Abstract

The Wigner distribution function is used to analyze moiré patterns that originate from a superposition of nonperiodic masks. For patterns with well-defined local frequencies, the concept of the Wigner distribution function allows one to extend the description of the moiré effect in terms of vector sums. How this picture can be applied to design moiré patterns and to analyze their information content is also discussed.

© 2000 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann, S. Sinzinger, “Moiré effect as a tool for image processing,” J. Opt. Soc. Am. A 10, 65–68 (1993).
    [CrossRef]
  2. K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, Amsterdam, 1993).
  3. G. Oster, M. Waserman, C. Zwerling, “Theoretical interpretation of moiré patterns,” J. Opt. Soc. Am. 54, 169–175 (1964).
    [CrossRef]
  4. O. Bryngdahl, “Moiré: formation and interpretation,” J. Opt. Soc. Am. 64, 1287–1294 (1974).
    [CrossRef]
  5. A. W. Lohmann, Optical Information Processing, 3rd ed. (A. W. Lohmann, Uttenreuth, Germany, 1986), Chaps. 3 and 5.
  6. A. W. Lohmann, D. P. Paris, “Variable Fresnel zone pattern,” Appl. Opt. 6, 1567–1570 (1967).
    [CrossRef] [PubMed]
  7. T. A. C. M. Claasen, W. F. G. Mecklenbräuker, “The Wigner distribution function—a tool for time-frequency signal analysis. Part I: Continuous-time signals,” Philips J. Res. 35, 217–250 (1980).
  8. M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978).
    [CrossRef]
  9. M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979).
    [CrossRef]
  10. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).
    [CrossRef]
  11. K.-H. Brenner, A. W. Lohmann, “Wigner distribution function display of complex 1D signals,” Opt. Commun. 42, 310–314 (1982).
    [CrossRef]
  12. O. Bryngdahl, “Moiré and higher grating harmonics,” J. Opt. Soc. Am. 65, 685–694 (1975).
    [CrossRef]
  13. J. M. Burch, D. C. Williams, “Varifocal moiré plates for straightness measurements,” Appl. Opt. 16, 2445–2450 (1977).
    [CrossRef] [PubMed]
  14. P. P. Huang, “Holographic anti-counterfeit method and device with encoded pattern,” in Diffractive/Holographic Technologies, Systems, and Spatial Light Modulators, VI, I. Cindrich, S. H. Lee, R. L. Sutherland, eds., Proc. SPIE3633, 61–67 (1999).
  15. A. Kolodziejczyk, Z. Jaroszewicz, “Diffractive elements of variable optical power and high diffraction efficiency,” Appl. Opt. 32, 4317–4322 (1993).
    [CrossRef] [PubMed]

1996

1993

1982

K.-H. Brenner, A. W. Lohmann, “Wigner distribution function display of complex 1D signals,” Opt. Commun. 42, 310–314 (1982).
[CrossRef]

1980

T. A. C. M. Claasen, W. F. G. Mecklenbräuker, “The Wigner distribution function—a tool for time-frequency signal analysis. Part I: Continuous-time signals,” Philips J. Res. 35, 217–250 (1980).

1979

1978

M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978).
[CrossRef]

1977

1975

1974

1967

1964

Bastiaans, M. J.

M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979).
[CrossRef]

M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978).
[CrossRef]

Brenner, K.-H.

K.-H. Brenner, A. W. Lohmann, “Wigner distribution function display of complex 1D signals,” Opt. Commun. 42, 310–314 (1982).
[CrossRef]

Bryngdahl, O.

Burch, J. M.

Claasen, T. A. C. M.

T. A. C. M. Claasen, W. F. G. Mecklenbräuker, “The Wigner distribution function—a tool for time-frequency signal analysis. Part I: Continuous-time signals,” Philips J. Res. 35, 217–250 (1980).

Dorsch, R. G.

Ferreira, C.

Huang, P. P.

P. P. Huang, “Holographic anti-counterfeit method and device with encoded pattern,” in Diffractive/Holographic Technologies, Systems, and Spatial Light Modulators, VI, I. Cindrich, S. H. Lee, R. L. Sutherland, eds., Proc. SPIE3633, 61–67 (1999).

Jaroszewicz, Z.

Kolodziejczyk, A.

Lohmann, A. W.

Mecklenbräuker, W. F. G.

T. A. C. M. Claasen, W. F. G. Mecklenbräuker, “The Wigner distribution function—a tool for time-frequency signal analysis. Part I: Continuous-time signals,” Philips J. Res. 35, 217–250 (1980).

Mendlovic, D.

Oster, G.

Paris, D. P.

Patorski, K.

K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, Amsterdam, 1993).

Sinzinger, S.

Waserman, M.

Williams, D. C.

Zalevsky, Z.

Zwerling, C.

Appl. Opt.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Commun.

M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978).
[CrossRef]

K.-H. Brenner, A. W. Lohmann, “Wigner distribution function display of complex 1D signals,” Opt. Commun. 42, 310–314 (1982).
[CrossRef]

Philips J. Res.

T. A. C. M. Claasen, W. F. G. Mecklenbräuker, “The Wigner distribution function—a tool for time-frequency signal analysis. Part I: Continuous-time signals,” Philips J. Res. 35, 217–250 (1980).

Other

P. P. Huang, “Holographic anti-counterfeit method and device with encoded pattern,” in Diffractive/Holographic Technologies, Systems, and Spatial Light Modulators, VI, I. Cindrich, S. H. Lee, R. L. Sutherland, eds., Proc. SPIE3633, 61–67 (1999).

K. Patorski, Handbook of the Moiré Fringe Technique (Elsevier, Amsterdam, 1993).

A. W. Lohmann, Optical Information Processing, 3rd ed. (A. W. Lohmann, Uttenreuth, Germany, 1986), Chaps. 3 and 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics