J. S. Hesthaven, “A stable penalty method for the compressible Navier–Stokes equations. III. Multi-dimensional domain decomposition schemes,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Comput. 20, 62–93 (1999).

[CrossRef]

R. W. Ziolkowski, “The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans. Antennas Propag. 45, 375–391 (1997).

[CrossRef]

B. Yang, D. Gottlieb, J. S. Hesthaven, “Spectral simulation of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. Schmitz, O. Bryngdahl, “Rigorous concept for the design of diffractive microlenses with high numerical apertures,” J. Opt. Soc. Am. A 14, 901–906 (1997).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

J. J. M. Braat, M. O. E. Laurijs, “Geometrical optics design and aberration analysis of a focusing grating coupler,” Opt. Eng. 33, 1037–1043 (1994).

[CrossRef]

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).

[CrossRef]

W. J. Gordon, C. A. Hall, “Transfinite element methods: blending-function interpolation over arbitrary curved element domains,” Numer. Math. 21, 109–129 (1973).

[CrossRef]

S. A. Schelknuoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,” Bell Syst. Tech. J. 15, 92–112 (1936).

[CrossRef]

M. Mirotznik, J. N. Mait, D. W. Prather, W. A. Beck, “Three-dimensional vector-based analysis of subwavelength diffractive optical elements using the finite-difference time-domain (FDTD) method,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 91–93.

J. J. M. Braat, M. O. E. Laurijs, “Geometrical optics design and aberration analysis of a focusing grating coupler,” Opt. Eng. 33, 1037–1043 (1994).

[CrossRef]

M. H. Carpenter, C. A. Kennedy, “Fourth order 2N-storage Runge–Kutta scheme,” (NASA, Washington, D.C., 1994).

J. S. Hesthaven, P. G. Dinesen, J.-P. Lynov, “Parallel pseudospectral time-domain modeling of diffractive optical elements,” submitted to J. Comput. Vision.

D. Funaro, Polynomial Approximation of Differential Equations, Vol. 8 of Lecture Notes in Physics (Springer-Verlag, Berlin, 1992).

W. J. Gordon, C. A. Hall, “Transfinite element methods: blending-function interpolation over arbitrary curved element domains,” Numer. Math. 21, 109–129 (1973).

[CrossRef]

B. Yang, D. Gottlieb, J. S. Hesthaven, “Spectral simulation of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).

[CrossRef]

B. Yang, D. Gottlieb, J. S. Hesthaven, “On the use of PML ABC’s in spectral time-domain simulations of electromagnetic scattering,” in Proceedings of the 13th Annual Review of Progress in Applied Computational Electromagnetics (ACES ’97), E. C. Michielssen, ed. (Applied Computational Electromagnetics Society, Monterey, Calif., 1997), Vol. 2, pp. 926–933.

W. J. Gordon, C. A. Hall, “Transfinite element methods: blending-function interpolation over arbitrary curved element domains,” Numer. Math. 21, 109–129 (1973).

[CrossRef]

J. S. Hesthaven, “A stable penalty method for the compressible Navier–Stokes equations. III. Multi-dimensional domain decomposition schemes,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Comput. 20, 62–93 (1999).

[CrossRef]

B. Yang, D. Gottlieb, J. S. Hesthaven, “Spectral simulation of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).

[CrossRef]

B. Yang, D. Gottlieb, J. S. Hesthaven, “On the use of PML ABC’s in spectral time-domain simulations of electromagnetic scattering,” in Proceedings of the 13th Annual Review of Progress in Applied Computational Electromagnetics (ACES ’97), E. C. Michielssen, ed. (Applied Computational Electromagnetics Society, Monterey, Calif., 1997), Vol. 2, pp. 926–933.

J. S. Hesthaven, P. G. Dinesen, J.-P. Lynov, “Parallel pseudospectral time-domain modeling of diffractive optical elements,” submitted to J. Comput. Vision.

M. H. Carpenter, C. A. Kennedy, “Fourth order 2N-storage Runge–Kutta scheme,” (NASA, Washington, D.C., 1994).

J. J. M. Braat, M. O. E. Laurijs, “Geometrical optics design and aberration analysis of a focusing grating coupler,” Opt. Eng. 33, 1037–1043 (1994).

[CrossRef]

J. S. Hesthaven, P. G. Dinesen, J.-P. Lynov, “Parallel pseudospectral time-domain modeling of diffractive optical elements,” submitted to J. Comput. Vision.

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

M. Mirotznik, J. N. Mait, D. W. Prather, W. A. Beck, “Three-dimensional vector-based analysis of subwavelength diffractive optical elements using the finite-difference time-domain (FDTD) method,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 91–93.

M. Mirotznik, J. N. Mait, D. W. Prather, W. A. Beck, “Three-dimensional vector-based analysis of subwavelength diffractive optical elements using the finite-difference time-domain (FDTD) method,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 91–93.

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

M. Mirotznik, J. N. Mait, D. W. Prather, W. A. Beck, “Three-dimensional vector-based analysis of subwavelength diffractive optical elements using the finite-difference time-domain (FDTD) method,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 91–93.

S. Ramo, J. R. Whinnery, T. van Duzer, Fields and Waves in Communications Electronics, 3rd ed. (Wiley, New York, 1993).

S. A. Schelknuoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,” Bell Syst. Tech. J. 15, 92–112 (1936).

[CrossRef]

A. Taflove, Computational Electrodynamics—The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).

S. Ramo, J. R. Whinnery, T. van Duzer, Fields and Waves in Communications Electronics, 3rd ed. (Wiley, New York, 1993).

S. Ramo, J. R. Whinnery, T. van Duzer, Fields and Waves in Communications Electronics, 3rd ed. (Wiley, New York, 1993).

B. Yang, D. Gottlieb, J. S. Hesthaven, “Spectral simulation of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).

[CrossRef]

B. Yang, D. Gottlieb, J. S. Hesthaven, “On the use of PML ABC’s in spectral time-domain simulations of electromagnetic scattering,” in Proceedings of the 13th Annual Review of Progress in Applied Computational Electromagnetics (ACES ’97), E. C. Michielssen, ed. (Applied Computational Electromagnetics Society, Monterey, Calif., 1997), Vol. 2, pp. 926–933.

R. W. Ziolkowski, “The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans. Antennas Propag. 45, 375–391 (1997).

[CrossRef]

S. A. Schelknuoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,” Bell Syst. Tech. J. 15, 92–112 (1936).

[CrossRef]

R. W. Ziolkowski, “The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans. Antennas Propag. 45, 375–391 (1997).

[CrossRef]

B. Yang, D. Gottlieb, J. S. Hesthaven, “Spectral simulation of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

P.-P. Borsboom, H. J. Frankena, “Field analysis of two-dimensional focusing grating couplers,” J. Opt. Soc. Am. A 12, 1142–1146 (1995).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. Schmitz, O. Bryngdahl, “Rigorous concept for the design of diffractive microlenses with high numerical apertures,” J. Opt. Soc. Am. A 14, 901–906 (1997).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997).

[CrossRef]

W. J. Gordon, C. A. Hall, “Transfinite element methods: blending-function interpolation over arbitrary curved element domains,” Numer. Math. 21, 109–129 (1973).

[CrossRef]

J. J. M. Braat, M. O. E. Laurijs, “Geometrical optics design and aberration analysis of a focusing grating coupler,” Opt. Eng. 33, 1037–1043 (1994).

[CrossRef]

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).

[CrossRef]

J. S. Hesthaven, “A stable penalty method for the compressible Navier–Stokes equations. III. Multi-dimensional domain decomposition schemes,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Comput. 20, 62–93 (1999).

[CrossRef]

B. Yang, D. Gottlieb, J. S. Hesthaven, “On the use of PML ABC’s in spectral time-domain simulations of electromagnetic scattering,” in Proceedings of the 13th Annual Review of Progress in Applied Computational Electromagnetics (ACES ’97), E. C. Michielssen, ed. (Applied Computational Electromagnetics Society, Monterey, Calif., 1997), Vol. 2, pp. 926–933.

S. Ramo, J. R. Whinnery, T. van Duzer, Fields and Waves in Communications Electronics, 3rd ed. (Wiley, New York, 1993).

M. Mirotznik, J. N. Mait, D. W. Prather, W. A. Beck, “Three-dimensional vector-based analysis of subwavelength diffractive optical elements using the finite-difference time-domain (FDTD) method,” in Diffractive Optics and Micro-Optics, Vol. 10 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 91–93.

A. Taflove, Computational Electrodynamics—The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).

J. S. Hesthaven, P. G. Dinesen, J.-P. Lynov, “Parallel pseudospectral time-domain modeling of diffractive optical elements,” submitted to J. Comput. Vision.

M. H. Carpenter, C. A. Kennedy, “Fourth order 2N-storage Runge–Kutta scheme,” (NASA, Washington, D.C., 1994).

D. Funaro, Polynomial Approximation of Differential Equations, Vol. 8 of Lecture Notes in Physics (Springer-Verlag, Berlin, 1992).