H. Laabs, “Propagation of Hermite–Gaussian-beams beyond the paraxial approximation,” Opt. Commun. 147, 1–4 (1998).

[CrossRef]

Q. Cao, X. Deng, “Corrections to the paraxial approximation of an arbitrary free-propagation beam,” J. Opt. Soc. Am. A 15, 1144–1148 (1998).

[CrossRef]

P. Varga, P. Török, “The Gaussian wave solution of Maxwell’s equations and the validity of scalar wave approximation,” Opt. Commun. 152, 108–118 (1998).

[CrossRef]

W. L. Erikson, S. Singh, “Polarization properties of Maxwell–Gaussian laser beams,” Phys. Rev. E 49, 5778–5786 (1994).

[CrossRef]

G. P. Agrawal, M. Lax, “Free-space wave propagation beyond the paraxial approximation,” Phys. Rev. A 27, 1693–1695 (1983).

[CrossRef]

M. Couture, P. Belanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24, 355–359 (1981).

[CrossRef]

D. N. Pattanayak, G. P. Agrawal, “Representation of vector electromagnetic beams,” Phys. Rev. A 22, 1159–1164 (1980).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

A. L. Cullen, P. K. Yu, “Complex source-point theory of the electromagnetic open resonator,” Proc. R. Soc. London, Ser. A 366, 155–171 (1979).

[CrossRef]

G. P. Agrawal, D. N. Pattanayak, “Gaussian beam propagation beyond the paraxial approximation,” J. Opt. Soc. Am. 69, 575–578 (1979).

[CrossRef]

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).

[CrossRef]

G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE 60, 1022–1035 (1972).

[CrossRef]

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).

[CrossRef]

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Tech. J. 40, 489–508 (1961).

[CrossRef]

G. P. Agrawal, M. Lax, “Free-space wave propagation beyond the paraxial approximation,” Phys. Rev. A 27, 1693–1695 (1983).

[CrossRef]

D. N. Pattanayak, G. P. Agrawal, “Representation of vector electromagnetic beams,” Phys. Rev. A 22, 1159–1164 (1980).

[CrossRef]

G. P. Agrawal, D. N. Pattanayak, “Gaussian beam propagation beyond the paraxial approximation,” J. Opt. Soc. Am. 69, 575–578 (1979).

[CrossRef]

M. Couture, P. Belanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24, 355–359 (1981).

[CrossRef]

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Tech. J. 40, 489–508 (1961).

[CrossRef]

M. Couture, P. Belanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24, 355–359 (1981).

[CrossRef]

A. L. Cullen, P. K. Yu, “Complex source-point theory of the electromagnetic open resonator,” Proc. R. Soc. London, Ser. A 366, 155–171 (1979).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE 60, 1022–1035 (1972).

[CrossRef]

S. Ramo, J. R. Whinnery, T. V. Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, New York, 1994), p. 589.

W. L. Erikson, S. Singh, “Polarization properties of Maxwell–Gaussian laser beams,” Phys. Rev. E 49, 5778–5786 (1994).

[CrossRef]

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Tech. J. 40, 489–508 (1961).

[CrossRef]

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), pp. 113–118.

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).

[CrossRef]

H. Laabs, “Propagation of Hermite–Gaussian-beams beyond the paraxial approximation,” Opt. Commun. 147, 1–4 (1998).

[CrossRef]

G. P. Agrawal, M. Lax, “Free-space wave propagation beyond the paraxial approximation,” Phys. Rev. A 27, 1693–1695 (1983).

[CrossRef]

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).

[CrossRef]

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).

[CrossRef]

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).

[CrossRef]

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).

[CrossRef]

S. Ramo, J. R. Whinnery, T. V. Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, New York, 1994), p. 589.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 169–174.

W. L. Erikson, S. Singh, “Polarization properties of Maxwell–Gaussian laser beams,” Phys. Rev. E 49, 5778–5786 (1994).

[CrossRef]

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 169–174.

G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cambridge U. Press, London, 1966), p. 140.

S. Ramo, J. R. Whinnery, T. V. Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, New York, 1994), p. 589.

A. L. Cullen, P. K. Yu, “Complex source-point theory of the electromagnetic open resonator,” Proc. R. Soc. London, Ser. A 366, 155–171 (1979).

[CrossRef]

G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Tech. J. 40, 489–508 (1961).

[CrossRef]

B. T. Landesman, H. H. Barrett, “Gaussian amplitude functions that are exact solutions to the scalar Helmholtz equation,” J. Opt. Soc. Am. A 5, 1610–1619 (1988).

[CrossRef]

A. Wünsche, “Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams,” J. Opt. Soc. Am. A 9, 765–774 (1992).

[CrossRef]

T. Takenaka, M. Yokota, O. Fukumitsu, “Propagation of light beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 2, 826–829 (1985).

[CrossRef]

Q. Cao, X. Deng, “Corrections to the paraxial approximation of an arbitrary free-propagation beam,” J. Opt. Soc. Am. A 15, 1144–1148 (1998).

[CrossRef]

P. Varga, P. Török, “The Gaussian wave solution of Maxwell’s equations and the validity of scalar wave approximation,” Opt. Commun. 152, 108–118 (1998).

[CrossRef]

H. Laabs, “Propagation of Hermite–Gaussian-beams beyond the paraxial approximation,” Opt. Commun. 147, 1–4 (1998).

[CrossRef]

D. N. Pattanayak, G. P. Agrawal, “Representation of vector electromagnetic beams,” Phys. Rev. A 22, 1159–1164 (1980).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).

[CrossRef]

M. Couture, P. Belanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24, 355–359 (1981).

[CrossRef]

G. P. Agrawal, M. Lax, “Free-space wave propagation beyond the paraxial approximation,” Phys. Rev. A 27, 1693–1695 (1983).

[CrossRef]

W. L. Erikson, S. Singh, “Polarization properties of Maxwell–Gaussian laser beams,” Phys. Rev. E 49, 5778–5786 (1994).

[CrossRef]

G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE 60, 1022–1035 (1972).

[CrossRef]

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).

[CrossRef]

A. L. Cullen, P. K. Yu, “Complex source-point theory of the electromagnetic open resonator,” Proc. R. Soc. London, Ser. A 366, 155–171 (1979).

[CrossRef]

G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cambridge U. Press, London, 1966), p. 140.

S. Ramo, J. R. Whinnery, T. V. Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, New York, 1994), p. 589.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), pp. 113–118.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 169–174.