Abstract

The properties of polaritons propagating in hollow dielectric and magnetic cylinders embedded in an optically inert medium are studied. We pay special attention to those solutions of Maxwell’s equations that give the behavior of the nonradiative modes (confined and localized) propagating in an optically active cylindrical medium. The dispersion relation of surface (localized) modes is obtained. Numerical results are presented for cylinders constituted by magnetic and dielectric materials, such as the uniaxial Heisenberg antiferromagnet MnF2 and the dielectric TiO2.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Renn, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser guided in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
    [CrossRef] [PubMed]
  2. H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micro-sided hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
    [CrossRef] [PubMed]
  3. Herschel S. Pilloff, “Enhanced atom guiding in metal-coated, hollow-core optical fibers,” Opt. Commun. 143, 25–29 (1997).
    [CrossRef]
  4. M. M. Auto, G. A. Farias, A. A. Maradudin, “Surface plasmons on films with double periodically corrugated surfaces,” in Electrodynamics of Interfaces and Composite Systems, R. G. Barreira, W. L. Mocham, eds. (World Scientific, Singapore, 1988), pp. 297–313.
  5. G. A. Farias, E. L. Albuquerque, “Polaritons in an n-i-p-i semiconductor superlattice: bulk and surface modes,” Phys. Rev. B 38, 12540–12548 (1988).
    [CrossRef]
  6. D. L. Mills, E. Burstein, “Polaritons: the electromagnetic modes of media,” Rep. Prog. Phys. 37, 817–926 (1974).
    [CrossRef]
  7. R. E. Camley, D. L. Mills, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 26, 1280–1287 (1982).
    [CrossRef]
  8. V. D. Buchel’nikov, V. G. Shavrov, “New types of surface waves in magnetoelectric antiferromagnets,” JETP 82, 380–385 (1996).
  9. R. L. Stamps, R. E. Camley, “Spin waves in antiferromagnetic thin films and multilayers: surface and interface exchange and entire-cell effective-medium theory,” Phys. Rev. B 54, 15200–15209 (1996).
    [CrossRef]
  10. M. R. F. Jensen, T. J. Parker, Kamsul Abraha, D. R. Tilley, “Experimental observation of magnetic surface polaritons in FeF2 by attenuated total reflection,” Phys. Rev. Lett. 75, 3756–3759 (1995).
    [CrossRef] [PubMed]
  11. C. A. Pffeifer, E. N. Economou, K. L. Ngai, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 10, 3038–3051 (1974).
  12. H. Khosravi, D. R. Tilley, R. Loudon, “Surface polaritons in cylindrical optical fibers,” J. Opt. Soc. Am. A 8, 112–122 (1991).
    [CrossRef]
  13. G. C. Aers, A. D. Boardman, B. V. Paranjape, “Non-radiative surface plasmons-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F 10, 53–66 (1980).
    [CrossRef]
  14. E. F. Vasconcelos, N. T. Oliveira, G. A. Farias, N. S. Almeida, “Polaritons confined in magnetic wires,” Phys. Rev. B 44, 12621–12623 (1991).
    [CrossRef]
  15. E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
    [CrossRef]
  16. N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
    [CrossRef]
  17. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  18. M. Abramowitz, L. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
  19. V. M. Agranovich, D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).
  20. S. P. Vernon, W. Sanders, A. R. King, “Surface spin-flop and the antiferromagnetic spin-flop transition,” Phys. Rev. B 17, 1460–1461 (1978).
    [CrossRef]
  21. T. Kurosawa, “Polarization waves in solids,” J. Phys. Soc. Jpn. 16, 1298–1308 (1961).
    [CrossRef]
  22. F. Gervais, B. Piriou, “Temperature dependence of transverse- and longitudinal-optical modes in TiO2 (rutile),” Phys. Rev. B 10, 1642–1654 (1974).
    [CrossRef]

1998

E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
[CrossRef]

1997

Herschel S. Pilloff, “Enhanced atom guiding in metal-coated, hollow-core optical fibers,” Opt. Commun. 143, 25–29 (1997).
[CrossRef]

1996

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micro-sided hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

V. D. Buchel’nikov, V. G. Shavrov, “New types of surface waves in magnetoelectric antiferromagnets,” JETP 82, 380–385 (1996).

R. L. Stamps, R. E. Camley, “Spin waves in antiferromagnetic thin films and multilayers: surface and interface exchange and entire-cell effective-medium theory,” Phys. Rev. B 54, 15200–15209 (1996).
[CrossRef]

1995

M. R. F. Jensen, T. J. Parker, Kamsul Abraha, D. R. Tilley, “Experimental observation of magnetic surface polaritons in FeF2 by attenuated total reflection,” Phys. Rev. Lett. 75, 3756–3759 (1995).
[CrossRef] [PubMed]

M. J. Renn, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser guided in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

1993

N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
[CrossRef]

1991

H. Khosravi, D. R. Tilley, R. Loudon, “Surface polaritons in cylindrical optical fibers,” J. Opt. Soc. Am. A 8, 112–122 (1991).
[CrossRef]

E. F. Vasconcelos, N. T. Oliveira, G. A. Farias, N. S. Almeida, “Polaritons confined in magnetic wires,” Phys. Rev. B 44, 12621–12623 (1991).
[CrossRef]

1988

G. A. Farias, E. L. Albuquerque, “Polaritons in an n-i-p-i semiconductor superlattice: bulk and surface modes,” Phys. Rev. B 38, 12540–12548 (1988).
[CrossRef]

1982

R. E. Camley, D. L. Mills, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 26, 1280–1287 (1982).
[CrossRef]

1980

G. C. Aers, A. D. Boardman, B. V. Paranjape, “Non-radiative surface plasmons-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F 10, 53–66 (1980).
[CrossRef]

1978

S. P. Vernon, W. Sanders, A. R. King, “Surface spin-flop and the antiferromagnetic spin-flop transition,” Phys. Rev. B 17, 1460–1461 (1978).
[CrossRef]

1974

D. L. Mills, E. Burstein, “Polaritons: the electromagnetic modes of media,” Rep. Prog. Phys. 37, 817–926 (1974).
[CrossRef]

C. A. Pffeifer, E. N. Economou, K. L. Ngai, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 10, 3038–3051 (1974).

F. Gervais, B. Piriou, “Temperature dependence of transverse- and longitudinal-optical modes in TiO2 (rutile),” Phys. Rev. B 10, 1642–1654 (1974).
[CrossRef]

1961

T. Kurosawa, “Polarization waves in solids,” J. Phys. Soc. Jpn. 16, 1298–1308 (1961).
[CrossRef]

Abraha, Kamsul

M. R. F. Jensen, T. J. Parker, Kamsul Abraha, D. R. Tilley, “Experimental observation of magnetic surface polaritons in FeF2 by attenuated total reflection,” Phys. Rev. Lett. 75, 3756–3759 (1995).
[CrossRef] [PubMed]

Abramowitz, M.

M. Abramowitz, L. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

Aers, G. C.

G. C. Aers, A. D. Boardman, B. V. Paranjape, “Non-radiative surface plasmons-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F 10, 53–66 (1980).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich, D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).

Albuquerque, E. L.

G. A. Farias, E. L. Albuquerque, “Polaritons in an n-i-p-i semiconductor superlattice: bulk and surface modes,” Phys. Rev. B 38, 12540–12548 (1988).
[CrossRef]

Almeida, N. S.

E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
[CrossRef]

N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
[CrossRef]

E. F. Vasconcelos, N. T. Oliveira, G. A. Farias, N. S. Almeida, “Polaritons confined in magnetic wires,” Phys. Rev. B 44, 12621–12623 (1991).
[CrossRef]

Anderson, D. Z.

M. J. Renn, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser guided in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Auto, M. M.

M. M. Auto, G. A. Farias, A. A. Maradudin, “Surface plasmons on films with double periodically corrugated surfaces,” in Electrodynamics of Interfaces and Composite Systems, R. G. Barreira, W. L. Mocham, eds. (World Scientific, Singapore, 1988), pp. 297–313.

Boardman, A. D.

G. C. Aers, A. D. Boardman, B. V. Paranjape, “Non-radiative surface plasmons-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F 10, 53–66 (1980).
[CrossRef]

Buchel’nikov, V. D.

V. D. Buchel’nikov, V. G. Shavrov, “New types of surface waves in magnetoelectric antiferromagnets,” JETP 82, 380–385 (1996).

Burstein, E.

D. L. Mills, E. Burstein, “Polaritons: the electromagnetic modes of media,” Rep. Prog. Phys. 37, 817–926 (1974).
[CrossRef]

Camley, R. E.

R. L. Stamps, R. E. Camley, “Spin waves in antiferromagnetic thin films and multilayers: surface and interface exchange and entire-cell effective-medium theory,” Phys. Rev. B 54, 15200–15209 (1996).
[CrossRef]

R. E. Camley, D. L. Mills, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 26, 1280–1287 (1982).
[CrossRef]

Cornell, E. A.

M. J. Renn, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser guided in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Costa Filho, R. N.

E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
[CrossRef]

Economou, E. N.

C. A. Pffeifer, E. N. Economou, K. L. Ngai, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 10, 3038–3051 (1974).

Farias, G. A.

E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
[CrossRef]

N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
[CrossRef]

E. F. Vasconcelos, N. T. Oliveira, G. A. Farias, N. S. Almeida, “Polaritons confined in magnetic wires,” Phys. Rev. B 44, 12621–12623 (1991).
[CrossRef]

G. A. Farias, E. L. Albuquerque, “Polaritons in an n-i-p-i semiconductor superlattice: bulk and surface modes,” Phys. Rev. B 38, 12540–12548 (1988).
[CrossRef]

M. M. Auto, G. A. Farias, A. A. Maradudin, “Surface plasmons on films with double periodically corrugated surfaces,” in Electrodynamics of Interfaces and Composite Systems, R. G. Barreira, W. L. Mocham, eds. (World Scientific, Singapore, 1988), pp. 297–313.

Gervais, F.

F. Gervais, B. Piriou, “Temperature dependence of transverse- and longitudinal-optical modes in TiO2 (rutile),” Phys. Rev. B 10, 1642–1654 (1974).
[CrossRef]

Ito, H.

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micro-sided hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Jensen, M. R. F.

M. R. F. Jensen, T. J. Parker, Kamsul Abraha, D. R. Tilley, “Experimental observation of magnetic surface polaritons in FeF2 by attenuated total reflection,” Phys. Rev. Lett. 75, 3756–3759 (1995).
[CrossRef] [PubMed]

Jhe, W.

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micro-sided hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Khosravi, H.

King, A. R.

S. P. Vernon, W. Sanders, A. R. King, “Surface spin-flop and the antiferromagnetic spin-flop transition,” Phys. Rev. B 17, 1460–1461 (1978).
[CrossRef]

Kurosawa, T.

T. Kurosawa, “Polarization waves in solids,” J. Phys. Soc. Jpn. 16, 1298–1308 (1961).
[CrossRef]

Lee, K. I.

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micro-sided hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Loudon, R.

Maradudin, A. A.

M. M. Auto, G. A. Farias, A. A. Maradudin, “Surface plasmons on films with double periodically corrugated surfaces,” in Electrodynamics of Interfaces and Composite Systems, R. G. Barreira, W. L. Mocham, eds. (World Scientific, Singapore, 1988), pp. 297–313.

Mills, D. L.

R. E. Camley, D. L. Mills, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 26, 1280–1287 (1982).
[CrossRef]

D. L. Mills, E. Burstein, “Polaritons: the electromagnetic modes of media,” Rep. Prog. Phys. 37, 817–926 (1974).
[CrossRef]

V. M. Agranovich, D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).

Nakata, T.

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micro-sided hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Ngai, K. L.

C. A. Pffeifer, E. N. Economou, K. L. Ngai, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 10, 3038–3051 (1974).

Nobre, E. F.

E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
[CrossRef]

Ohtsu, M.

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micro-sided hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Oliveira, N. T.

N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
[CrossRef]

E. F. Vasconcelos, N. T. Oliveira, G. A. Farias, N. S. Almeida, “Polaritons confined in magnetic wires,” Phys. Rev. B 44, 12621–12623 (1991).
[CrossRef]

Paranjape, B. V.

G. C. Aers, A. D. Boardman, B. V. Paranjape, “Non-radiative surface plasmons-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F 10, 53–66 (1980).
[CrossRef]

Parker, T. J.

M. R. F. Jensen, T. J. Parker, Kamsul Abraha, D. R. Tilley, “Experimental observation of magnetic surface polaritons in FeF2 by attenuated total reflection,” Phys. Rev. Lett. 75, 3756–3759 (1995).
[CrossRef] [PubMed]

Pffeifer, C. A.

C. A. Pffeifer, E. N. Economou, K. L. Ngai, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 10, 3038–3051 (1974).

Pilloff, Herschel S.

Herschel S. Pilloff, “Enhanced atom guiding in metal-coated, hollow-core optical fibers,” Opt. Commun. 143, 25–29 (1997).
[CrossRef]

Piriou, B.

F. Gervais, B. Piriou, “Temperature dependence of transverse- and longitudinal-optical modes in TiO2 (rutile),” Phys. Rev. B 10, 1642–1654 (1974).
[CrossRef]

Renn, M. J.

M. J. Renn, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser guided in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Sanders, W.

S. P. Vernon, W. Sanders, A. R. King, “Surface spin-flop and the antiferromagnetic spin-flop transition,” Phys. Rev. B 17, 1460–1461 (1978).
[CrossRef]

Shavrov, V. G.

V. D. Buchel’nikov, V. G. Shavrov, “New types of surface waves in magnetoelectric antiferromagnets,” JETP 82, 380–385 (1996).

Stamps, R. L.

R. L. Stamps, R. E. Camley, “Spin waves in antiferromagnetic thin films and multilayers: surface and interface exchange and entire-cell effective-medium theory,” Phys. Rev. B 54, 15200–15209 (1996).
[CrossRef]

Stegun, L. A.

M. Abramowitz, L. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

Tilley, D. R.

M. R. F. Jensen, T. J. Parker, Kamsul Abraha, D. R. Tilley, “Experimental observation of magnetic surface polaritons in FeF2 by attenuated total reflection,” Phys. Rev. Lett. 75, 3756–3759 (1995).
[CrossRef] [PubMed]

H. Khosravi, D. R. Tilley, R. Loudon, “Surface polaritons in cylindrical optical fibers,” J. Opt. Soc. Am. A 8, 112–122 (1991).
[CrossRef]

Vasconcelos, E. F.

N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
[CrossRef]

E. F. Vasconcelos, N. T. Oliveira, G. A. Farias, N. S. Almeida, “Polaritons confined in magnetic wires,” Phys. Rev. B 44, 12621–12623 (1991).
[CrossRef]

Vdovin, O.

M. J. Renn, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser guided in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

Vernon, S. P.

S. P. Vernon, W. Sanders, A. R. King, “Surface spin-flop and the antiferromagnetic spin-flop transition,” Phys. Rev. B 17, 1460–1461 (1978).
[CrossRef]

Wieman, C. E.

M. J. Renn, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser guided in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Phys. F

G. C. Aers, A. D. Boardman, B. V. Paranjape, “Non-radiative surface plasmons-polariton modes of inhomogeneous metal circular cylinders,” J. Phys. F 10, 53–66 (1980).
[CrossRef]

J. Phys. Soc. Jpn.

T. Kurosawa, “Polarization waves in solids,” J. Phys. Soc. Jpn. 16, 1298–1308 (1961).
[CrossRef]

JETP

V. D. Buchel’nikov, V. G. Shavrov, “New types of surface waves in magnetoelectric antiferromagnets,” JETP 82, 380–385 (1996).

Opt. Commun.

Herschel S. Pilloff, “Enhanced atom guiding in metal-coated, hollow-core optical fibers,” Opt. Commun. 143, 25–29 (1997).
[CrossRef]

Phys. Rev. B

R. L. Stamps, R. E. Camley, “Spin waves in antiferromagnetic thin films and multilayers: surface and interface exchange and entire-cell effective-medium theory,” Phys. Rev. B 54, 15200–15209 (1996).
[CrossRef]

G. A. Farias, E. L. Albuquerque, “Polaritons in an n-i-p-i semiconductor superlattice: bulk and surface modes,” Phys. Rev. B 38, 12540–12548 (1988).
[CrossRef]

E. F. Vasconcelos, N. T. Oliveira, G. A. Farias, N. S. Almeida, “Polaritons confined in magnetic wires,” Phys. Rev. B 44, 12621–12623 (1991).
[CrossRef]

E. F. Nobre, R. N. Costa Filho, G. A. Farias, N. S. Almeida, “Polaritons in anisotropic materials with cylindrical geometry,” Phys. Rev. B 57, 10583–10591 (1998).
[CrossRef]

N. S. Almeida, G. A. Farias, N. T. Oliveira, E. F. Vasconcelos, “Influence of a dc field on polaritons confined in magnetic wires,” Phys. Rev. B 48, 9839–9842 (1993).
[CrossRef]

F. Gervais, B. Piriou, “Temperature dependence of transverse- and longitudinal-optical modes in TiO2 (rutile),” Phys. Rev. B 10, 1642–1654 (1974).
[CrossRef]

R. E. Camley, D. L. Mills, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 26, 1280–1287 (1982).
[CrossRef]

C. A. Pffeifer, E. N. Economou, K. L. Ngai, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 10, 3038–3051 (1974).

S. P. Vernon, W. Sanders, A. R. King, “Surface spin-flop and the antiferromagnetic spin-flop transition,” Phys. Rev. B 17, 1460–1461 (1978).
[CrossRef]

Phys. Rev. Lett.

M. R. F. Jensen, T. J. Parker, Kamsul Abraha, D. R. Tilley, “Experimental observation of magnetic surface polaritons in FeF2 by attenuated total reflection,” Phys. Rev. Lett. 75, 3756–3759 (1995).
[CrossRef] [PubMed]

M. J. Renn, O. Vdovin, D. Z. Anderson, C. E. Wieman, E. A. Cornell, “Laser guided in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995).
[CrossRef] [PubMed]

H. Ito, T. Nakata, M. Ohtsu, K. I. Lee, W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micro-sided hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996).
[CrossRef] [PubMed]

Rep. Prog. Phys.

D. L. Mills, E. Burstein, “Polaritons: the electromagnetic modes of media,” Rep. Prog. Phys. 37, 817–926 (1974).
[CrossRef]

Other

M. M. Auto, G. A. Farias, A. A. Maradudin, “Surface plasmons on films with double periodically corrugated surfaces,” in Electrodynamics of Interfaces and Composite Systems, R. G. Barreira, W. L. Mocham, eds. (World Scientific, Singapore, 1988), pp. 297–313.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

M. Abramowitz, L. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

V. M. Agranovich, D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Hollow cylinder with internal radius a and external radius b.

Fig. 2
Fig. 2

Dispersion relation of localized modes (surface modes) for a hollow cylinder of MnF2, with internal radius a=0.05 mm and external radius b=0.1 mm. Dashed line, resonance frequency; dotted–dashed line, light line (w=ck).

Fig. 3
Fig. 3

Dispersion relation of localized modes (surface modes) for a hollow cylinder of MnF2, with internal radius a=0.5 mm and external radius b=2.0 mm. Dashed line, resonance frequency; dotted–dashed line, light line (w=ck).

Fig. 4
Fig. 4

Dispersion relation of localized modes (surface modes) of the polariton for a massive cylinder of TiO2, with radius a=0.01 mm. Dashed lines, resonance frequencies; dotted–dashed line, light line (w=ck). In the regions denoted by a and e, II and II are positive. In the regions denoted by b, c, and d, II and II are negative.

Fig. 5
Fig. 5

Dispersion relation of localized modes (surface modes) of the polariton for a massive cylinder of TiO2, with radius a=0.005 mm and b=0.01 mm. Dashed lines, resonance frequencies; dotted–dashed line, light line (w=ck). In the regions denoted by a and e, II and II are positive. In the regions denoted by b, c, and d, II and II are negative.

Fig. 6
Fig. 6

Dispersion relation of localized modes (surface modes) of the polariton for a massive cylinder of TiO2, with radius a=0.005 mm and b=0.02 mm. Dashed lines, resonance frequencies; dotted–dashed line, light line (w=ck). In the regions denoted by a and e, II and II are positive. In the regions denoted by b, c, and d, II and II are negative.

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

j=j000j000j,
μj=μj000μj000μj,
kz=ωc(μ),
E=[Er(r), Eθ(r), Ez(r)]Sn,
H=[Hr(r), Hθ(r), Hz(r)]Sn,
Sn=exp[i(kz+nθ-ωt)],
ErI=ikzkIII1/2Zn(βIr)AnI-nωμIcrkI2Zn(αIr)BnISn,
EθI=-nkzrkI2Zn(βIr)AnI-iωckIμIμIZn(αIr)BnISn,
EzI=[Zn(βIr)AnI]Sn,
HrI=nωcrkI2IZn(βIr)AnI+ikkIμIμI1/2Zn(αIr)BnISn,
HθI=iωckIIIZn(βIr)AnI-nkrkI2Zn(αIr)BnISn,
HzI=[Zn(αIr)BnI]Sn;
ErII=ikzkIIIIII1/2[Zn(βIIr)AnII+χn(βIIr)BnII]-nωμIIcrkII2[Zn(αIIr)CnII+χn(αIIr)DnII]Sn,
EθII=-nkzrkII2[Zn(βIIr)AnII+χn(βIIr)BnII]-iωckIIμIIμII[Zn(αIIr)CnII+χn(αIIr)DnII]Sn,
EzII=[Zn(βIIr)AnII+χn(βIIr)BnII]Sn,
HrII=nωcrkII2II[Zn(βIIr)AnII+χn(βIIr)BnII]-ikkIIIIII1/2[Zn(αIIr)CnII+χn(αIIr)DnII]Sn,
HθII=iωckIIIIII[Zn(βIIr)AnII+χn(βIIr)BnII]-nkrkII2[Zn(αIIr)CnII+χn(αIIr)DnII]Sn,
HzII=[Zn(αIIr)CnII+χn(αIIr)DnII]Sn;
ErIII=-ikkIIIKn(kIIIr)AnIII+nωμIIIcrkIII2Kn(kIIIr)BnIIISn,
EθIII=nkrkIII2Kn(kIIIr)AnIII+iωckIμIIIKn(kIIIr)BnIIISn,
EzIII=[Kn(kIIIr)AnIII]Sn,
HrIII=-nωcrkIII2IIIKn(kIIIr)AnIII-ikkIIIKn(kIIIr)BnIIISn,
HθIII=-iωckIIIIIIKn(kIIIr)AnIII+nkrkout2Kn(kIIIr)BnIIISn,
HzIII=[Kn(kIIIr)BnIII]Sn,
Nb2±ω2c2A×E×Na2±ω2c2C×FZn(αb)Zn(βa)χn(αa)χn(βb)-Nb2±ω2c2A×BNa2±ω2c2C×D×Zn(αa)Zn(βa)χn(αb)χn(βb)+Nb2±ω2c2B×GNa2±ω2c2D×H×Zn(αa)Zn(βb)χn(βa)χn(αb)-Nb2±ω2c2E×GNa2±ω2c2F×H×Zn(αb)Zn(βb)χn(αa)χn(βa)-2Aω2k2c2kII2IIIIμIIμII]1/21kIII2-1kII2=0,
Na=nk(ω/c)1(kIIIa)2-1(kIIa)2,
Nb=nk(ω/c)1(kIIIb)2-1(kIIb)2,
A=IIIIkIIbχn(βb)χn(βb)-μIIIkIIIbKn(kIIIb)Kn(kIIIb),
B=μIIμIIkIIbχn(αb)χn(αb)-μIIIkIIIbKn(kIIIb)Kn(kIIIb),
C=IIIIkIIaZn(βa)Zn(βa)-μIkIaZn(kIa)Zn(kIa),
D=μIIμIIkIIbZn(αa)Zn(αa)-μIkIaZn(kIa)Zn(kIa),
E=μIIμIIkIIbZn(αb)Zn(αb)-μIIIkIIIbKn(kIIIb)Kn(kIIIb),
F=μIIμIIkIIaχn(αa)χn(αa)-μIkIaZn(kIa)Zn(kIa),
G=IIIIkIIbZn(βb)Zn(βb)-IIIkIIIbKn(kIIIb)Kn(kIIIb),
H=IIIIkIIaχn(βa)χn(βa)-IkIaZn(kIa)Zn(kIa),
A=-4π21αIIa1βIIb
A=1αIIa1βIIb
αII=μIIμII1/2kII
βII=IIII1/2kII.
kj2=ω2c2jμj-k2,
μ=1,
μ=Ω02+ΩS2-ω2Ω02-ω2,
Ω0=γ(2HEHA+HA2)1/2,
ΩS=γ(8πHAMS)1/2,
(ω)=zω2-ωLOz2ω2-ωTOz2,
(ω)=i=13ω2-ωLOi2ω2-ωTOi2,
ωLOz=796.0cm-1,ωTOz=167.0cm-1,ωLO1=831.0cm-1,ωTO1=189.0cm-1,ωLO2=367.0cm-1,ωTO2=381.0cm-1,ωLO3=443.5cm-1,ωTO3=508.0cm-1.

Metrics