Abstract

We propose an optical waveguide sensor that uses a leaky guided mode for measuring absorption of liquid samples. The sensor is composed of a single coupling prism on which a cladding layer and a waveguide layer are deposited. The guided mode generates dips in the reflectance spectrum; the depths of the dips depend on the extinction coefficient of a sample facing the layer. The sensitivity of the sensor is controlled by the thickness of the cladding layer. A simple theoretical model has been developed to analyze the behaviors of the sensor. In experiments we obtained sensitivity 17 times higher than that obtained by the conventional attenuated total reflection method.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Harrick, “Study of physics and chemistry of surfaces from frustrated total internal reflections,” Phys. Rev. Lett. 4, 224–226 (1960).
    [CrossRef]
  2. N. J. Harrick, “Surface chemistry from spectral analysis of totally internally reflected radiation,” J. Phys. Chem. 64, 1110–1114 (1960).
    [CrossRef]
  3. J. Fahrenfort, “Attenuated total reflection: a new principle for production of useful infrared reflection spectra of organic compounds,” Spectrochim. Acta 17, 698–709 (1961).
    [CrossRef]
  4. N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific, New York, 1987).
  5. J. E. Midwinter, “On the use of optical waveguide techniques for internal reflection spectroscopy,” IEEE J. Quantum Electron. QE-7, 339–344 (1971).
    [CrossRef]
  6. K. Sasaki, H. Takahashi, Y. Kudo, N. Suzuki, “Determining the absorption coefficient of absorbing thin films with optical waveguides,” Appl. Opt. 19, 3018–3021 (1980).
    [CrossRef] [PubMed]
  7. S.-W. Kang, K. Sasaki, H. Minamitani, “Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption,” Appl. Opt. 32, 3544–3549 (1993).
    [CrossRef] [PubMed]
  8. T. Okamoto, I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev. 4, 354–357 (1997).
    [CrossRef]
  9. S. Herminghaus, M. Klopfleisch, H. J. Schmidt, “Attenuated total reflectance as a quantum interference phenomenon,” Opt. Lett. 19, 293–295 (1994).
    [CrossRef] [PubMed]
  10. M. Osterfeld, H. Franke, C. Feger, “Optical gas detection using metal film enhanced leaky mode spectroscopy,” Appl. Phys. Lett. 62, 2310–2312 (1993).
    [CrossRef]

1997 (1)

T. Okamoto, I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev. 4, 354–357 (1997).
[CrossRef]

1994 (1)

1993 (2)

M. Osterfeld, H. Franke, C. Feger, “Optical gas detection using metal film enhanced leaky mode spectroscopy,” Appl. Phys. Lett. 62, 2310–2312 (1993).
[CrossRef]

S.-W. Kang, K. Sasaki, H. Minamitani, “Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption,” Appl. Opt. 32, 3544–3549 (1993).
[CrossRef] [PubMed]

1980 (1)

1971 (1)

J. E. Midwinter, “On the use of optical waveguide techniques for internal reflection spectroscopy,” IEEE J. Quantum Electron. QE-7, 339–344 (1971).
[CrossRef]

1961 (1)

J. Fahrenfort, “Attenuated total reflection: a new principle for production of useful infrared reflection spectra of organic compounds,” Spectrochim. Acta 17, 698–709 (1961).
[CrossRef]

1960 (2)

N. J. Harrick, “Study of physics and chemistry of surfaces from frustrated total internal reflections,” Phys. Rev. Lett. 4, 224–226 (1960).
[CrossRef]

N. J. Harrick, “Surface chemistry from spectral analysis of totally internally reflected radiation,” J. Phys. Chem. 64, 1110–1114 (1960).
[CrossRef]

Fahrenfort, J.

J. Fahrenfort, “Attenuated total reflection: a new principle for production of useful infrared reflection spectra of organic compounds,” Spectrochim. Acta 17, 698–709 (1961).
[CrossRef]

Feger, C.

M. Osterfeld, H. Franke, C. Feger, “Optical gas detection using metal film enhanced leaky mode spectroscopy,” Appl. Phys. Lett. 62, 2310–2312 (1993).
[CrossRef]

Franke, H.

M. Osterfeld, H. Franke, C. Feger, “Optical gas detection using metal film enhanced leaky mode spectroscopy,” Appl. Phys. Lett. 62, 2310–2312 (1993).
[CrossRef]

Harrick, N. J.

N. J. Harrick, “Surface chemistry from spectral analysis of totally internally reflected radiation,” J. Phys. Chem. 64, 1110–1114 (1960).
[CrossRef]

N. J. Harrick, “Study of physics and chemistry of surfaces from frustrated total internal reflections,” Phys. Rev. Lett. 4, 224–226 (1960).
[CrossRef]

N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific, New York, 1987).

Herminghaus, S.

Kang, S.-W.

Klopfleisch, M.

Kudo, Y.

Midwinter, J. E.

J. E. Midwinter, “On the use of optical waveguide techniques for internal reflection spectroscopy,” IEEE J. Quantum Electron. QE-7, 339–344 (1971).
[CrossRef]

Minamitani, H.

Okamoto, T.

T. Okamoto, I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev. 4, 354–357 (1997).
[CrossRef]

Osterfeld, M.

M. Osterfeld, H. Franke, C. Feger, “Optical gas detection using metal film enhanced leaky mode spectroscopy,” Appl. Phys. Lett. 62, 2310–2312 (1993).
[CrossRef]

Sasaki, K.

Schmidt, H. J.

Suzuki, N.

Takahashi, H.

Yamaguchi, I.

T. Okamoto, I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev. 4, 354–357 (1997).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Osterfeld, H. Franke, C. Feger, “Optical gas detection using metal film enhanced leaky mode spectroscopy,” Appl. Phys. Lett. 62, 2310–2312 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. E. Midwinter, “On the use of optical waveguide techniques for internal reflection spectroscopy,” IEEE J. Quantum Electron. QE-7, 339–344 (1971).
[CrossRef]

J. Phys. Chem. (1)

N. J. Harrick, “Surface chemistry from spectral analysis of totally internally reflected radiation,” J. Phys. Chem. 64, 1110–1114 (1960).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

T. Okamoto, I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev. 4, 354–357 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

N. J. Harrick, “Study of physics and chemistry of surfaces from frustrated total internal reflections,” Phys. Rev. Lett. 4, 224–226 (1960).
[CrossRef]

Spectrochim. Acta (1)

J. Fahrenfort, “Attenuated total reflection: a new principle for production of useful infrared reflection spectra of organic compounds,” Spectrochim. Acta 17, 698–709 (1961).
[CrossRef]

Other (1)

N. J. Harrick, Internal Reflection Spectroscopy (Harrick Scientific, New York, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical configuration of the proposed waveguide sensor using a single coupling prism.

Fig. 2
Fig. 2

Calculated reflectance as a function of the angle of incidence for various extinction coefficients of the sample. It is assumed that n0=1.515, n1=1303, n2=1.490, n3=1.332, t1=582 nm, and t2=110 nm. The incident beam is assumed to be a TM-polarized He–Ne laser (λ=632.8 nm).

Fig. 3
Fig. 3

Calculated dip absorbance as a function of the extinction coefficient of the sample for 582-nm, 702-nm, and 979-nm-thick cladding layers. The other parameters are the same as in Fig. 2.

Fig. 4
Fig. 4

Extinction coefficient of the sample that gives the maximum dip absorbance as a function of the thickness of the cladding layer. The other parameters are the same as in Fig. 2.

Fig. 5
Fig. 5

Internal damping Γint and radiation damping Γrad as a function of the extinction coefficient of the sample for three different thicknesses of the cladding layer. The parameters are the same as in Fig. 2.

Fig. 6
Fig. 6

Internal damping as a function of the extinction coefficient of the sample for various thickness of the waveguide layer. The other parameters are the same as in Fig. 2.

Fig. 7
Fig. 7

Schematic diagram of the experimental setup.

Fig. 8
Fig. 8

Measured extinction coefficient of the methylene blue solution in water as a function of the solution’s concentration.

Fig. 9
Fig. 9

Measured reflectance as a function of the angle of incidence for various sample concentrations: (a) sensor A (t1=650 nm, t2=108 nm), (b) sensor B (t1=740 nm, t2=110 nm), and sensor C (t1=946 nm, t2=110 nm).

Fig. 10
Fig. 10

Calculated minimum reflectance as a function of the ratio of the angular spectral width of a Gaussian beam to the ideal angular width of a Lorentzian-type dip.

Fig. 11
Fig. 11

Dip absorbance at the obtained from Fig. 9 as a function of the extinction coefficient of the sample. The absorbance obtained with conventional ATR sensor is also shown for comparison.

Fig. 12
Fig. 12

Circles show the dip absorbance obtained with sensor A; the solid curve shows the theoretically obtained dip absorbance for the same sensor.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

n0, n2>n1, Re(n3),
R=|r0123|2=|r01|21+r12r23exp(2ikz2t2)+(r01)-1[r12+r23exp(2ikz2t2)]exp(2ikz1t1)1+r12r23exp(2ikz2t2)+r01[r12+r23exp(2ikz2t2)]exp(2ikz1t1)2,
rij=(kzi/i)-(kzj/j)(kzi/i)+(kzj/j) forTMmodeskzi-kzjkzi+kzjforTEmodes,
R=|r01|2×1-4ΓintΓrad{kx-[Re(kx0)+Re(Δkxrad)]}2+(Γint+Γrad)2.
Δkxrad=r01[r120+r230exp(2ikz20t2)]exp(2ikz1t1)/2kx0×kz10kz20-kz20kz1012kz1012-kz2022+kz20kz30-kz30kz2023kz2022-kz3032-it2kz20-1
Δkxrad=r01[r120+r230exp(2ikz20t2)]×exp(2ikz1t1)/2kx01kz10kz20+1kz20kz30-it2kz20
Γint=Γrad.
L=(2Γint+2Γrad)-1.
2ΔGaussian=2 sin-1λπn0w0,
r0123=r01α+(r01)-1β exp(2ikz1t1)α+r01β exp(2ikz1t1),
α=1+r12r23exp(2ikz2t2),
β=r12+r23exp(2ikz2t2).
α0=1+r120r230exp(2ikz20t2)=0,
r0123=r01α0+dαdkxkx=kx0Δkx+(r01)-1β0+dβdkxkx=kx0Δkxexp(2ikz1t1)α0+dαdkxkx=kx0Δkx+r01β0+dβdkxkx=kx0Δkxexp(2ikz1t1).
r0123=r01dαdkxkx=kx0Δkx+(r01)-1β0exp(2ikz1t1)dαdkxkx=kx0Δkx+r01β0exp(2ikz1t1),
dαdkx=dr12dkx r23+r12dr23dkx+r12r232it2dkz2dkxexp(2ikz2t2).
dαdkx=2kxr12r23exp(2ikz2t2)×kz1kz2-kz2kz112kz112-kz222+kz2kz3-kz3kz223kz222-kz332-it2kz2.
dαdkxkx=kx0=-2kx0kz10kz20-kz20kz1012kz1012-kz2022+kz20kz30-kz30kz2023kz2022-kz3032-it2kz20.
k¯x0=kx0+Δkxrad.
Δkxrad=-r01β0exp(2ikz1t1)/dαdkxkx=kx0={r01[r120+r230exp(2ikz20t2)]exp(2ikz1t1)/2kx0}×kz10kz20-kz20kz1012kz1012-kz2022+kz20kz30-kz30kz2023kz2022-kz3032-it2kz20-1.
k¯x0=Re(kx0)+Re(Δkxrad)+i Im(kx0)+i Im(Δkxrad)=Re(kx0)+Re(Δkxrad)+iΓint+iΓrad.
r0123=r01Δkx+(r01)-1β0exp(2ikz1t1)/dαdkxkx=kx0Δkx+r01β0exp(2ikz1t1)/dαdkxkx=kx0.
r0123=r01kx-[Re(kx0)+Re(Δkxrad)]-i(Γint-Γrad)kx-[Re(kx0)+Re(Δkxrad)]-i(Γint+Γrad).
R=|r0123|2=|r01|21-4ΓintΓrad{kx-[Re(kx0)+Re(Δkxrad)]}2+(Γint+Γrad)2.

Metrics