Abstract

We consider how to interpret, filter, and cross-correlate complex-value color (hue and saturation) images by using a single discrete Fourier transform: the spatiochromatic discrete Fourier transform. The model defines new types of spatiochromatic oriented sinusoidal gratings, termed rainbow gratings, which encode the variation of color over space. We demonstrate how color-opponent detectors observed within the vertebrate visual system can be easily defined by linear filters within this representation. This model also allows us to filter and detect both spatial and chromatic patterns in images by using a single cross-correlation procedure. In doing so, we explore a new form of the Cauchy–Schwartz inequality applied to complex-valued scalar products. Results demonstrate the power of this form of spatiochromatic matched filtering in detecting signals embedded in such a significant amount of noise that they are not visible to the unaided human eye.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription