Abstract

A general method of analyzing Michelson-based, multiple-mirror optical systems, such as interferometers designed as gravitational-wave detectors, is described. Assuming that phase-modulated light is injected, signals that will be generated by demodulation of the photocurrent anywhere in the system, together with their frequency dependences, can be evaluated. Since this method is based on the manipulation of matrices, it is appropriate for computerization.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
    [CrossRef] [PubMed]
  2. C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
    [CrossRef]
  3. K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.
  4. J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors,” Phys. Lett. A 175, 273–276 (1993).
    [CrossRef]
  5. J. Mizuno, “Comparison of optical configurations for interferometric gravitational-wave detectors,” (Max-Planck-Institut für Quantenoptik, D–85740, Garching, Germany, 1995).
  6. In addition to the longitudinal position, the orientation of each optical component must be aligned, either passively or actively, to the proper optical axis. This is, however, a different (though related) problem that can be treated separately. See, e.g., Ref. 7, and references therein.
  7. Y. Hefetz, N. Mavalvala, D. Sigg, “Principles of calculating alignment signals in complex resonant optical interferometers,” J. Opt. Soc. Am. B 14, 1597–1605 (1997).
    [CrossRef]
  8. L. Schnupp, talk presented at the European Collaboration Meeting on Interferometric Detection of Gravitational Waves, Sorrento, Italy, 1988.
  9. M. W. Regehr, “Signal extraction and control for an interferometric gravitational wave detector,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1994).
  10. M. W. Regehr, F. J. Raab, S. E. Whitcomb, “Demonstration of a power-recycled Michelson interferometer with Fabry-Perot arms using frontal modulation,” Opt. Lett. 20, 1507–1509 (1995).
    [CrossRef] [PubMed]
  11. R. Flaminio, H. Heitmann, “Longitudinal control of an interferometer for the detection of gravitational waves,” Phys. Lett. A 214, 112–122 (1996).
    [CrossRef]
  12. It is difficult to modulate the optical path lengths of an interferometric gravitational-wave detector for optical and mechanical reasons [see, e.g., Ref. 11].
  13. D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, K. Danzmann, “Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection,” Phys. Lett. A 225, 210–216 (1997).
    [CrossRef]
  14. R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.
  15. B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 38, 2317–2326 (1988).
    [CrossRef]
  16. The use of the algorithm described in this paper, however, is not limited to these assumptions. For instance, if the east and south paths are regarded as the two arms and the north path is used for detection, the response of (non-Michelson-based) synchronous recycling (Ref. 14) can be analyzed.
  17. These matrices are often used in analyzing multilayer dielectric coatings, as can be found in, e.g., Ref. 18. We, however, adopted a slightly modified definition of Eq. (4) that does not distinguish the direction of incidence. (The results are identical except for constant offsets in the definition of detunings.)
  18. M. V. Klein, T. E. Furtak, Optics, 2nd ed. (Wiley, New York, 1986), Sec. 5.4.
  19. To be exact, this expression must be rewritten as “these sidebands work mainly as the local oscillators” because there is actually no clear distinction between the carrier and the local oscillator in such a system in which the two are modulated by the signal simultaneously (like the example discussed in this paper). The signal sidebands induced on the carrier light interfere with the local oscillator light, whereas the signal sidebands induced on the local oscillator light interfere with the carrier light in contributing the signal, as is described in Section 4. Nevertheless, we adopt the naming in the text in view of the “main” signal generation.
  20. P. Fritschel, D. Shoemaker, R. Weiss, “Demonstration of light recycling in a Michelson interferometer with Fabry–Perot cavities,” Appl. Opt. 31, 1412–1418 (1992).
    [CrossRef] [PubMed]
  21. Evaluating the frequency response of a coupled optical system was initially explored by Vinet et al. (Ref. 22) to obtain the detector’s response to gravitational waves (i.e., not for the control purpose). The analysis adopted in this paper is similar to theirs but has a slightly different viewpoint, and it is modified and extended for generality. In their approach the signal-induced sidebands are produced from the carrier in each transit inside a cavity, whereas in our approach they are produced from the summed amplitude of the carrier. The results should be identical, and the choice is a matter of preference.
  22. J.-Y. Vinet, B. Meers, C. N. Man, A. Brillet, “Optimization of long-baseline optical interferometers for gravitational-wave detection,” Phys. Rev. D 38, 433–447 (1988).
    [CrossRef]
  23. Actually there will be a slight difference due to the nonstationary shot-noise effect discussed in, e.g., Refs. 24 and 25. It is, in principle, possible to extend the present analysis to include such effects. In practice, however, the difference is less than a few decibels and can be ignored in almost any applications (excepting, probably, the most sensitive gravitational-wave readout).
  24. T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
    [CrossRef] [PubMed]
  25. B. J. Meers, K. A. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991).
    [CrossRef] [PubMed]
  26. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
    [CrossRef]
  27. J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, R. Schilling, “The stabilisation of lasers for interferometric gravitational wave detectors,” in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, UK, 1991), pp. 329–352.
  28. G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, B. Willke, W. Winkler, R. Schilling, A. Rüdiger, K. Danzmann, “Experimental demonstration of a suspended dual recycling interferometer,” Phys. Rev. Lett. 81, 5493–5496 (1998).
    [CrossRef]

1998

G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, B. Willke, W. Winkler, R. Schilling, A. Rüdiger, K. Danzmann, “Experimental demonstration of a suspended dual recycling interferometer,” Phys. Rev. Lett. 81, 5493–5496 (1998).
[CrossRef]

1997

Y. Hefetz, N. Mavalvala, D. Sigg, “Principles of calculating alignment signals in complex resonant optical interferometers,” J. Opt. Soc. Am. B 14, 1597–1605 (1997).
[CrossRef]

D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, K. Danzmann, “Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection,” Phys. Lett. A 225, 210–216 (1997).
[CrossRef]

1996

R. Flaminio, H. Heitmann, “Longitudinal control of an interferometer for the detection of gravitational waves,” Phys. Lett. A 214, 112–122 (1996).
[CrossRef]

1995

1993

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

1992

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

P. Fritschel, D. Shoemaker, R. Weiss, “Demonstration of light recycling in a Michelson interferometer with Fabry–Perot cavities,” Appl. Opt. 31, 1412–1418 (1992).
[CrossRef] [PubMed]

1991

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef] [PubMed]

B. J. Meers, K. A. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991).
[CrossRef] [PubMed]

1990

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

1988

B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 38, 2317–2326 (1988).
[CrossRef]

J.-Y. Vinet, B. Meers, C. N. Man, A. Brillet, “Optimization of long-baseline optical interferometers for gravitational-wave detection,” Phys. Rev. D 38, 433–447 (1988).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[CrossRef]

Abramovici, A.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Aguirregabiria, J. M.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Althouse, W. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Aufmuth, P.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Barone, F.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Bel, H.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Bennett, J. R. J.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Bonazzola, S.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Bradaschia, C.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Brillet, A.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

J.-Y. Vinet, B. Meers, C. N. Man, A. Brillet, “Optimization of long-baseline optical interferometers for gravitational-wave detection,” Phys. Rev. D 38, 433–447 (1988).
[CrossRef]

Brook, E. D.

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

Campbell, A. M.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Capozzi, M.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Chen, J. M.

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

Cregut, O.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Damour, T.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Danzmann, K.

G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, B. Willke, W. Winkler, R. Schilling, A. Rüdiger, K. Danzmann, “Experimental demonstration of a suspended dual recycling interferometer,” Phys. Rev. Lett. 81, 5493–5496 (1998).
[CrossRef]

D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, K. Danzmann, “Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection,” Phys. Lett. A 225, 210–216 (1997).
[CrossRef]

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef] [PubMed]

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Del Fabbro, R.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Di Fiore, L.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Di Virgilio, A.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Drever, R. W. P.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[CrossRef]

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

Duruisseau, J. P.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Flaminio, R.

R. Flaminio, H. Heitmann, “Longitudinal control of an interferometer for the detection of gravitational waves,” Phys. Lett. A 214, 112–122 (1996).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[CrossRef]

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

Fritschel, P.

Fuligni, F.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Furtak, T. E.

M. V. Klein, T. E. Furtak, Optics, 2nd ed. (Wiley, New York, 1986), Sec. 5.4.

Giazotto, A.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Gourghoulon, Y.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Gürsel, Y.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[CrossRef]

Hefetz, Y.

Heinzel, G.

G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, B. Willke, W. Winkler, R. Schilling, A. Rüdiger, K. Danzmann, “Experimental demonstration of a suspended dual recycling interferometer,” Phys. Rev. Lett. 81, 5493–5496 (1998).
[CrossRef]

D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, K. Danzmann, “Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection,” Phys. Lett. A 225, 210–216 (1997).
[CrossRef]

Heitmann, H.

R. Flaminio, H. Heitmann, “Longitudinal control of an interferometer for the detection of gravitational waves,” Phys. Lett. A 214, 112–122 (1996).
[CrossRef]

Hello, P.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Hereld, M.

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

Holloway, L. E.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[CrossRef]

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, R. Schilling, “The stabilisation of lasers for interferometric gravitational wave detectors,” in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, UK, 1991), pp. 329–352.

Iafolla, V.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Kautzky, H.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Kawamura, S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Kerr, G. A.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, R. Schilling, “The stabilisation of lasers for interferometric gravitational wave detectors,” in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, UK, 1991), pp. 329–352.

Kerr, I.

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

Klein, M. V.

M. V. Klein, T. E. Furtak, Optics, 2nd ed. (Wiley, New York, 1986), Sec. 5.4.

Kose, V.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[CrossRef]

Kühne, M.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Le Denmat, G.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Lee, S.-A.

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

Logan, J. E.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Longo, M.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Lops, M.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Lück, H.

D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, K. Danzmann, “Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection,” Phys. Lett. A 225, 210–216 (1997).
[CrossRef]

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Mackenzie, N. L.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, R. Schilling, “The stabilisation of lasers for interferometric gravitational wave detectors,” in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, UK, 1991), pp. 329–352.

Man, C. N.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

J.-Y. Vinet, B. Meers, C. N. Man, A. Brillet, “Optimization of long-baseline optical interferometers for gravitational-wave detection,” Phys. Rev. D 38, 433–447 (1988).
[CrossRef]

Manh, P. T.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Marck, J. A.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Marraud, A.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Mavalvala, N.

Meers, B.

J.-Y. Vinet, B. Meers, C. N. Man, A. Brillet, “Optimization of long-baseline optical interferometers for gravitational-wave detection,” Phys. Rev. D 38, 433–447 (1988).
[CrossRef]

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

Meers, B. J.

B. J. Meers, K. A. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991).
[CrossRef] [PubMed]

B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 38, 2317–2326 (1988).
[CrossRef]

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, R. Schilling, “The stabilisation of lasers for interferometric gravitational wave detectors,” in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, UK, 1991), pp. 329–352.

Milano, L.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Mizuno, J.

G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, B. Willke, W. Winkler, R. Schilling, A. Rüdiger, K. Danzmann, “Experimental demonstration of a suspended dual recycling interferometer,” Phys. Rev. Lett. 81, 5493–5496 (1998).
[CrossRef]

D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, K. Danzmann, “Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection,” Phys. Lett. A 225, 210–216 (1997).
[CrossRef]

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

J. Mizuno, “Comparison of optical configurations for interferometric gravitational-wave detectors,” (Max-Planck-Institut für Quantenoptik, D–85740, Garching, Germany, 1995).

Montelatici, V.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[CrossRef]

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

Natale, G.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Nelson, P. G.

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

Newton, G. P.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, R. Schilling, “The stabilisation of lasers for interferometric gravitational wave detectors,” in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, UK, 1991), pp. 329–352.

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Nicholson, D.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Niebauer, T. M.

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef] [PubMed]

Passuello, D.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Pinto, I.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Pugh, J. R.

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

Raab, F. J.

M. W. Regehr, F. J. Raab, S. E. Whitcomb, “Demonstration of a power-recycled Michelson interferometer with Fabry-Perot arms using frontal modulation,” Opt. Lett. 20, 1507–1509 (1995).
[CrossRef] [PubMed]

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Regehr, M. W.

M. W. Regehr, F. J. Raab, S. E. Whitcomb, “Demonstration of a power-recycled Michelson interferometer with Fabry-Perot arms using frontal modulation,” Opt. Lett. 20, 1507–1509 (1995).
[CrossRef] [PubMed]

M. W. Regehr, “Signal extraction and control for an interferometric gravitational wave detector,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1994).

Rinkeff, R.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Robertson, D. I.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, R. Schilling, “The stabilisation of lasers for interferometric gravitational wave detectors,” in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, UK, 1991), pp. 329–352.

Robertson, N. A.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, R. Schilling, “The stabilisation of lasers for interferometric gravitational wave detectors,” in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, UK, 1991), pp. 329–352.

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Rotoli, G.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Rüdiger, A.

G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, B. Willke, W. Winkler, R. Schilling, A. Rüdiger, K. Danzmann, “Experimental demonstration of a suspended dual recycling interferometer,” Phys. Rev. Lett. 81, 5493–5496 (1998).
[CrossRef]

D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, K. Danzmann, “Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection,” Phys. Lett. A 225, 210–216 (1997).
[CrossRef]

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef] [PubMed]

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Russo, G.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Schilling, R.

G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, B. Willke, W. Winkler, R. Schilling, A. Rüdiger, K. Danzmann, “Experimental demonstration of a suspended dual recycling interferometer,” Phys. Rev. Lett. 81, 5493–5496 (1998).
[CrossRef]

D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, K. Danzmann, “Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection,” Phys. Lett. A 225, 210–216 (1997).
[CrossRef]

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef] [PubMed]

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, R. Schilling, “The stabilisation of lasers for interferometric gravitational wave detectors,” in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, UK, 1991), pp. 329–352.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Schnier, D.

D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, K. Danzmann, “Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection,” Phys. Lett. A 225, 210–216 (1997).
[CrossRef]

Schnupp, L.

L. Schnupp, talk presented at the European Collaboration Meeting on Interferometric Detection of Gravitational Waves, Sorrento, Italy, 1988.

Schrempel, M.

D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, K. Danzmann, “Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection,” Phys. Lett. A 225, 210–216 (1997).
[CrossRef]

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Schutz, B. F.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Shoemaker, D.

P. Fritschel, D. Shoemaker, R. Weiss, “Demonstration of light recycling in a Michelson interferometer with Fabry–Perot cavities,” Appl. Opt. 31, 1412–1418 (1992).
[CrossRef] [PubMed]

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Shuttleworth, J.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Sievers, L.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Sigg, D.

Skeldon, K. D.

G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, B. Willke, W. Winkler, R. Schilling, A. Rüdiger, K. Danzmann, “Experimental demonstration of a suspended dual recycling interferometer,” Phys. Rev. Lett. 81, 5493–5496 (1998).
[CrossRef]

Spero, R.

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

Spero, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Strain, K. A.

G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, B. Willke, W. Winkler, R. Schilling, A. Rüdiger, K. Danzmann, “Experimental demonstration of a suspended dual recycling interferometer,” Phys. Rev. Lett. 81, 5493–5496 (1998).
[CrossRef]

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

B. J. Meers, K. A. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991).
[CrossRef] [PubMed]

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Thorne, K. S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Tourrenc, Ph.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Tünnermann, A.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Vinet, J. Y.

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Vinet, J.-Y.

J.-Y. Vinet, B. Meers, C. N. Man, A. Brillet, “Optimization of long-baseline optical interferometers for gravitational-wave detection,” Phys. Rev. D 38, 433–447 (1988).
[CrossRef]

Vogt, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[CrossRef]

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, R. Schilling, “The stabilisation of lasers for interferometric gravitational wave detectors,” in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, UK, 1991), pp. 329–352.

Weiss, R.

P. Fritschel, D. Shoemaker, R. Weiss, “Demonstration of light recycling in a Michelson interferometer with Fabry–Perot cavities,” Appl. Opt. 31, 1412–1418 (1992).
[CrossRef] [PubMed]

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Welling, H.

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Whitcomb, S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Whitcomb, S. E.

M. W. Regehr, F. J. Raab, S. E. Whitcomb, “Demonstration of a power-recycled Michelson interferometer with Fabry-Perot arms using frontal modulation,” Opt. Lett. 20, 1507–1509 (1995).
[CrossRef] [PubMed]

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

Willke, B.

G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, B. Willke, W. Winkler, R. Schilling, A. Rüdiger, K. Danzmann, “Experimental demonstration of a suspended dual recycling interferometer,” Phys. Rev. Lett. 81, 5493–5496 (1998).
[CrossRef]

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Winkler, W.

G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, B. Willke, W. Winkler, R. Schilling, A. Rüdiger, K. Danzmann, “Experimental demonstration of a suspended dual recycling interferometer,” Phys. Rev. Lett. 81, 5493–5496 (1998).
[CrossRef]

D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, K. Danzmann, “Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection,” Phys. Lett. A 225, 210–216 (1997).
[CrossRef]

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef] [PubMed]

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Zucker, M. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B: Photophys. Laser Chem.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
[CrossRef]

J. Opt. Soc. Am. B

Nucl. Instrum. Methods Phys. Res. A

C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, Y. Gourghoulon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: A wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods Phys. Res. A 289, 518–525 (1990).
[CrossRef]

Opt. Lett.

Phys. Lett. A

J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors,” Phys. Lett. A 175, 273–276 (1993).
[CrossRef]

R. Flaminio, H. Heitmann, “Longitudinal control of an interferometer for the detection of gravitational waves,” Phys. Lett. A 214, 112–122 (1996).
[CrossRef]

D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, K. Danzmann, “Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection,” Phys. Lett. A 225, 210–216 (1997).
[CrossRef]

Phys. Rev. A

T. M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef] [PubMed]

B. J. Meers, K. A. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991).
[CrossRef] [PubMed]

Phys. Rev. D

J.-Y. Vinet, B. Meers, C. N. Man, A. Brillet, “Optimization of long-baseline optical interferometers for gravitational-wave detection,” Phys. Rev. D 38, 433–447 (1988).
[CrossRef]

B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 38, 2317–2326 (1988).
[CrossRef]

Phys. Rev. Lett.

G. Heinzel, K. A. Strain, J. Mizuno, K. D. Skeldon, B. Willke, W. Winkler, R. Schilling, A. Rüdiger, K. Danzmann, “Experimental demonstration of a suspended dual recycling interferometer,” Phys. Rev. Lett. 81, 5493–5496 (1998).
[CrossRef]

Science

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. Whitcomb, M. E. Zucker, “LIGO: The laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Other

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, R. Schilling, “The stabilisation of lasers for interferometric gravitational wave detectors,” in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, UK, 1991), pp. 329–352.

Actually there will be a slight difference due to the nonstationary shot-noise effect discussed in, e.g., Refs. 24 and 25. It is, in principle, possible to extend the present analysis to include such effects. In practice, however, the difference is less than a few decibels and can be ignored in almost any applications (excepting, probably, the most sensitive gravitational-wave readout).

The use of the algorithm described in this paper, however, is not limited to these assumptions. For instance, if the east and south paths are regarded as the two arms and the north path is used for detection, the response of (non-Michelson-based) synchronous recycling (Ref. 14) can be analyzed.

These matrices are often used in analyzing multilayer dielectric coatings, as can be found in, e.g., Ref. 18. We, however, adopted a slightly modified definition of Eq. (4) that does not distinguish the direction of incidence. (The results are identical except for constant offsets in the definition of detunings.)

M. V. Klein, T. E. Furtak, Optics, 2nd ed. (Wiley, New York, 1986), Sec. 5.4.

To be exact, this expression must be rewritten as “these sidebands work mainly as the local oscillators” because there is actually no clear distinction between the carrier and the local oscillator in such a system in which the two are modulated by the signal simultaneously (like the example discussed in this paper). The signal sidebands induced on the carrier light interfere with the local oscillator light, whereas the signal sidebands induced on the local oscillator light interfere with the carrier light in contributing the signal, as is described in Section 4. Nevertheless, we adopt the naming in the text in view of the “main” signal generation.

Evaluating the frequency response of a coupled optical system was initially explored by Vinet et al. (Ref. 22) to obtain the detector’s response to gravitational waves (i.e., not for the control purpose). The analysis adopted in this paper is similar to theirs but has a slightly different viewpoint, and it is modified and extended for generality. In their approach the signal-induced sidebands are produced from the carrier in each transit inside a cavity, whereas in our approach they are produced from the summed amplitude of the carrier. The results should be identical, and the choice is a matter of preference.

R. W. P. Drever, J. Hough, A. J. Munley, S.-A. Lee, R. Spero, S. E. Whitcomb, H. Ward, G. M. Ford, M. Hereld, N. A. Robertson, I. Kerr, J. R. Pugh, G. P. Newton, B. Meers, E. D. Brook, Y. Gürsel, “Gravitational wave detectors using laser interferometers and optical cavities: ideas, principles and prospects,” in Quantum Optics, Experimental Gravitation, and Measurement Theory, P. Meystre, M. O. Scully, eds. (Plenum, New York, 1983), pp. 503–514.

It is difficult to modulate the optical path lengths of an interferometric gravitational-wave detector for optical and mechanical reasons [see, e.g., Ref. 11].

J. Mizuno, “Comparison of optical configurations for interferometric gravitational-wave detectors,” (Max-Planck-Institut für Quantenoptik, D–85740, Garching, Germany, 1995).

In addition to the longitudinal position, the orientation of each optical component must be aligned, either passively or actively, to the proper optical axis. This is, however, a different (though related) problem that can be treated separately. See, e.g., Ref. 7, and references therein.

L. Schnupp, talk presented at the European Collaboration Meeting on Interferometric Detection of Gravitational Waves, Sorrento, Italy, 1988.

M. W. Regehr, “Signal extraction and control for an interferometric gravitational wave detector,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1994).

K. Danzmann, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, J. Hough, G. P. Newton, N. A. Robertson, H. Ward, A. M. Campbell, J. E. Logan, D. I. Robertson, K. A. Strain, J. R. J. Bennett, V. Kose, M. Kühne, B. F. Schutz, D. Nicholson, J. Shuttleworth, H. Welling, P. Aufmuth, R. Rinkeff, A. Tünnermann, B. Willke, “GEO 600—A 600 m laser interferometric gravitational wave antenna,” in First Edoardo Amaldi Conference on Gravitational Wave Experiments, E. Coccia, G. Pizzella, F. Ronga, eds. (World Scientific, Singapore1995), pp. 100–111.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Examples of the optical layouts used in the interferometric gravitational-wave detectors currently under construction. (a) Layout of a power-recycled Michelson interferometer with Fabry–Perot arms, employed by LIGO1 and by VIRGO.2 (b) Layout of a dual-recycled Michelson interferometer, employed by GEO 600.3 The common feature is that each layout is based on a Michelson interferometer, each arm containing one or more mirrors, with a mirror (MPR) for power recycling14 at the injection port and possibly another mirror (MSR) for signal recycling15 at the detection port.

Fig. 2
Fig. 2

Schematic diagram of a Michelson-based interferometer. (a) Components of a Michelson-based interferometer, with resonant sideband extraction4 taken as an example, though the actual components in each path (N, E, W, S) can be different from those shown. (b) Conversion of (a) to a block diagram from the viewpoint of information flow. Each line represents the complex amplitude of a light wave (win, sout, etc.), and the amplitudes of the two oppositely propagating waves can be treated as a two-dimensional complex vector (w0={win, wout}T, s={s, s}T, etc.; labels are close to the first element of the vector). The boxes labeled N, E, W, and S represent the linear relations in the arms as determined by the mirrors and by the spacing between them.

Fig. 3
Fig. 3

Block diagram to show the concept of the virtual input and the correction signal. The signal-induced sidebands (g, g) that appear inside the interferometer (a) can be replaced by the injection of an equivalent virtual input from outside the interferometer (d). This conversion process is shown in the step-by-step transformation from (a) to (d). Note that the X part is reproduced in (d) after the transformation. Owing to the difference of the injecting point, the virtual input requires a correction signal at the output of the same arm. Here (ρ, ρ) and (τ, τ) are the complex reflectivity and the transmittance, respectively, of the X part; both depend on the directions of propagation.

Fig. 4
Fig. 4

Signal in a dual-recycled interferometer with Schnupp modulation. (a) The light in one of the arms (east arm in this example) contains a signal that is nearly proportional to the position of the signal-recycling mirror (shown by the thick curve; the thin curve shows the same signal magnified horizontally). Its frequency response is, however, not so simple, as shown in (b). The parameters assumed are close to those expected in the GEO 600: the power transmittances of 500 ppm and 2000 ppm for the power- and signal-recycling mirrors, respectively, a 200-ppm loss in a round trip (including the beam splitter), the power reflectivity of 0.51 for the beam splitter, the arm lengths (measured from the beam-splitting surface) of ∼1198.5 m, the power- and signal-recycling mirrors at ∼0.5 m away from the beam splitting surface, and the Schnupp modulation frequency of ∼9.501 MHz. The exact values of the mirror positions (the north and the south arms are longer by ∼10 mm and ∼6 mm, respectively), and the modulation frequencies are slightly different from the above values according to optimization. All mirrors are at the (broadband) operating point, except for the signal-recycling mirror in (a) (moved to show the dependence).

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

Fωo(z, t)=a exp[iωo(t-z/c)]+a exp[iωo(t+z/c)]=exp(iωot)×[exp(-iωoz/c)exp(iωoz/c)]×aa,
P=exp(-iϕ)00exp(iϕ),
ϕ=ωots,
M=-1iτ 1-A-ρρ-1,
s0w0=An0e0,
A=S00W-1TRRT N00E=S-1TNS-1REW-1RNW-1TE.
T=0-iτBSiτBS0=iτBS0-110,
R=0ρBSρBS0=ρBS0110,
newsout=Bnewsin,
B=0000000100000010-A0000100000000100-1×A1000000001000000-0001000000100000.
az=Za0,
ϕ=ϕ0+ωts=ϕ0+ωl/c,
B=B({ϕj|j=1,  , f})=B(Φ0, ω),
ac exp[i(ωct+ϕm cos ωmt)]
a-ma0a+mTexp[i(ωc-ωm)t]exp(iωct)exp[i(ωc+ωm)t],  
a-m=iJ1(ϕm)aci(ϕm/2) ac,
a0=J0(ϕm)acac,
a+m=iJ1(ϕm)aci(ϕm/2) ac.
bμ=Bbw(ωμ)aμ,
μ{-m, 0, m},ω0=0,ω±m=±ωm.
I=μ{-m,0,m}bμ exp[i(ωc+ωμ)t]2=|b-m|2+|b0|2+|b+m|2+2 Re[Hm exp(iωmt)]+2 Re[H2m exp(i2ωmt)],
Hm=b-m*b0+b0*b+m,
H2m=b-m*b+m.
Im=2 Re[Hm exp(iωmt)]=2 Re(Hm)cos(ωmt)-2 Im(Hm)sin(ωmt).
p=Re(Hm),
q=Im(Hm),
pθ=Re[Hm exp(-iθ)]=p cos θ+q sin θ,
Idc=|b-m|2+|b0|2+|b+m|2.
gμ+ξ=i(ϕg/2)xμ,gμ+ξ=i(ϕg/2)xμ,forξ=±g,
xμxμ=X(ωμ)δxwaμxμ.
zμ+ξ=Bzx(ωμ+ξ)hμ+ξvi,
aμ+ξz=Z(ωμ+ξ)δjxhμ+ξvizμ+ξ,
xμ+ξcs=xμ+ξ+hμ+ξcs,
hμ+ξvi-hμ+ξcs=X-1(ωμ+ξ)gμ+ξ-gμ+ξ
Im-g=2 Re{Hm-g exp[i(ωm-ωg)t]},
Im+g=2 Re{Hm+g exp[i(ωm+ωg)t]},
Hm-g=b-m*b-g+b-m+g*b0+b0*b+m-g+b+g*b+m
Hm+g=b-m-g*b0+b-m*b+g+b-g*b+m+b0*b+m+g.
pg=Re[(Hm+g+Hm-g*)exp(iωgt)],
qg=Re[-i(Hm+g-Hm-g*)exp(iωgt)].
pgθ=pg cos θ+qg sin θ.
(Hm+g+Hm-g*)cos θ-i(Hm+g-Hm-g*)sin θ
=Hm+g exp(-iθ)+Hm-g* exp(iθ).
I˜=2eI,
ϕ˜x(ωg)=2eIz|Gxzχ(ωg)|

Metrics