond, Ser. B (1)

S. M. C. Nascimento, D. Foster, “Detecting natural changes of cone-excitation ratios in simple and complex coloured images,” Proc. R. Soc. Lond, Ser. B 264, 1395–1402 (1997).
[CrossRef]

Proc. R. Soc. London, Ser. B (2)

D. H. Foster, S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. London, Ser. B 257, 115–121 (1994).
[CrossRef]

G. Buchsbaum, A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London, Ser. B 220, 89–113 (1983).
[CrossRef]

Science (1)

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Vision Res. (10)

D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?” Vision Res. 23, 787–797 (1983).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef] [PubMed]

P. K. Kaiser, “Sensation luminance: a new name to distinguish CIE luminance from luminance dependent on an individual’s spectral sensitivity,” Vision Res. 28, 455–456 (1988).
[CrossRef]

V. C. Smith, J. Pokorny, “Spectral sensitivity of color-blind observers and the cone photopigments,” Vision Res. 12, 2059–2071 (1972).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

B. J. Craven, D. H. Foster, “An operational approach to colour constancy,” Vision Res. 32, 1359–1366 (1992).
[CrossRef] [PubMed]

K. Bäuml, “Simultaneous color constancy: how surface color perception varies with the illuminant,” Vision Res. 39, 1531–1550 (1999).
[CrossRef] [PubMed]

M. P. Lucassen, J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vision Res. 33, 739–757 (1993).
[CrossRef] [PubMed]

M. P. Lucassen, J. Walraven, “Color constancy under natural and artificial illumination,” Vision Res. 36, 2699–2711 (1996).
[CrossRef] [PubMed]

F. W. Cornelissen, E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vision Res. 35, 2431–2448 (1995).
[CrossRef] [PubMed]

Other (6)

T. Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts (Joseph Johnson, London, 1807), Vol. I, Lecture XXXVIII.

H. von Helmholtz, Handbuch der Physiologischen Optik, 1st ed. (Leopold Voss, Leipzig, 1867), Vol. II; Helmholtz’s Treatise on Physiological Optics, translation of 3rd ed., J. P. C. Southall, ed. (Optical Society of America, Washington, D.C., 1924), pp. 286–287 (republished by Dover, New York, 1962).

Munsell Book of Color—Matte Finish Collection (Munsell Color Corp., Baltimore, Md., 1976).

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

L. T. Maloney, “Color constancy and color perception: the linear-models framework,” in Attention and Performance XIV, D. E. Meyer, S. Kornblum, eds. (MIT Press, Cambridge, Mass., 1993), pp. 59–78.

R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, Englewood Cliffs, N.J., 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Overall performance with the unmodified, achromatic, and isoluminant images averaged across all observers and illuminant variations. The percentage of illuminant-change responses to an illuminant-derived change is plotted against image type.

Fig. 2
Fig. 2

Discriminability of illuminant-derived and nonilluminant-derived changes in images of Mondrian patterns as a function of nonuniform shift Δx in illuminant CIE x value. The columns of the graphs correspond to different levels of uniform positive x shifts Δx of 0.03, 0.06, and 0.09 in illuminant CIE x value, and the rows of the graphs correspond to the kinds of images: unmodified, achromatic, and isoluminant. The initial illuminant CIE x value x0 was 0.25. The different symbols indicate different observers [circles (PA), squares (PG), and diamonds (AS)]. Each value was based on 50 trials. The lines through the data points are the results of model predictions based on ratios of cone excitations.

Fig. 3
Fig. 3

Discriminability of illuminant-derived and nonilluminant-derived changes in images of Mondrian patterns as a function of nonuniform shift Δx in illuminant CIE x value. The columns of the graphs correspond to different levels of uniform negative x shifts Δx of -0.03, -0.06, and -0.09 in illuminant CIE x value, and the rows of the graphs correspond to the kinds of images: unmodified, achromatic, and isoluminant. The initial illuminant CIE x value x0 was 0.37. Other details are the same as those for Fig. 2.

Tables (2)

Tables Icon

Table 1 Relative Deviations in Spatial Ratios of Excitations for Each Cone Class and for Luminance and Opponent-Color Combinations of Cone Excitations

Tables Icon

Table 2 Root Mean Square Error (RMSE) for Fits of Models Based on Relative Deviations in Ratios of Cone Excitations and in Ratios of Nonopponent and Opponent Combinations of Cone Excitations

Metrics