Abstract

A new directionally sensitive motion detection system is proposed that is capable of detecting local motion without any significant preprocessing. It has a delay-and-compare structure like that of the Reichardt detector but uses as its basic building block the shunting inhibition neural model. It is therefore called the local inhibitory motion detector. Furthermore, an array of such detectors exhibits adaptive responses akin to those observed in motion-sensitive biological neurons.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Hassenstein, W. Reichardt, “Functional structure of a mechanism of perception of optical movement,” in Proceedings of the International Congress on Cybernetics (International Association of Cybernetics, Namur, Belgium, 1956), pp. 797–801.
  2. D. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol. (London) 148, 574–591 (1956).
  3. H. B. Barlow, R. M. Hill, W. R. Levick, “Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit,” J. Physiol. (London) 173, 377–407 (1964).
  4. G. B. McCann, “The fundamental mechanism of motion detection in the insect visual system,” Kybernetik 12, 64–73 (1973).
    [CrossRef] [PubMed]
  5. E. Buchner, “Elementary movement detectors in an insect visual system,” Biol. Cybern. 24, 85–101 (1976).
    [CrossRef]
  6. K. Hausen, “The lobula-complex of the fly: structure, function, and significance in visual behaviour,” in Photoreception and Vision in Invertebrates, M. A. Ali, ed. (Plenum, London, 1984), pp. 523–559.
  7. M. Egelhaaf, W. E. Reichardt, “Dynamic response properties of movement detectors: theoretical analysis and electrophysical investigation in the visual system of the fly,” Biol. Cybern. 56, 69–87 (1987).
    [CrossRef]
  8. M. Egelhaaf, A. Borst, “Transient and steady-state response properties of movement detectors,” J. Opt. Soc. Am. A 6, 116–127 (1989).
    [CrossRef] [PubMed]
  9. N. Franceschini, A. Riehle, A. Le Nestour, “Directionally sensitive motion detection by insect neurons,” in Facets of Vision, D. G. Stavenga, R. C. Hardie eds. (Springer-Verlag, Berlin, 1989), pp. 360–389.
  10. G. A. Horridge, L. Marcelja, “Responses of the H1 neuron of the fly to contrast and moving bars,” Philos. Trans. R. Soc. London Ser. B 329, 75–80 (1990).
    [CrossRef]
  11. W. E. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the nervous system,” in Sensory Communications, Contributions to Principles of Sensory Communications, W. A. Rosenblith, ed. (Proceedings of the Symposium on Principles of Sensory Communication, 1959) (MIT Press, Cambridge, Mass., 1961), pp. 303–317.
  12. H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in the rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).
  13. E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [CrossRef] [PubMed]
  14. A. Bouzerdoum, R. B. Pinter, “Image motion processing in biological and computer vision systems,” in Visual Communications and Image Processing IV, W. A. Pearlman, ed. Proc. SPIE1199, 1229–1240 (1989).
    [CrossRef]
  15. H. Öğmen, S. Gagné, “Neural network architectures for motion perception and elementary motion detection in the fly visual system,” Neural Networks 3, 487–505 (1990).
    [CrossRef]
  16. W. H. Zaagman, H. A. K. Mastebroek, J. W. Kuiper, “On the correlation model: performance of a movement detecting neural element in the fly visual system,” Biol. Cybern. 31, 163–168 (1978).
    [CrossRef] [PubMed]
  17. H. Eckert, “Functional properties of the H1-neurone in the third optic ganglion of the blowfly, Phaenicia,” J. Comp. Physiol. 135, 29–39 (1980).
    [CrossRef]
  18. A. Bouzerdoum, R. B. Pinter, “Nonlinear lateral inhibition applied to motion detection in the fly visual system,” in Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks, R. B. Pinter, B. Nabet, eds. (CRC Press, Boca Raton, Fla., 1992), pp. 423–450.
  19. A. Bouzerdoum, “The elementary movement detection mechanism in insect vision,” Philos. Trans. R. Soc. London Ser. B 339, 375–384 (1993).
    [CrossRef]
  20. J. P. H. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
    [CrossRef] [PubMed]
  21. M. Egelhaaf, A. Borst, B. Pilz, “The role of GABA in detecting visual motion,” Brain Res. 509, 156–160 (1990).
    [CrossRef] [PubMed]
  22. A. Schmid, H. Bulthoff, “Using neuropharmacology to distinguish between excitatory and inhibitory movement detection mechanisms in the fly Calliphora erythrocephala,” Biol. Cybern. 59, 71–80 (1988).
    [CrossRef]
  23. R. B. Pinter, “The electrophysiological basis for linear and for nonlinear product term lateral inhibition and the consequences for wide field textured stimuli,” J. Theor. Biol. 105, 233–243 (1983).
    [CrossRef] [PubMed]
  24. D. W. Arnett, “Spatial and temporal integration properties of units in the first optic ganglion of dipterans,” J. Neurophysiol. 35, 429–444 (1972).
    [PubMed]
  25. J. H. van Hateren, “Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation,” J. Comp. Physiol. A 171, 157–170 (1992).
  26. R. B. Pinter, D. Osorio, M. V. Srinivasan, “Shift of edge-taxis to scototaxis depends on mean luminance and is predicted by a matched filter theory on the responses of fly lamina LMC cells,” Visual Neurosci. 4, 579–584 (1990).
    [CrossRef]
  27. S. Laughlin, “The role of sensory adaption in the retina,” J. Exp. Biol. 146, 39–62 (1989).
    [PubMed]
  28. M. V. Srinivasan, R. B. Pinter, D. Osorio, “Matched filtering in the visual system of the fly: large monopolar cells of the lamina are optimized to detect moving edges and blobs,” Proc. R. Soc. London Ser. B 240, 279–293 (1990).
    [CrossRef]
  29. G. A. Horridge, L. Marcelja, “Responses of the H1 neuron of the fly to jumped edges,” Philos. Trans. R. Soc. London Ser. B 327, 65–73 (1990).
    [CrossRef]
  30. H. Öğmen, S. Gagné, “Neural models for sustained and on–off units of insect lamina,” Biol. Cybern. 63, 51–60 (1990).
    [CrossRef]
  31. M. V. Srinivasan, “A proposed mechanism for multiplication of neural signals,” Biol. Cybern. 21, 227–236 (1976).
    [CrossRef] [PubMed]
  32. A. Bouzerdoum, “Nonlinear lateral inhibitory neural networks analysis and application to motion detection,” Ph.D. dissertation (University of Washington, Seattle, Wash., 1991).

1993 (1)

A. Bouzerdoum, “The elementary movement detection mechanism in insect vision,” Philos. Trans. R. Soc. London Ser. B 339, 375–384 (1993).
[CrossRef]

1992 (1)

J. H. van Hateren, “Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation,” J. Comp. Physiol. A 171, 157–170 (1992).

1990 (7)

R. B. Pinter, D. Osorio, M. V. Srinivasan, “Shift of edge-taxis to scototaxis depends on mean luminance and is predicted by a matched filter theory on the responses of fly lamina LMC cells,” Visual Neurosci. 4, 579–584 (1990).
[CrossRef]

G. A. Horridge, L. Marcelja, “Responses of the H1 neuron of the fly to contrast and moving bars,” Philos. Trans. R. Soc. London Ser. B 329, 75–80 (1990).
[CrossRef]

M. Egelhaaf, A. Borst, B. Pilz, “The role of GABA in detecting visual motion,” Brain Res. 509, 156–160 (1990).
[CrossRef] [PubMed]

M. V. Srinivasan, R. B. Pinter, D. Osorio, “Matched filtering in the visual system of the fly: large monopolar cells of the lamina are optimized to detect moving edges and blobs,” Proc. R. Soc. London Ser. B 240, 279–293 (1990).
[CrossRef]

G. A. Horridge, L. Marcelja, “Responses of the H1 neuron of the fly to jumped edges,” Philos. Trans. R. Soc. London Ser. B 327, 65–73 (1990).
[CrossRef]

H. Öğmen, S. Gagné, “Neural models for sustained and on–off units of insect lamina,” Biol. Cybern. 63, 51–60 (1990).
[CrossRef]

H. Öğmen, S. Gagné, “Neural network architectures for motion perception and elementary motion detection in the fly visual system,” Neural Networks 3, 487–505 (1990).
[CrossRef]

1989 (2)

1988 (1)

A. Schmid, H. Bulthoff, “Using neuropharmacology to distinguish between excitatory and inhibitory movement detection mechanisms in the fly Calliphora erythrocephala,” Biol. Cybern. 59, 71–80 (1988).
[CrossRef]

1987 (1)

M. Egelhaaf, W. E. Reichardt, “Dynamic response properties of movement detectors: theoretical analysis and electrophysical investigation in the visual system of the fly,” Biol. Cybern. 56, 69–87 (1987).
[CrossRef]

1985 (2)

1983 (1)

R. B. Pinter, “The electrophysiological basis for linear and for nonlinear product term lateral inhibition and the consequences for wide field textured stimuli,” J. Theor. Biol. 105, 233–243 (1983).
[CrossRef] [PubMed]

1980 (1)

H. Eckert, “Functional properties of the H1-neurone in the third optic ganglion of the blowfly, Phaenicia,” J. Comp. Physiol. 135, 29–39 (1980).
[CrossRef]

1978 (1)

W. H. Zaagman, H. A. K. Mastebroek, J. W. Kuiper, “On the correlation model: performance of a movement detecting neural element in the fly visual system,” Biol. Cybern. 31, 163–168 (1978).
[CrossRef] [PubMed]

1976 (2)

E. Buchner, “Elementary movement detectors in an insect visual system,” Biol. Cybern. 24, 85–101 (1976).
[CrossRef]

M. V. Srinivasan, “A proposed mechanism for multiplication of neural signals,” Biol. Cybern. 21, 227–236 (1976).
[CrossRef] [PubMed]

1973 (1)

G. B. McCann, “The fundamental mechanism of motion detection in the insect visual system,” Kybernetik 12, 64–73 (1973).
[CrossRef] [PubMed]

1972 (1)

D. W. Arnett, “Spatial and temporal integration properties of units in the first optic ganglion of dipterans,” J. Neurophysiol. 35, 429–444 (1972).
[PubMed]

1965 (1)

H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in the rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).

1964 (1)

H. B. Barlow, R. M. Hill, W. R. Levick, “Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit,” J. Physiol. (London) 173, 377–407 (1964).

1956 (1)

D. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol. (London) 148, 574–591 (1956).

Adelson, E. H.

Arnett, D. W.

D. W. Arnett, “Spatial and temporal integration properties of units in the first optic ganglion of dipterans,” J. Neurophysiol. 35, 429–444 (1972).
[PubMed]

Barlow, H. B.

H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in the rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).

H. B. Barlow, R. M. Hill, W. R. Levick, “Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit,” J. Physiol. (London) 173, 377–407 (1964).

Bergen, J. R.

Borst, A.

M. Egelhaaf, A. Borst, B. Pilz, “The role of GABA in detecting visual motion,” Brain Res. 509, 156–160 (1990).
[CrossRef] [PubMed]

M. Egelhaaf, A. Borst, “Transient and steady-state response properties of movement detectors,” J. Opt. Soc. Am. A 6, 116–127 (1989).
[CrossRef] [PubMed]

Bouzerdoum, A.

A. Bouzerdoum, “The elementary movement detection mechanism in insect vision,” Philos. Trans. R. Soc. London Ser. B 339, 375–384 (1993).
[CrossRef]

A. Bouzerdoum, R. B. Pinter, “Image motion processing in biological and computer vision systems,” in Visual Communications and Image Processing IV, W. A. Pearlman, ed. Proc. SPIE1199, 1229–1240 (1989).
[CrossRef]

A. Bouzerdoum, “Nonlinear lateral inhibitory neural networks analysis and application to motion detection,” Ph.D. dissertation (University of Washington, Seattle, Wash., 1991).

A. Bouzerdoum, R. B. Pinter, “Nonlinear lateral inhibition applied to motion detection in the fly visual system,” in Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks, R. B. Pinter, B. Nabet, eds. (CRC Press, Boca Raton, Fla., 1992), pp. 423–450.

Buchner, E.

E. Buchner, “Elementary movement detectors in an insect visual system,” Biol. Cybern. 24, 85–101 (1976).
[CrossRef]

Bulthoff, H.

A. Schmid, H. Bulthoff, “Using neuropharmacology to distinguish between excitatory and inhibitory movement detection mechanisms in the fly Calliphora erythrocephala,” Biol. Cybern. 59, 71–80 (1988).
[CrossRef]

Eckert, H.

H. Eckert, “Functional properties of the H1-neurone in the third optic ganglion of the blowfly, Phaenicia,” J. Comp. Physiol. 135, 29–39 (1980).
[CrossRef]

Egelhaaf, M.

M. Egelhaaf, A. Borst, B. Pilz, “The role of GABA in detecting visual motion,” Brain Res. 509, 156–160 (1990).
[CrossRef] [PubMed]

M. Egelhaaf, A. Borst, “Transient and steady-state response properties of movement detectors,” J. Opt. Soc. Am. A 6, 116–127 (1989).
[CrossRef] [PubMed]

M. Egelhaaf, W. E. Reichardt, “Dynamic response properties of movement detectors: theoretical analysis and electrophysical investigation in the visual system of the fly,” Biol. Cybern. 56, 69–87 (1987).
[CrossRef]

Franceschini, N.

N. Franceschini, A. Riehle, A. Le Nestour, “Directionally sensitive motion detection by insect neurons,” in Facets of Vision, D. G. Stavenga, R. C. Hardie eds. (Springer-Verlag, Berlin, 1989), pp. 360–389.

Gagné, S.

H. Öğmen, S. Gagné, “Neural network architectures for motion perception and elementary motion detection in the fly visual system,” Neural Networks 3, 487–505 (1990).
[CrossRef]

H. Öğmen, S. Gagné, “Neural models for sustained and on–off units of insect lamina,” Biol. Cybern. 63, 51–60 (1990).
[CrossRef]

Hassenstein, B.

B. Hassenstein, W. Reichardt, “Functional structure of a mechanism of perception of optical movement,” in Proceedings of the International Congress on Cybernetics (International Association of Cybernetics, Namur, Belgium, 1956), pp. 797–801.

Hausen, K.

K. Hausen, “The lobula-complex of the fly: structure, function, and significance in visual behaviour,” in Photoreception and Vision in Invertebrates, M. A. Ali, ed. (Plenum, London, 1984), pp. 523–559.

Hill, R. M.

H. B. Barlow, R. M. Hill, W. R. Levick, “Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit,” J. Physiol. (London) 173, 377–407 (1964).

Horridge, G. A.

G. A. Horridge, L. Marcelja, “Responses of the H1 neuron of the fly to jumped edges,” Philos. Trans. R. Soc. London Ser. B 327, 65–73 (1990).
[CrossRef]

G. A. Horridge, L. Marcelja, “Responses of the H1 neuron of the fly to contrast and moving bars,” Philos. Trans. R. Soc. London Ser. B 329, 75–80 (1990).
[CrossRef]

Hubel, D.

D. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol. (London) 148, 574–591 (1956).

Kuiper, J. W.

W. H. Zaagman, H. A. K. Mastebroek, J. W. Kuiper, “On the correlation model: performance of a movement detecting neural element in the fly visual system,” Biol. Cybern. 31, 163–168 (1978).
[CrossRef] [PubMed]

Laughlin, S.

S. Laughlin, “The role of sensory adaption in the retina,” J. Exp. Biol. 146, 39–62 (1989).
[PubMed]

Le Nestour, A.

N. Franceschini, A. Riehle, A. Le Nestour, “Directionally sensitive motion detection by insect neurons,” in Facets of Vision, D. G. Stavenga, R. C. Hardie eds. (Springer-Verlag, Berlin, 1989), pp. 360–389.

Levick, W. R.

H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in the rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).

H. B. Barlow, R. M. Hill, W. R. Levick, “Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit,” J. Physiol. (London) 173, 377–407 (1964).

Marcelja, L.

G. A. Horridge, L. Marcelja, “Responses of the H1 neuron of the fly to contrast and moving bars,” Philos. Trans. R. Soc. London Ser. B 329, 75–80 (1990).
[CrossRef]

G. A. Horridge, L. Marcelja, “Responses of the H1 neuron of the fly to jumped edges,” Philos. Trans. R. Soc. London Ser. B 327, 65–73 (1990).
[CrossRef]

Mastebroek, H. A. K.

W. H. Zaagman, H. A. K. Mastebroek, J. W. Kuiper, “On the correlation model: performance of a movement detecting neural element in the fly visual system,” Biol. Cybern. 31, 163–168 (1978).
[CrossRef] [PubMed]

McCann, G. B.

G. B. McCann, “The fundamental mechanism of motion detection in the insect visual system,” Kybernetik 12, 64–73 (1973).
[CrossRef] [PubMed]

Ögmen, H.

H. Öğmen, S. Gagné, “Neural models for sustained and on–off units of insect lamina,” Biol. Cybern. 63, 51–60 (1990).
[CrossRef]

H. Öğmen, S. Gagné, “Neural network architectures for motion perception and elementary motion detection in the fly visual system,” Neural Networks 3, 487–505 (1990).
[CrossRef]

Osorio, D.

M. V. Srinivasan, R. B. Pinter, D. Osorio, “Matched filtering in the visual system of the fly: large monopolar cells of the lamina are optimized to detect moving edges and blobs,” Proc. R. Soc. London Ser. B 240, 279–293 (1990).
[CrossRef]

R. B. Pinter, D. Osorio, M. V. Srinivasan, “Shift of edge-taxis to scototaxis depends on mean luminance and is predicted by a matched filter theory on the responses of fly lamina LMC cells,” Visual Neurosci. 4, 579–584 (1990).
[CrossRef]

Pilz, B.

M. Egelhaaf, A. Borst, B. Pilz, “The role of GABA in detecting visual motion,” Brain Res. 509, 156–160 (1990).
[CrossRef] [PubMed]

Pinter, R. B.

R. B. Pinter, D. Osorio, M. V. Srinivasan, “Shift of edge-taxis to scototaxis depends on mean luminance and is predicted by a matched filter theory on the responses of fly lamina LMC cells,” Visual Neurosci. 4, 579–584 (1990).
[CrossRef]

M. V. Srinivasan, R. B. Pinter, D. Osorio, “Matched filtering in the visual system of the fly: large monopolar cells of the lamina are optimized to detect moving edges and blobs,” Proc. R. Soc. London Ser. B 240, 279–293 (1990).
[CrossRef]

R. B. Pinter, “The electrophysiological basis for linear and for nonlinear product term lateral inhibition and the consequences for wide field textured stimuli,” J. Theor. Biol. 105, 233–243 (1983).
[CrossRef] [PubMed]

A. Bouzerdoum, R. B. Pinter, “Image motion processing in biological and computer vision systems,” in Visual Communications and Image Processing IV, W. A. Pearlman, ed. Proc. SPIE1199, 1229–1240 (1989).
[CrossRef]

A. Bouzerdoum, R. B. Pinter, “Nonlinear lateral inhibition applied to motion detection in the fly visual system,” in Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks, R. B. Pinter, B. Nabet, eds. (CRC Press, Boca Raton, Fla., 1992), pp. 423–450.

Reichardt, W.

B. Hassenstein, W. Reichardt, “Functional structure of a mechanism of perception of optical movement,” in Proceedings of the International Congress on Cybernetics (International Association of Cybernetics, Namur, Belgium, 1956), pp. 797–801.

Reichardt, W. E.

M. Egelhaaf, W. E. Reichardt, “Dynamic response properties of movement detectors: theoretical analysis and electrophysical investigation in the visual system of the fly,” Biol. Cybern. 56, 69–87 (1987).
[CrossRef]

W. E. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the nervous system,” in Sensory Communications, Contributions to Principles of Sensory Communications, W. A. Rosenblith, ed. (Proceedings of the Symposium on Principles of Sensory Communication, 1959) (MIT Press, Cambridge, Mass., 1961), pp. 303–317.

Riehle, A.

N. Franceschini, A. Riehle, A. Le Nestour, “Directionally sensitive motion detection by insect neurons,” in Facets of Vision, D. G. Stavenga, R. C. Hardie eds. (Springer-Verlag, Berlin, 1989), pp. 360–389.

Schmid, A.

A. Schmid, H. Bulthoff, “Using neuropharmacology to distinguish between excitatory and inhibitory movement detection mechanisms in the fly Calliphora erythrocephala,” Biol. Cybern. 59, 71–80 (1988).
[CrossRef]

Sperling, G.

Srinivasan, M. V.

R. B. Pinter, D. Osorio, M. V. Srinivasan, “Shift of edge-taxis to scototaxis depends on mean luminance and is predicted by a matched filter theory on the responses of fly lamina LMC cells,” Visual Neurosci. 4, 579–584 (1990).
[CrossRef]

M. V. Srinivasan, R. B. Pinter, D. Osorio, “Matched filtering in the visual system of the fly: large monopolar cells of the lamina are optimized to detect moving edges and blobs,” Proc. R. Soc. London Ser. B 240, 279–293 (1990).
[CrossRef]

M. V. Srinivasan, “A proposed mechanism for multiplication of neural signals,” Biol. Cybern. 21, 227–236 (1976).
[CrossRef] [PubMed]

van Hateren, J. H.

J. H. van Hateren, “Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation,” J. Comp. Physiol. A 171, 157–170 (1992).

van Santen, J. P. H.

Wiesel, T. N.

D. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol. (London) 148, 574–591 (1956).

Zaagman, W. H.

W. H. Zaagman, H. A. K. Mastebroek, J. W. Kuiper, “On the correlation model: performance of a movement detecting neural element in the fly visual system,” Biol. Cybern. 31, 163–168 (1978).
[CrossRef] [PubMed]

Biol. Cybern. (6)

E. Buchner, “Elementary movement detectors in an insect visual system,” Biol. Cybern. 24, 85–101 (1976).
[CrossRef]

M. Egelhaaf, W. E. Reichardt, “Dynamic response properties of movement detectors: theoretical analysis and electrophysical investigation in the visual system of the fly,” Biol. Cybern. 56, 69–87 (1987).
[CrossRef]

W. H. Zaagman, H. A. K. Mastebroek, J. W. Kuiper, “On the correlation model: performance of a movement detecting neural element in the fly visual system,” Biol. Cybern. 31, 163–168 (1978).
[CrossRef] [PubMed]

A. Schmid, H. Bulthoff, “Using neuropharmacology to distinguish between excitatory and inhibitory movement detection mechanisms in the fly Calliphora erythrocephala,” Biol. Cybern. 59, 71–80 (1988).
[CrossRef]

H. Öğmen, S. Gagné, “Neural models for sustained and on–off units of insect lamina,” Biol. Cybern. 63, 51–60 (1990).
[CrossRef]

M. V. Srinivasan, “A proposed mechanism for multiplication of neural signals,” Biol. Cybern. 21, 227–236 (1976).
[CrossRef] [PubMed]

Brain Res. (1)

M. Egelhaaf, A. Borst, B. Pilz, “The role of GABA in detecting visual motion,” Brain Res. 509, 156–160 (1990).
[CrossRef] [PubMed]

J. Comp. Physiol. (1)

H. Eckert, “Functional properties of the H1-neurone in the third optic ganglion of the blowfly, Phaenicia,” J. Comp. Physiol. 135, 29–39 (1980).
[CrossRef]

J. Comp. Physiol. A (1)

J. H. van Hateren, “Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation,” J. Comp. Physiol. A 171, 157–170 (1992).

J. Exp. Biol. (1)

S. Laughlin, “The role of sensory adaption in the retina,” J. Exp. Biol. 146, 39–62 (1989).
[PubMed]

J. Neurophysiol. (1)

D. W. Arnett, “Spatial and temporal integration properties of units in the first optic ganglion of dipterans,” J. Neurophysiol. 35, 429–444 (1972).
[PubMed]

J. Opt. Soc. Am. A (3)

J. Physiol. (London) (3)

H. B. Barlow, W. R. Levick, “The mechanism of directionally selective units in the rabbit’s retina,” J. Physiol. (London) 178, 477–504 (1965).

D. Hubel, T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol. (London) 148, 574–591 (1956).

H. B. Barlow, R. M. Hill, W. R. Levick, “Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit,” J. Physiol. (London) 173, 377–407 (1964).

J. Theor. Biol. (1)

R. B. Pinter, “The electrophysiological basis for linear and for nonlinear product term lateral inhibition and the consequences for wide field textured stimuli,” J. Theor. Biol. 105, 233–243 (1983).
[CrossRef] [PubMed]

Kybernetik (1)

G. B. McCann, “The fundamental mechanism of motion detection in the insect visual system,” Kybernetik 12, 64–73 (1973).
[CrossRef] [PubMed]

Neural Networks (1)

H. Öğmen, S. Gagné, “Neural network architectures for motion perception and elementary motion detection in the fly visual system,” Neural Networks 3, 487–505 (1990).
[CrossRef]

Philos. Trans. R. Soc. London Ser. B (3)

A. Bouzerdoum, “The elementary movement detection mechanism in insect vision,” Philos. Trans. R. Soc. London Ser. B 339, 375–384 (1993).
[CrossRef]

G. A. Horridge, L. Marcelja, “Responses of the H1 neuron of the fly to contrast and moving bars,” Philos. Trans. R. Soc. London Ser. B 329, 75–80 (1990).
[CrossRef]

G. A. Horridge, L. Marcelja, “Responses of the H1 neuron of the fly to jumped edges,” Philos. Trans. R. Soc. London Ser. B 327, 65–73 (1990).
[CrossRef]

Proc. R. Soc. London Ser. B (1)

M. V. Srinivasan, R. B. Pinter, D. Osorio, “Matched filtering in the visual system of the fly: large monopolar cells of the lamina are optimized to detect moving edges and blobs,” Proc. R. Soc. London Ser. B 240, 279–293 (1990).
[CrossRef]

Visual Neurosci. (1)

R. B. Pinter, D. Osorio, M. V. Srinivasan, “Shift of edge-taxis to scototaxis depends on mean luminance and is predicted by a matched filter theory on the responses of fly lamina LMC cells,” Visual Neurosci. 4, 579–584 (1990).
[CrossRef]

Other (7)

A. Bouzerdoum, “Nonlinear lateral inhibitory neural networks analysis and application to motion detection,” Ph.D. dissertation (University of Washington, Seattle, Wash., 1991).

W. E. Reichardt, “Autocorrelation, a principle for the evaluation of sensory information by the nervous system,” in Sensory Communications, Contributions to Principles of Sensory Communications, W. A. Rosenblith, ed. (Proceedings of the Symposium on Principles of Sensory Communication, 1959) (MIT Press, Cambridge, Mass., 1961), pp. 303–317.

N. Franceschini, A. Riehle, A. Le Nestour, “Directionally sensitive motion detection by insect neurons,” in Facets of Vision, D. G. Stavenga, R. C. Hardie eds. (Springer-Verlag, Berlin, 1989), pp. 360–389.

K. Hausen, “The lobula-complex of the fly: structure, function, and significance in visual behaviour,” in Photoreception and Vision in Invertebrates, M. A. Ali, ed. (Plenum, London, 1984), pp. 523–559.

A. Bouzerdoum, R. B. Pinter, “Nonlinear lateral inhibition applied to motion detection in the fly visual system,” in Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks, R. B. Pinter, B. Nabet, eds. (CRC Press, Boca Raton, Fla., 1992), pp. 423–450.

B. Hassenstein, W. Reichardt, “Functional structure of a mechanism of perception of optical movement,” in Proceedings of the International Congress on Cybernetics (International Association of Cybernetics, Namur, Belgium, 1956), pp. 797–801.

A. Bouzerdoum, R. B. Pinter, “Image motion processing in biological and computer vision systems,” in Visual Communications and Image Processing IV, W. A. Pearlman, ed. Proc. SPIE1199, 1229–1240 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Reichardt detector. R1 and R2 are photoreceptors. τ  is the time constant of a unity-gain, first-order low-pass filter. × is a multiplicative interaction. Responses of y1, y2, S1, and S2 are shown in Fig. 2.

Fig. 2
Fig. 2

Response of various stages of the simple Reichardt detector shown in Fig. 1 to a moving positive edge. The edge moves from left to right (R1 to R2): at time t=100 ms it passes by R1, and at time t=200 ms it reaches R2. The top plot shows the delay filter responses, the middle plot shows the subunit responses, and the bottom plot shows the detector response.

Fig. 3
Fig. 3

Motion detector using shunting inhibition. SI is a shunting inhibitory neuron described by Eq. (1).

Fig. 4
Fig. 4

LIMD architecture.

Fig. 5
Fig. 5

Response of individual neurons and output of the LIMD to an increasing edge moving from left to right. The edge reaches R1 at t=200 ms, R2 at t=400 ms, and R3 at t=600 ms. The top plot shows the stimulus, the second and third plots display the responses of the individual neurons, as shown in Fig. 4, and the bottom plot shows the detector response.

Fig. 6
Fig. 6

Response of individual neurons and complete LIMD to a decreasing edge moving from left to right. The edge reaches R1 at t=200 ms, R2 at t=400 ms, and R3 at t=600 ms. The top plot shows the stimulus, the second and third plots display the responses of the individual neurons, as shown in Fig. 4, and the bottom plot shows the detector response.

Fig. 7
Fig. 7

Response of individual neurons and complete LIMD to an increasing edge moving from right to left. The edge reaches R3 at t=200 ms, R2 at t=400 ms, and R1 at t=600 ms. The top plot shows the stimulus, the second and third plots display the responses of the individual neurons, as shown in Fig. 4, and the bottom plot shows the detector response.

Fig. 8
Fig. 8

Response of individual neurons and complete LIMD to a decreasing edge moving from right to left. The edge reaches R3 at t=200 ms, R2 at t=400 ms, and R1 at t=600 ms. The top plot shows the stimulus, the second and third plots display the responses of the individual neurons, as shown in Fig. 4, and the bottom plot shows the detector response.

Fig. 9
Fig. 9

Response of the LIMD to moving bars. The top plot shows the responses that are due to increasing (positive contrast) and decreasing (negative contrast) bars moving from left to right, while the bottom plot shows the response to the same bars moving from right to left. The bar stimulates each receptor for 100 ms.

Fig. 10
Fig. 10

Response to a reverse-phi stimulus moving from left to right. The second plot shows the response to a stimulus that jumps from one receptor to the next with no delay. The bottom plot shows the response with a delay between receptors. The second response is much smaller than the first. The responses have the same sign if the contrast of the stimulus is reversed, but the sign is opposite to that observed for left-to-right motion of lines and bars.

Fig. 11
Fig. 11

Transient responses to drifting gratings at several different temporal frequencies (2, 4, 8, and 16 Hz). Grating spatial frequency=0.25 cycles/receptor, and mean luminance=20. The grating is initially stationary and begins moving at 200 ms. The response shown is the result of summing the result of an array of 20 receptors.

Fig. 12
Fig. 12

Responses of individual detectors to the drifting gratings described in Fig. 11.

Fig. 13
Fig. 13

Transient peak amplitude. Contrast=0.5, and fs=0.25 cycles/receptor.

Fig. 14
Fig. 14

Mean steady-state response. Contrast=0.5, and fs=0.25 cycles/receptor.

Fig. 15
Fig. 15

Steady-state response as a function of mean luminance. Contrast=0.4, and fs=0.25 cycles/receptor.

Fig. 16
Fig. 16

Second-order linearized filter model of a shunting inhibitory neuron.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

m˙i=Li(t)-a1mi(t)-mi(t)kbk f(xk),
left=L2a+L1-L2a+L2,
right=L1a+L1-L1a+L2,
L(s, t)=L0+cL0 cos(μωss+ωtt+ϕ),
M=c2Gαα β sin(ϕ)[sin(γ)-Aω sin(γ-θω)],
L(t)=L0+cl(t),
D(t)=D0+cd(t),
M(t)=m0+cm1+c2m2,
m˙1=l-am1-bm0 f(p0)p1-bm1 f(p0),
m˙2=-am2-12 bm0 f (p0)p12
-bm1 f(p0)p1-bm2 f(p0),
m˙1=l-m1α-m0βp1,m˙2=-m2α-m1β,
M=c2Gαα β sin(ϕ)[sin(γ)-Aω sin(γ-θω)],

Metrics