Abstract

Multispectral images of natural scenes were collected from both forests and coral reefs to represent typical, complex scenes that might be viewed by modern animals. Both reflectance spectra and modeled visual color signals in these scenes were decorrelated spectrally by principal-component analysis. Nearly 98% of the variance of reflectance spectra and color signals can be described by the first three principal components for both forest and coral reef scenes, which implies that three well-designed visual channels can recover almost all of the spectral information of natural scenes. A variety of natural illuminants affects color signals of forest scenes only slightly, but the variation in ambient irradiance spectra that is due to the absorption of light by water has dramatic influences on the spectral characteristics of coral reef scenes.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Brill, “A device performing illuminant-invariant assessment of chromatic relations,” J. Theor. Biol. 71, 473–478 (1978).
    [CrossRef] [PubMed]
  2. G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
    [CrossRef]
  3. M. D’Zmura, P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
    [CrossRef] [PubMed]
  4. L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
    [CrossRef] [PubMed]
  5. A. C. Hurlbert, “Computational models of colour constancy,” in Perceptual Constancies, V. Walsh, J. Kulikowski, eds. (Cambridge U. Press, Cambridge, UK, 1998).
  6. J. L. Dennemiller, “Spectral reflectance of natural objects: how many basis functions are necessary?” J. Opt. Soc. Am. A 9, 507–515 (1992).
    [CrossRef]
  7. E. L. Krinov, Spectral Reflectance Properties of Natural Formations, Technical Translation TT-439 (National Research Council of Canada, Ottawa, 1947).
  8. J. Cohen, “Dependency of the spectral reflectance curves of Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
    [CrossRef]
  9. K. L. Kelley, K. S. Gibson, D. Nickerson, “Tristimulus specification of the Munsell Book of Color from spectrophotometric measurements,” J. Opt. Soc. Am. 33, 355–376 (1943).
    [CrossRef]
  10. G. Buchsbaum, A. Gottschalk, “Chromaticity coordinates of frequency-limited functions,” J. Opt. Soc. Am. A 1, 885–887 (1984).
    [CrossRef] [PubMed]
  11. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
    [CrossRef] [PubMed]
  12. D. H. Marimont, B. A. Wandell, “Linear models of surface and illuminant spectra,” J. Opt. Soc. Am. A 9, 1905–1913 (1992).
    [CrossRef] [PubMed]
  13. J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
    [CrossRef]
  14. T. Jaaskelainen, J. Parkkinen, S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990).
    [CrossRef]
  15. M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).
  16. D. Osorio, D. L. Ruderman, T. W. Cronin, “Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones,” J. Opt. Soc. Am. A 15, 16–22 (1998).
    [CrossRef]
  17. D. L. Ruderman, T. W. Cronin, C.-C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998).
    [CrossRef]
  18. J. N. Lythgoe, J. C. Partridge, “Visual pigments and the acquisition of visual information,” J. Exp. Biol. 146, 1–20 (1989).
    [PubMed]
  19. D. Osorio, T. R. J. Bossomaier, “Human cone-pigment spectral sensitivities and the reflectances of natural surfaces,” Biol. Cybern. 67, 217–222 (1992).
    [CrossRef] [PubMed]
  20. J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993).
    [CrossRef]
  21. G. Wyszecki, W. S. Stiles, Color Sciences: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  22. T. W. Cronin, N. J. Marshall, R. L. Caldwell, N. Shashar, “Specialisation of retinal function in the compound eyes of mantis shrimps,” Vision Res. 34, 2639–2656 (1994).
    [CrossRef] [PubMed]
  23. F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954).
    [CrossRef] [PubMed]
  24. H. B. Barlow, “Possible principles underlying the transformation of sensory message,” in Sensory Communication, W. A. Rosenblith, ed. (MIT Press, Cambridge, Mass., 1961), pp. 331–360.
  25. H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982).
    [CrossRef] [PubMed]
  26. D. Osorio, M. Vorobyev, “Colour vision as an adaptation to frugivory in primates,” Proc. R. Soc. London, Ser. B 263, 593–599 (1996).
    [CrossRef]
  27. N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1973).
  28. J. N. Lythgoe, The Ecology of Vision (Clarendon, Oxford, UK, 1979).
  29. D. Osorio, N. J. Marshall, T. W. Cronin, “Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water,” Vision Res. 37, 3299–3309 (1997).
    [CrossRef]

1998 (2)

1997 (1)

D. Osorio, N. J. Marshall, T. W. Cronin, “Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water,” Vision Res. 37, 3299–3309 (1997).
[CrossRef]

1996 (1)

D. Osorio, M. Vorobyev, “Colour vision as an adaptation to frugivory in primates,” Proc. R. Soc. London, Ser. B 263, 593–599 (1996).
[CrossRef]

1994 (2)

M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

T. W. Cronin, N. J. Marshall, R. L. Caldwell, N. Shashar, “Specialisation of retinal function in the compound eyes of mantis shrimps,” Vision Res. 34, 2639–2656 (1994).
[CrossRef] [PubMed]

1993 (1)

J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993).
[CrossRef]

1992 (3)

1990 (1)

1989 (2)

J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
[CrossRef]

J. N. Lythgoe, J. C. Partridge, “Visual pigments and the acquisition of visual information,” J. Exp. Biol. 146, 1–20 (1989).
[PubMed]

1986 (3)

1984 (1)

1982 (1)

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982).
[CrossRef] [PubMed]

1980 (1)

G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

1978 (1)

M. Brill, “A device performing illuminant-invariant assessment of chromatic relations,” J. Theor. Biol. 71, 473–478 (1978).
[CrossRef] [PubMed]

1964 (1)

J. Cohen, “Dependency of the spectral reflectance curves of Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
[CrossRef]

1954 (1)

F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954).
[CrossRef] [PubMed]

1943 (1)

Attneave, F.

F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954).
[CrossRef] [PubMed]

Barlow, H. B.

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982).
[CrossRef] [PubMed]

H. B. Barlow, “Possible principles underlying the transformation of sensory message,” in Sensory Communication, W. A. Rosenblith, ed. (MIT Press, Cambridge, Mass., 1961), pp. 331–360.

Bossomaier, T. R. J.

D. Osorio, T. R. J. Bossomaier, “Human cone-pigment spectral sensitivities and the reflectances of natural surfaces,” Biol. Cybern. 67, 217–222 (1992).
[CrossRef] [PubMed]

Brill, M.

M. Brill, “A device performing illuminant-invariant assessment of chromatic relations,” J. Theor. Biol. 71, 473–478 (1978).
[CrossRef] [PubMed]

Buchsbaum, G.

G. Buchsbaum, A. Gottschalk, “Chromaticity coordinates of frequency-limited functions,” J. Opt. Soc. Am. A 1, 885–887 (1984).
[CrossRef] [PubMed]

G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

Caldwell, R. L.

T. W. Cronin, N. J. Marshall, R. L. Caldwell, N. Shashar, “Specialisation of retinal function in the compound eyes of mantis shrimps,” Vision Res. 34, 2639–2656 (1994).
[CrossRef] [PubMed]

Chiao, C.-C.

Cohen, J.

J. Cohen, “Dependency of the spectral reflectance curves of Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
[CrossRef]

Cronin, T. W.

D. L. Ruderman, T. W. Cronin, C.-C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998).
[CrossRef]

D. Osorio, D. L. Ruderman, T. W. Cronin, “Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones,” J. Opt. Soc. Am. A 15, 16–22 (1998).
[CrossRef]

D. Osorio, N. J. Marshall, T. W. Cronin, “Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water,” Vision Res. 37, 3299–3309 (1997).
[CrossRef]

T. W. Cronin, N. J. Marshall, R. L. Caldwell, N. Shashar, “Specialisation of retinal function in the compound eyes of mantis shrimps,” Vision Res. 34, 2639–2656 (1994).
[CrossRef] [PubMed]

D’Zmura, M.

Dennemiller, J. L.

Endler, J. A.

J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993).
[CrossRef]

Gershon, R.

M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Gibson, K. S.

Gottschalk, A.

Hallikainen, J.

Hurlbert, A. C.

A. C. Hurlbert, “Computational models of colour constancy,” in Perceptual Constancies, V. Walsh, J. Kulikowski, eds. (Cambridge U. Press, Cambridge, UK, 1998).

Iwan, L. S.

M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Jaaskelainen, T.

Jerlov, N. G.

N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1973).

Kelley, K. L.

Krinov, E. L.

E. L. Krinov, Spectral Reflectance Properties of Natural Formations, Technical Translation TT-439 (National Research Council of Canada, Ottawa, 1947).

Lennie, P.

Lythgoe, J. N.

J. N. Lythgoe, J. C. Partridge, “Visual pigments and the acquisition of visual information,” J. Exp. Biol. 146, 1–20 (1989).
[PubMed]

J. N. Lythgoe, The Ecology of Vision (Clarendon, Oxford, UK, 1979).

Maloney, L. T.

Marimont, D. H.

Marshall, N. J.

D. Osorio, N. J. Marshall, T. W. Cronin, “Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water,” Vision Res. 37, 3299–3309 (1997).
[CrossRef]

T. W. Cronin, N. J. Marshall, R. L. Caldwell, N. Shashar, “Specialisation of retinal function in the compound eyes of mantis shrimps,” Vision Res. 34, 2639–2656 (1994).
[CrossRef] [PubMed]

Nickerson, D.

Osorio, D.

D. Osorio, D. L. Ruderman, T. W. Cronin, “Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones,” J. Opt. Soc. Am. A 15, 16–22 (1998).
[CrossRef]

D. Osorio, N. J. Marshall, T. W. Cronin, “Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water,” Vision Res. 37, 3299–3309 (1997).
[CrossRef]

D. Osorio, M. Vorobyev, “Colour vision as an adaptation to frugivory in primates,” Proc. R. Soc. London, Ser. B 263, 593–599 (1996).
[CrossRef]

D. Osorio, T. R. J. Bossomaier, “Human cone-pigment spectral sensitivities and the reflectances of natural surfaces,” Biol. Cybern. 67, 217–222 (1992).
[CrossRef] [PubMed]

Parkkinen, J.

Parkkinen, J. P. S.

Partridge, J. C.

J. N. Lythgoe, J. C. Partridge, “Visual pigments and the acquisition of visual information,” J. Exp. Biol. 146, 1–20 (1989).
[PubMed]

Ruderman, D. L.

Shashar, N.

T. W. Cronin, N. J. Marshall, R. L. Caldwell, N. Shashar, “Specialisation of retinal function in the compound eyes of mantis shrimps,” Vision Res. 34, 2639–2656 (1994).
[CrossRef] [PubMed]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Sciences: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Toyooka, S.

Vorobyev, M.

D. Osorio, M. Vorobyev, “Colour vision as an adaptation to frugivory in primates,” Proc. R. Soc. London, Ser. B 263, 593–599 (1996).
[CrossRef]

Vrhel, M. J.

M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Wandell, B. A.

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Sciences: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Biol. Cybern. (1)

D. Osorio, T. R. J. Bossomaier, “Human cone-pigment spectral sensitivities and the reflectances of natural surfaces,” Biol. Cybern. 67, 217–222 (1992).
[CrossRef] [PubMed]

Color Res. Appl. (1)

M. J. Vrhel, R. Gershon, L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Ecol. Monogr. (1)

J. A. Endler, “The color of light in forests and its implications,” Ecol. Monogr. 63, 1–27 (1993).
[CrossRef]

J. Exp. Biol. (1)

J. N. Lythgoe, J. C. Partridge, “Visual pigments and the acquisition of visual information,” J. Exp. Biol. 146, 1–20 (1989).
[PubMed]

J. Franklin Inst. (1)

G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (10)

G. Buchsbaum, A. Gottschalk, “Chromaticity coordinates of frequency-limited functions,” J. Opt. Soc. Am. A 1, 885–887 (1984).
[CrossRef] [PubMed]

D. Osorio, D. L. Ruderman, T. W. Cronin, “Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones,” J. Opt. Soc. Am. A 15, 16–22 (1998).
[CrossRef]

D. L. Ruderman, T. W. Cronin, C.-C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998).
[CrossRef]

L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
[CrossRef] [PubMed]

M. D’Zmura, P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
[CrossRef] [PubMed]

L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986).
[CrossRef] [PubMed]

J. P. S. Parkkinen, J. Hallikainen, T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
[CrossRef]

T. Jaaskelainen, J. Parkkinen, S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7, 725–730 (1990).
[CrossRef]

J. L. Dennemiller, “Spectral reflectance of natural objects: how many basis functions are necessary?” J. Opt. Soc. Am. A 9, 507–515 (1992).
[CrossRef]

D. H. Marimont, B. A. Wandell, “Linear models of surface and illuminant spectra,” J. Opt. Soc. Am. A 9, 1905–1913 (1992).
[CrossRef] [PubMed]

J. Theor. Biol. (1)

M. Brill, “A device performing illuminant-invariant assessment of chromatic relations,” J. Theor. Biol. 71, 473–478 (1978).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. B (1)

D. Osorio, M. Vorobyev, “Colour vision as an adaptation to frugivory in primates,” Proc. R. Soc. London, Ser. B 263, 593–599 (1996).
[CrossRef]

Psychol. Rev. (1)

F. Attneave, “Some informational aspects of visual perception,” Psychol. Rev. 61, 183–193 (1954).
[CrossRef] [PubMed]

Psychon. Sci. (1)

J. Cohen, “Dependency of the spectral reflectance curves of Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
[CrossRef]

Vision Res. (3)

T. W. Cronin, N. J. Marshall, R. L. Caldwell, N. Shashar, “Specialisation of retinal function in the compound eyes of mantis shrimps,” Vision Res. 34, 2639–2656 (1994).
[CrossRef] [PubMed]

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982).
[CrossRef] [PubMed]

D. Osorio, N. J. Marshall, T. W. Cronin, “Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water,” Vision Res. 37, 3299–3309 (1997).
[CrossRef]

Other (6)

H. B. Barlow, “Possible principles underlying the transformation of sensory message,” in Sensory Communication, W. A. Rosenblith, ed. (MIT Press, Cambridge, Mass., 1961), pp. 331–360.

N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1973).

J. N. Lythgoe, The Ecology of Vision (Clarendon, Oxford, UK, 1979).

G. Wyszecki, W. S. Stiles, Color Sciences: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

A. C. Hurlbert, “Computational models of colour constancy,” in Perceptual Constancies, V. Walsh, J. Kulikowski, eds. (Cambridge U. Press, Cambridge, UK, 1998).

E. L. Krinov, Spectral Reflectance Properties of Natural Formations, Technical Translation TT-439 (National Research Council of Canada, Ottawa, 1947).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Color images of various natural scenes used in our analyses (upper, temperate woodlands of Maryland; middle left, sclerophyll forest of Australia; middle right, subtropical rain forest of Australia; lower, coral scenes of Great Barrier Reef, Australia). These images were generated by combining three single frames of multispectral images (452, 548, and 649 nm). Only the central 128×128 pixels in each image were used in actual analyses to avoid including black/white standards and water space in the scenes.

Fig. 2
Fig. 2

(a) Normalized irradiance spectra of illumination in forest. D65 (solid curve) is a CIE standard daylight illuminant. Illuminants 1–5 are natural illuminant spectra measured directly in forests of Australia in 1996. These natural illuminant spectra can be grouped into four categories according to Endler.20 For instance, illuminants 1 and 3 represent the light from forest shade, illuminant 2 is the light from small gaps, illuminant 4 is the light from woodland shade, and illuminant 5 is the light from large gaps (see Ref. 20 for details). (b) Normalized downwelling irradiance spectra at different depths in coral reefs. D65 (solid curve) is assumed to be an illuminant at the surface. Downwelling irradiance spectra at 1, 5, 10, and 20 m were computed based on diffuse attenuation coefficients k(λ) measured in situ [see Eq. (2)].

Fig. 3
Fig. 3

Basis functions of the first three principal components (PC’s) from principal-component analysis (PCA) of reflectance spectra of (a) forest scenes and (b) coral reef scenes (same datasets as those in Table 1).

Fig. 4
Fig. 4

Percentages of the total variance in the first four PC’s from PCA of color signals of (a) forest scenes and (b) coral reef scenes under the different illuminants illustrated in Fig. 2.

Fig. 5
Fig. 5

Basis functions of the first three PC’s from PCA of color signals of forest scenes under various illuminants. Solid curves, the first PC’s; long-dashed curves, the second PC’s; short-dashed curves, the third PC’s.

Fig. 6
Fig. 6

Basis functions of the first three PC’s from PCA of color signals of coral reef scenes at different depths [Fig. 2(b)]: (a) results from analyses of reflectance spectra of coral reef scenes only, and results from analyses of color signals at (b) the surface, (c) 1 m, (d) 5 m, (e) 10 m, and (f) 20 m. Solid curves, the first PC’s; long-dashed curves, the second PC’s; short-dashed curves, the third PC’s.

Tables (1)

Tables Icon

Table 1 Percentage of Variance Accounted for by the First Four Principal Components (PC’s) of Reflectance Spectra in Forest and Coral Reef Scenes

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L(λ)=I(λ)S(λ),
Id(λ)=I0(λ)exp[-k(λ)d].

Metrics