Abstract

As part of an ongoing study that uses objective image quality measures to optimize medical imaging x-ray fluoroscopy, we investigated two basic features of the detection of moving cylinders that mimic arteries, catheters, and guide wires. First, we compared detection with and without a phase cue consisting of a nearby alternating light and dark square. Depending on object size and velocity, phase cuing improved detection from 1% to 15% and gave an average of 6%, an effect much smaller than the 38% predicted from a Monte Carlo simulation of the ideal observer. Evidently, humans were limited in their ability to incorporate knowledge of the phase cue. Second, we evaluated the effect of eye pursuit of a fixation point that moved with the target. In general, motion at the highest velocity degraded (74%) and enhanced (68%) detection of small and large objects, respectively. With eye pursuit, both effects were substantially reduced in a manner consistent with a reduced retinal velocity. Our data compared favorably with a human observer model that included a spatiotemporal contrast sensitivity response and smooth-pursuit eye movements with a gain of 0.8. These mechanisms of perception are thought to be present in coronary artery x-ray fluoroscopy imaging, where phase information is available from the moving heart and where motion markers are available from x-ray opaque markers incorporated in thin catheters and guide wires.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
    [CrossRef] [PubMed]
  2. P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced choice measurements,” Med. Phys. 23, 1833–1843 (1996).
    [CrossRef] [PubMed]
  3. P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: Application to pulsed fluoroscopy perception,” Behav. Res. Methods Instrum. Comput. 30, 332–348 (1998).
    [CrossRef]
  4. R. Aufrichtig, C. Thomas, P. Xue, D. L. Wilson, “Model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 11, 3167–3176 (1994).
    [CrossRef]
  5. D. L. Wilson, K. N. Jabri, P. Xue, R. Aufrichtig, “Perceived noise versus display noise in temporally filtered image sequences,” J. Electron. Imaging 5, 490–495 (1996).
    [CrossRef]
  6. K. N. Jabri, D. L. Wilson, “Detection improvement in spatially filtered x-ray fluoroscopy image sequences,” J. Opt. Soc. Am. A 16, 742–749 (1999).
    [CrossRef]
  7. P. Xue, D. L. Wilson, “Detection of moving objects in pulsed x-ray fluoroscopy,” J. Opt. Soc. Am. A 15, 375–388 (1998).
    [CrossRef]
  8. P. Xue, D. L. Wilson, “Effects of motion blurring in x-ray fluoroscopy,” Med. Phys. 25, 587–599 (1998).
    [CrossRef] [PubMed]
  9. R. N. McDonough, A. D. Whalen, Detection of Signals in Noise, 2nd ed. (Academic, San Diego, Calif., 1995).
  10. L. B. Stelmach, P. J. Hearty, “Requirements for static and dynamic spatial resolution in advanced television systems: a psychophysical evaluation,” J. Soc. Motion Pict. Telev. Eng. 100, 5–9 (1991).
  11. P. J. Hearty, “Achieving and confirming optimum image quality,” in Digital Images and Human Vision, A. B. Watson, ed. (MIT, Cambridge, Mass., 1993).
  12. J. H. D. M. Westerink, C. Teunissen, “Perceived sharpness in moving images,” in Human Vision and Electronic Imaging: Models and Applications, B. E. Rogowitz, J. P. Allebach, eds., Proc. SPIE1249, 78–87 (1990).
    [CrossRef]
  13. A. E. Burgess, H. Ghandeharian, “Visual signal detection. I. Ability to use phase information,” J. Opt. Soc. Am. A 1, 900–905 (1984).
    [CrossRef] [PubMed]
  14. M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Role of knowledge in human visual temporal integration in spatiotemporal noise,” J. Opt. Soc. Am. A 13, 1960–1968 (1996).
    [CrossRef]
  15. D. J. Lasley, T. E. Cohn, “Detection of a luminance increment: effect of temporal uncertainty,” J. Opt. Soc. Am. 71, 845–850 (1981).
    [CrossRef] [PubMed]
  16. A. C. Guyton, Textbook of Medical Physiology, 9th ed. (Saunders, Philadelphia, Pa., 1996).
  17. A. F. Fuchs, “Saccadic and smooth pursuit eye movements in the monkey,” J. Physiol. (London) 191, 609–631 (1967).
  18. R. W. Baloh, W. E. Kumley, A. W. Sills, V. Honrubia, H. R. Konrad, “Quantitative measurement of smooth pursuit eye movements,” Ann. Otol. Rhinol. Laryngol. 85, 111–119 (1976).
    [PubMed]
  19. L. Schalen, “Quantification of tracking eye movements in normal subjects,” Acta Oto-Laryngol. 90, 404–413 (1980).
    [CrossRef]
  20. L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
    [CrossRef] [PubMed]
  21. A. E. Burgess, “Statistically defined backgrounds: performance of a modified nonprewhitening observer model,” J. Opt. Soc. Am. A 11, 1237–1242 (1994).
    [CrossRef]
  22. G. S. Lisberger, E. J. Morris, L. Tychsen, “Visual motion processing and sensory-motor integration for smooth pursuit eye movements,” Annu. Rev. Neurosci. 68, 453–461 (1987).
  23. J. G. Robson, “Spatial and temporal contrast-sensitivity functions of the human visual system,” J. Opt. Soc. Am. 56, 1141–1142 (1966).
    [CrossRef]
  24. D. H. Kelly, “Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity,” J. Opt. Soc. Am. 1, 107–113 (1984).
    [CrossRef]
  25. D. H. Kelly, “Motion and vision. II. Stabilized spatio-temporal threshold surface,” J. Opt. Soc. Am. 69, 1340–1349 (1979).
    [CrossRef] [PubMed]
  26. P. Xue, R. Aufrichtig, D. L. Wilson, “Detectability of moving objects in fluoroscopy,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 2–8 (1996).
    [CrossRef]
  27. A. E. Burgess, “Comparison of receiver operating characteristic and forced choice observer performance measurement methods,” Med. Phys. 22, 643–655 (1995).
    [CrossRef] [PubMed]
  28. D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).
  29. H. Fujita, K. Doi, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 6. MTFs of II-TV digital imaging systems,” Med. Phys. 12, 713–719 (1985).
    [CrossRef] [PubMed]
  30. A. E. Burgess, “Visual signal detection. III. On Bayesian use of prior knowledge and cross correlation,” J. Opt. Soc. Am. A 2, 1498–1507 (1985).
    [CrossRef] [PubMed]
  31. R. M. Manjeshwar, D. L. Wilson, “Effect of spatial location uncertainty on human observer performance in x-ray fluoroscopy noise,” Ann. Biomed. Eng. 26, Suppl. 1, S–13 (1998).
  32. H. L. Kundel, C. F. Nodine, L. Toto, S. Lauver, “A circle cue enhances detection of simulated masses on mammogram backgrounds,” in Medical Imaging: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 81–84 (1997).
    [CrossRef]
  33. D. L. Wilson, K. N. Jabri, P. Xue, “Modeling human visual detection of low-contrast objects in fluoroscopy image sequences,” in Medical Imaging 1997: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 21–30 (1997).
    [CrossRef]
  34. H. Collewijn, E. P. Tamminga, “Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds,” J. Physiol. (London) 351, 217–250 (1984).
  35. M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
    [CrossRef] [PubMed]
  36. J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996).
    [CrossRef]
  37. M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Detection and contrast discrimination of moving signals in uncorrelated Gaussian noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 9–25 (1996).
    [CrossRef]
  38. N. L. Eigler, M. P. Eckstein, K. N. Mahrer, J. S. Whiting, “Improving detection of coronary morphological features from digital angiograms: effect of stenosis stabilization display,” Circulation 89, 2700–2709 (1994).
    [CrossRef] [PubMed]
  39. J. P. Flipse, G. D. Wildt, M. Rodenburg, C. J. Keemink, P. G. M. Knol, “Contrast sensitivity for oscillating sine wave gratings during ocular fixation and pursuit,” Vision Res. 28, 819–826 (1988).
    [CrossRef] [PubMed]

1999

1998

P. Xue, D. L. Wilson, “Detection of moving objects in pulsed x-ray fluoroscopy,” J. Opt. Soc. Am. A 15, 375–388 (1998).
[CrossRef]

P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: Application to pulsed fluoroscopy perception,” Behav. Res. Methods Instrum. Comput. 30, 332–348 (1998).
[CrossRef]

P. Xue, D. L. Wilson, “Effects of motion blurring in x-ray fluoroscopy,” Med. Phys. 25, 587–599 (1998).
[CrossRef] [PubMed]

R. M. Manjeshwar, D. L. Wilson, “Effect of spatial location uncertainty on human observer performance in x-ray fluoroscopy noise,” Ann. Biomed. Eng. 26, Suppl. 1, S–13 (1998).

1996

D. L. Wilson, K. N. Jabri, P. Xue, R. Aufrichtig, “Perceived noise versus display noise in temporally filtered image sequences,” J. Electron. Imaging 5, 490–495 (1996).
[CrossRef]

P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced choice measurements,” Med. Phys. 23, 1833–1843 (1996).
[CrossRef] [PubMed]

M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Role of knowledge in human visual temporal integration in spatiotemporal noise,” J. Opt. Soc. Am. A 13, 1960–1968 (1996).
[CrossRef]

1995

A. E. Burgess, “Comparison of receiver operating characteristic and forced choice observer performance measurement methods,” Med. Phys. 22, 643–655 (1995).
[CrossRef] [PubMed]

1994

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

N. L. Eigler, M. P. Eckstein, K. N. Mahrer, J. S. Whiting, “Improving detection of coronary morphological features from digital angiograms: effect of stenosis stabilization display,” Circulation 89, 2700–2709 (1994).
[CrossRef] [PubMed]

A. E. Burgess, “Statistically defined backgrounds: performance of a modified nonprewhitening observer model,” J. Opt. Soc. Am. A 11, 1237–1242 (1994).
[CrossRef]

R. Aufrichtig, C. Thomas, P. Xue, D. L. Wilson, “Model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 11, 3167–3176 (1994).
[CrossRef]

1991

L. B. Stelmach, P. J. Hearty, “Requirements for static and dynamic spatial resolution in advanced television systems: a psychophysical evaluation,” J. Soc. Motion Pict. Telev. Eng. 100, 5–9 (1991).

1988

M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[CrossRef] [PubMed]

J. P. Flipse, G. D. Wildt, M. Rodenburg, C. J. Keemink, P. G. M. Knol, “Contrast sensitivity for oscillating sine wave gratings during ocular fixation and pursuit,” Vision Res. 28, 819–826 (1988).
[CrossRef] [PubMed]

1987

G. S. Lisberger, E. J. Morris, L. Tychsen, “Visual motion processing and sensory-motor integration for smooth pursuit eye movements,” Annu. Rev. Neurosci. 68, 453–461 (1987).

1985

H. Fujita, K. Doi, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 6. MTFs of II-TV digital imaging systems,” Med. Phys. 12, 713–719 (1985).
[CrossRef] [PubMed]

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

A. E. Burgess, “Visual signal detection. III. On Bayesian use of prior knowledge and cross correlation,” J. Opt. Soc. Am. A 2, 1498–1507 (1985).
[CrossRef] [PubMed]

1984

A. E. Burgess, H. Ghandeharian, “Visual signal detection. I. Ability to use phase information,” J. Opt. Soc. Am. A 1, 900–905 (1984).
[CrossRef] [PubMed]

H. Collewijn, E. P. Tamminga, “Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds,” J. Physiol. (London) 351, 217–250 (1984).

D. H. Kelly, “Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity,” J. Opt. Soc. Am. 1, 107–113 (1984).
[CrossRef]

1981

1980

L. Schalen, “Quantification of tracking eye movements in normal subjects,” Acta Oto-Laryngol. 90, 404–413 (1980).
[CrossRef]

1979

1976

R. W. Baloh, W. E. Kumley, A. W. Sills, V. Honrubia, H. R. Konrad, “Quantitative measurement of smooth pursuit eye movements,” Ann. Otol. Rhinol. Laryngol. 85, 111–119 (1976).
[PubMed]

1967

A. F. Fuchs, “Saccadic and smooth pursuit eye movements in the monkey,” J. Physiol. (London) 191, 609–631 (1967).

1966

Aufrichtig, R.

D. L. Wilson, K. N. Jabri, P. Xue, R. Aufrichtig, “Perceived noise versus display noise in temporally filtered image sequences,” J. Electron. Imaging 5, 490–495 (1996).
[CrossRef]

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

R. Aufrichtig, C. Thomas, P. Xue, D. L. Wilson, “Model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 11, 3167–3176 (1994).
[CrossRef]

P. Xue, R. Aufrichtig, D. L. Wilson, “Detectability of moving objects in fluoroscopy,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 2–8 (1996).
[CrossRef]

Baloh, R. W.

R. W. Baloh, W. E. Kumley, A. W. Sills, V. Honrubia, H. R. Konrad, “Quantitative measurement of smooth pursuit eye movements,” Ann. Otol. Rhinol. Laryngol. 85, 111–119 (1976).
[PubMed]

Burgess, A. E.

Cohn, T. E.

Collewijn, H.

H. Collewijn, E. P. Tamminga, “Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds,” J. Physiol. (London) 351, 217–250 (1984).

Doi, K.

H. Fujita, K. Doi, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 6. MTFs of II-TV digital imaging systems,” Med. Phys. 12, 713–719 (1985).
[CrossRef] [PubMed]

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

Eckstein, M. P.

M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Role of knowledge in human visual temporal integration in spatiotemporal noise,” J. Opt. Soc. Am. A 13, 1960–1968 (1996).
[CrossRef]

N. L. Eigler, M. P. Eckstein, K. N. Mahrer, J. S. Whiting, “Improving detection of coronary morphological features from digital angiograms: effect of stenosis stabilization display,” Circulation 89, 2700–2709 (1994).
[CrossRef] [PubMed]

J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996).
[CrossRef]

M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Detection and contrast discrimination of moving signals in uncorrelated Gaussian noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 9–25 (1996).
[CrossRef]

Eigler, N. L.

N. L. Eigler, M. P. Eckstein, K. N. Mahrer, J. S. Whiting, “Improving detection of coronary morphological features from digital angiograms: effect of stenosis stabilization display,” Circulation 89, 2700–2709 (1994).
[CrossRef] [PubMed]

J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996).
[CrossRef]

Flipse, J. P.

J. P. Flipse, G. D. Wildt, M. Rodenburg, C. J. Keemink, P. G. M. Knol, “Contrast sensitivity for oscillating sine wave gratings during ocular fixation and pursuit,” Vision Res. 28, 819–826 (1988).
[CrossRef] [PubMed]

Fuchs, A. F.

A. F. Fuchs, “Saccadic and smooth pursuit eye movements in the monkey,” J. Physiol. (London) 191, 609–631 (1967).

Fujita, H.

H. Fujita, K. Doi, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 6. MTFs of II-TV digital imaging systems,” Med. Phys. 12, 713–719 (1985).
[CrossRef] [PubMed]

Ghandeharian, H.

Giger, M. L.

H. Fujita, K. Doi, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 6. MTFs of II-TV digital imaging systems,” Med. Phys. 12, 713–719 (1985).
[CrossRef] [PubMed]

Gilmore, G. C.

P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: Application to pulsed fluoroscopy perception,” Behav. Res. Methods Instrum. Comput. 30, 332–348 (1998).
[CrossRef]

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

Green, D. M.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

Guyton, A. C.

A. C. Guyton, Textbook of Medical Physiology, 9th ed. (Saunders, Philadelphia, Pa., 1996).

Hearty, P. J.

L. B. Stelmach, P. J. Hearty, “Requirements for static and dynamic spatial resolution in advanced television systems: a psychophysical evaluation,” J. Soc. Motion Pict. Telev. Eng. 100, 5–9 (1991).

P. J. Hearty, “Achieving and confirming optimum image quality,” in Digital Images and Human Vision, A. B. Watson, ed. (MIT, Cambridge, Mass., 1993).

Honrubia, V.

R. W. Baloh, W. E. Kumley, A. W. Sills, V. Honrubia, H. R. Konrad, “Quantitative measurement of smooth pursuit eye movements,” Ann. Otol. Rhinol. Laryngol. 85, 111–119 (1976).
[PubMed]

Hubel, D.

M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[CrossRef] [PubMed]

Jabri, K. N.

K. N. Jabri, D. L. Wilson, “Detection improvement in spatially filtered x-ray fluoroscopy image sequences,” J. Opt. Soc. Am. A 16, 742–749 (1999).
[CrossRef]

D. L. Wilson, K. N. Jabri, P. Xue, R. Aufrichtig, “Perceived noise versus display noise in temporally filtered image sequences,” J. Electron. Imaging 5, 490–495 (1996).
[CrossRef]

D. L. Wilson, K. N. Jabri, P. Xue, “Modeling human visual detection of low-contrast objects in fluoroscopy image sequences,” in Medical Imaging 1997: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 21–30 (1997).
[CrossRef]

Keemink, C. J.

J. P. Flipse, G. D. Wildt, M. Rodenburg, C. J. Keemink, P. G. M. Knol, “Contrast sensitivity for oscillating sine wave gratings during ocular fixation and pursuit,” Vision Res. 28, 819–826 (1988).
[CrossRef] [PubMed]

Kelly, D. H.

D. H. Kelly, “Retinal inhomogeneity. I. Spatiotemporal contrast sensitivity,” J. Opt. Soc. Am. 1, 107–113 (1984).
[CrossRef]

D. H. Kelly, “Motion and vision. II. Stabilized spatio-temporal threshold surface,” J. Opt. Soc. Am. 69, 1340–1349 (1979).
[CrossRef] [PubMed]

Knol, P. G. M.

J. P. Flipse, G. D. Wildt, M. Rodenburg, C. J. Keemink, P. G. M. Knol, “Contrast sensitivity for oscillating sine wave gratings during ocular fixation and pursuit,” Vision Res. 28, 819–826 (1988).
[CrossRef] [PubMed]

Konrad, H. R.

R. W. Baloh, W. E. Kumley, A. W. Sills, V. Honrubia, H. R. Konrad, “Quantitative measurement of smooth pursuit eye movements,” Ann. Otol. Rhinol. Laryngol. 85, 111–119 (1976).
[PubMed]

Kumley, W. E.

R. W. Baloh, W. E. Kumley, A. W. Sills, V. Honrubia, H. R. Konrad, “Quantitative measurement of smooth pursuit eye movements,” Ann. Otol. Rhinol. Laryngol. 85, 111–119 (1976).
[PubMed]

Kundel, H. L.

H. L. Kundel, C. F. Nodine, L. Toto, S. Lauver, “A circle cue enhances detection of simulated masses on mammogram backgrounds,” in Medical Imaging: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 81–84 (1997).
[CrossRef]

Lasley, D. J.

Lauver, S.

H. L. Kundel, C. F. Nodine, L. Toto, S. Lauver, “A circle cue enhances detection of simulated masses on mammogram backgrounds,” in Medical Imaging: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 81–84 (1997).
[CrossRef]

Lisberger, G. S.

G. S. Lisberger, E. J. Morris, L. Tychsen, “Visual motion processing and sensory-motor integration for smooth pursuit eye movements,” Annu. Rev. Neurosci. 68, 453–461 (1987).

Livingstone, M.

M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[CrossRef] [PubMed]

Loo, L. D.

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

Mahrer, K. N.

N. L. Eigler, M. P. Eckstein, K. N. Mahrer, J. S. Whiting, “Improving detection of coronary morphological features from digital angiograms: effect of stenosis stabilization display,” Circulation 89, 2700–2709 (1994).
[CrossRef] [PubMed]

Manjeshwar, R. M.

R. M. Manjeshwar, D. L. Wilson, “Effect of spatial location uncertainty on human observer performance in x-ray fluoroscopy noise,” Ann. Biomed. Eng. 26, Suppl. 1, S–13 (1998).

McDonough, R. N.

R. N. McDonough, A. D. Whalen, Detection of Signals in Noise, 2nd ed. (Academic, San Diego, Calif., 1995).

Metz, C. E.

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

Morioka, C. A.

J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996).
[CrossRef]

Morris, E. J.

G. S. Lisberger, E. J. Morris, L. Tychsen, “Visual motion processing and sensory-motor integration for smooth pursuit eye movements,” Annu. Rev. Neurosci. 68, 453–461 (1987).

Nodine, C. F.

H. L. Kundel, C. F. Nodine, L. Toto, S. Lauver, “A circle cue enhances detection of simulated masses on mammogram backgrounds,” in Medical Imaging: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 81–84 (1997).
[CrossRef]

Robson, J. G.

Rodenburg, M.

J. P. Flipse, G. D. Wildt, M. Rodenburg, C. J. Keemink, P. G. M. Knol, “Contrast sensitivity for oscillating sine wave gratings during ocular fixation and pursuit,” Vision Res. 28, 819–826 (1988).
[CrossRef] [PubMed]

Schalen, L.

L. Schalen, “Quantification of tracking eye movements in normal subjects,” Acta Oto-Laryngol. 90, 404–413 (1980).
[CrossRef]

Sills, A. W.

R. W. Baloh, W. E. Kumley, A. W. Sills, V. Honrubia, H. R. Konrad, “Quantitative measurement of smooth pursuit eye movements,” Ann. Otol. Rhinol. Laryngol. 85, 111–119 (1976).
[PubMed]

Stelmach, L. B.

L. B. Stelmach, P. J. Hearty, “Requirements for static and dynamic spatial resolution in advanced television systems: a psychophysical evaluation,” J. Soc. Motion Pict. Telev. Eng. 100, 5–9 (1991).

Swets, J. A.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

Tamminga, E. P.

H. Collewijn, E. P. Tamminga, “Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds,” J. Physiol. (London) 351, 217–250 (1984).

Teunissen, C.

J. H. D. M. Westerink, C. Teunissen, “Perceived sharpness in moving images,” in Human Vision and Electronic Imaging: Models and Applications, B. E. Rogowitz, J. P. Allebach, eds., Proc. SPIE1249, 78–87 (1990).
[CrossRef]

Thomas, C.

Thomas, C. W.

P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: Application to pulsed fluoroscopy perception,” Behav. Res. Methods Instrum. Comput. 30, 332–348 (1998).
[CrossRef]

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

Thomas, J. P.

M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Role of knowledge in human visual temporal integration in spatiotemporal noise,” J. Opt. Soc. Am. A 13, 1960–1968 (1996).
[CrossRef]

M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Detection and contrast discrimination of moving signals in uncorrelated Gaussian noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 9–25 (1996).
[CrossRef]

Toto, L.

H. L. Kundel, C. F. Nodine, L. Toto, S. Lauver, “A circle cue enhances detection of simulated masses on mammogram backgrounds,” in Medical Imaging: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 81–84 (1997).
[CrossRef]

Tychsen, L.

G. S. Lisberger, E. J. Morris, L. Tychsen, “Visual motion processing and sensory-motor integration for smooth pursuit eye movements,” Annu. Rev. Neurosci. 68, 453–461 (1987).

Westerink, J. H. D. M.

J. H. D. M. Westerink, C. Teunissen, “Perceived sharpness in moving images,” in Human Vision and Electronic Imaging: Models and Applications, B. E. Rogowitz, J. P. Allebach, eds., Proc. SPIE1249, 78–87 (1990).
[CrossRef]

Whalen, A. D.

R. N. McDonough, A. D. Whalen, Detection of Signals in Noise, 2nd ed. (Academic, San Diego, Calif., 1995).

Whiting, J. S.

M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Role of knowledge in human visual temporal integration in spatiotemporal noise,” J. Opt. Soc. Am. A 13, 1960–1968 (1996).
[CrossRef]

N. L. Eigler, M. P. Eckstein, K. N. Mahrer, J. S. Whiting, “Improving detection of coronary morphological features from digital angiograms: effect of stenosis stabilization display,” Circulation 89, 2700–2709 (1994).
[CrossRef] [PubMed]

J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996).
[CrossRef]

M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Detection and contrast discrimination of moving signals in uncorrelated Gaussian noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 9–25 (1996).
[CrossRef]

Wildt, G. D.

J. P. Flipse, G. D. Wildt, M. Rodenburg, C. J. Keemink, P. G. M. Knol, “Contrast sensitivity for oscillating sine wave gratings during ocular fixation and pursuit,” Vision Res. 28, 819–826 (1988).
[CrossRef] [PubMed]

Wilson, D. L.

K. N. Jabri, D. L. Wilson, “Detection improvement in spatially filtered x-ray fluoroscopy image sequences,” J. Opt. Soc. Am. A 16, 742–749 (1999).
[CrossRef]

R. M. Manjeshwar, D. L. Wilson, “Effect of spatial location uncertainty on human observer performance in x-ray fluoroscopy noise,” Ann. Biomed. Eng. 26, Suppl. 1, S–13 (1998).

P. Xue, D. L. Wilson, “Detection of moving objects in pulsed x-ray fluoroscopy,” J. Opt. Soc. Am. A 15, 375–388 (1998).
[CrossRef]

P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: Application to pulsed fluoroscopy perception,” Behav. Res. Methods Instrum. Comput. 30, 332–348 (1998).
[CrossRef]

P. Xue, D. L. Wilson, “Effects of motion blurring in x-ray fluoroscopy,” Med. Phys. 25, 587–599 (1998).
[CrossRef] [PubMed]

D. L. Wilson, K. N. Jabri, P. Xue, R. Aufrichtig, “Perceived noise versus display noise in temporally filtered image sequences,” J. Electron. Imaging 5, 490–495 (1996).
[CrossRef]

P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced choice measurements,” Med. Phys. 23, 1833–1843 (1996).
[CrossRef] [PubMed]

R. Aufrichtig, C. Thomas, P. Xue, D. L. Wilson, “Model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 11, 3167–3176 (1994).
[CrossRef]

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

D. L. Wilson, K. N. Jabri, P. Xue, “Modeling human visual detection of low-contrast objects in fluoroscopy image sequences,” in Medical Imaging 1997: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 21–30 (1997).
[CrossRef]

P. Xue, R. Aufrichtig, D. L. Wilson, “Detectability of moving objects in fluoroscopy,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 2–8 (1996).
[CrossRef]

Xue, P.

P. Xue, D. L. Wilson, “Effects of motion blurring in x-ray fluoroscopy,” Med. Phys. 25, 587–599 (1998).
[CrossRef] [PubMed]

P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: Application to pulsed fluoroscopy perception,” Behav. Res. Methods Instrum. Comput. 30, 332–348 (1998).
[CrossRef]

P. Xue, D. L. Wilson, “Detection of moving objects in pulsed x-ray fluoroscopy,” J. Opt. Soc. Am. A 15, 375–388 (1998).
[CrossRef]

D. L. Wilson, K. N. Jabri, P. Xue, R. Aufrichtig, “Perceived noise versus display noise in temporally filtered image sequences,” J. Electron. Imaging 5, 490–495 (1996).
[CrossRef]

P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced choice measurements,” Med. Phys. 23, 1833–1843 (1996).
[CrossRef] [PubMed]

R. Aufrichtig, C. Thomas, P. Xue, D. L. Wilson, “Model for perception of pulsed fluoroscopy image sequences,” J. Opt. Soc. Am. A 11, 3167–3176 (1994).
[CrossRef]

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

D. L. Wilson, K. N. Jabri, P. Xue, “Modeling human visual detection of low-contrast objects in fluoroscopy image sequences,” in Medical Imaging 1997: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 21–30 (1997).
[CrossRef]

P. Xue, R. Aufrichtig, D. L. Wilson, “Detectability of moving objects in fluoroscopy,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 2–8 (1996).
[CrossRef]

Acta Oto-Laryngol.

L. Schalen, “Quantification of tracking eye movements in normal subjects,” Acta Oto-Laryngol. 90, 404–413 (1980).
[CrossRef]

Ann. Biomed. Eng.

R. M. Manjeshwar, D. L. Wilson, “Effect of spatial location uncertainty on human observer performance in x-ray fluoroscopy noise,” Ann. Biomed. Eng. 26, Suppl. 1, S–13 (1998).

Ann. Otol. Rhinol. Laryngol.

R. W. Baloh, W. E. Kumley, A. W. Sills, V. Honrubia, H. R. Konrad, “Quantitative measurement of smooth pursuit eye movements,” Ann. Otol. Rhinol. Laryngol. 85, 111–119 (1976).
[PubMed]

Annu. Rev. Neurosci.

G. S. Lisberger, E. J. Morris, L. Tychsen, “Visual motion processing and sensory-motor integration for smooth pursuit eye movements,” Annu. Rev. Neurosci. 68, 453–461 (1987).

Behav. Res. Methods Instrum. Comput.

P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “An adaptive reference/test paradigm: Application to pulsed fluoroscopy perception,” Behav. Res. Methods Instrum. Comput. 30, 332–348 (1998).
[CrossRef]

Circulation

N. L. Eigler, M. P. Eckstein, K. N. Mahrer, J. S. Whiting, “Improving detection of coronary morphological features from digital angiograms: effect of stenosis stabilization display,” Circulation 89, 2700–2709 (1994).
[CrossRef] [PubMed]

J. Electron. Imaging

D. L. Wilson, K. N. Jabri, P. Xue, R. Aufrichtig, “Perceived noise versus display noise in temporally filtered image sequences,” J. Electron. Imaging 5, 490–495 (1996).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Physiol. (London)

H. Collewijn, E. P. Tamminga, “Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds,” J. Physiol. (London) 351, 217–250 (1984).

A. F. Fuchs, “Saccadic and smooth pursuit eye movements in the monkey,” J. Physiol. (London) 191, 609–631 (1967).

J. Soc. Motion Pict. Telev. Eng.

L. B. Stelmach, P. J. Hearty, “Requirements for static and dynamic spatial resolution in advanced television systems: a psychophysical evaluation,” J. Soc. Motion Pict. Telev. Eng. 100, 5–9 (1991).

Med. Phys.

P. Xue, D. L. Wilson, “Effects of motion blurring in x-ray fluoroscopy,” Med. Phys. 25, 587–599 (1998).
[CrossRef] [PubMed]

R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, D. L. Wilson, “Perceptual comparison of pulsed and continuous fluoroscopy,” Med. Phys. 21, 245–256 (1994).
[CrossRef] [PubMed]

P. Xue, D. L. Wilson, “Pulsed fluoroscopy detectability from interspersed adaptive forced choice measurements,” Med. Phys. 23, 1833–1843 (1996).
[CrossRef] [PubMed]

L. D. Loo, K. Doi, C. E. Metz, “Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns,” Med. Phys. 12, 209–214 (1985).
[CrossRef] [PubMed]

A. E. Burgess, “Comparison of receiver operating characteristic and forced choice observer performance measurement methods,” Med. Phys. 22, 643–655 (1995).
[CrossRef] [PubMed]

H. Fujita, K. Doi, M. L. Giger, “Investigation of basic imaging properties in digital radiography. 6. MTFs of II-TV digital imaging systems,” Med. Phys. 12, 713–719 (1985).
[CrossRef] [PubMed]

Science

M. Livingstone, D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[CrossRef] [PubMed]

Vision Res.

J. P. Flipse, G. D. Wildt, M. Rodenburg, C. J. Keemink, P. G. M. Knol, “Contrast sensitivity for oscillating sine wave gratings during ocular fixation and pursuit,” Vision Res. 28, 819–826 (1988).
[CrossRef] [PubMed]

Other

P. Xue, R. Aufrichtig, D. L. Wilson, “Detectability of moving objects in fluoroscopy,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 2–8 (1996).
[CrossRef]

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

J. S. Whiting, M. P. Eckstein, C. A. Morioka, N. L. Eigler, “Effect of additive noise, signal contrast, and feature motion on visual detection in structured noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 26–38 (1996).
[CrossRef]

M. P. Eckstein, J. S. Whiting, J. P. Thomas, “Detection and contrast discrimination of moving signals in uncorrelated Gaussian noise,” in Medical Imaging 1996: Image Perception, H. L. Kundel, ed., Proc. SPIE2712, 9–25 (1996).
[CrossRef]

H. L. Kundel, C. F. Nodine, L. Toto, S. Lauver, “A circle cue enhances detection of simulated masses on mammogram backgrounds,” in Medical Imaging: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 81–84 (1997).
[CrossRef]

D. L. Wilson, K. N. Jabri, P. Xue, “Modeling human visual detection of low-contrast objects in fluoroscopy image sequences,” in Medical Imaging 1997: Image Perception, H. L. Kundel, ed., Proc. SPIE3036, 21–30 (1997).
[CrossRef]

R. N. McDonough, A. D. Whalen, Detection of Signals in Noise, 2nd ed. (Academic, San Diego, Calif., 1995).

P. J. Hearty, “Achieving and confirming optimum image quality,” in Digital Images and Human Vision, A. B. Watson, ed. (MIT, Cambridge, Mass., 1993).

J. H. D. M. Westerink, C. Teunissen, “Perceived sharpness in moving images,” in Human Vision and Electronic Imaging: Models and Applications, B. E. Rogowitz, J. P. Allebach, eds., Proc. SPIE1249, 78–87 (1990).
[CrossRef]

A. C. Guyton, Textbook of Medical Physiology, 9th ed. (Saunders, Philadelphia, Pa., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Human observer model that describes target detection in noisy image sequences. The input to the model is a sequence of noisy images. The model consists of a human spatiotemporal visual response, a spatiotemporal template filter, an optional internal noise source, and a threshold detector. In the case of eye pursuit, the retinal velocity is reduced by the smooth-pursuit gain.

Fig. 2
Fig. 2

4AFC display consisting of 440×480 pixels divided into five panels of 88×480 pixels. The target cylinder is placed randomly in one of the four noisy panels. The top panel is a noise-free stationary reference. The high-contrast, black markers are 3×3 pixel squares. The two markers in each panel are 75 pixels apart. In an experiment the black markers are easily seen, whereas the cylinder contrast is adapted near the threshold for detection. In the case of motion the target cylinder moves between the arrows.

Fig. 3
Fig. 3

Effect of phase cuing on the detection of a 1-pixeldiameter cylinder. Contrast sensitivity (1/C) values are plotted in (a) with and without phase cuing. At a velocity of 0 pixels/s, phase cuing is irrelevant, and only one data point is shown. With phase cuing there is a significant improvement in detection (p<0.05). To reduce intersubject variability, we normalize data from each subject by her, or his, 1/C value at zero velocity. After normalization, data points overlap and are not visible on a plot. Hence we plot responses averaged across subjects in (b). The lines are not theoretical and simply connect the averages.

Fig. 4
Fig. 4

Effect of phase cuing on the detection of a 21-pixel-diameter cylinder. The effect is not significant (p>0.05). (a) Individual observers and (b) averages for three observers are plotted.

Fig. 5
Fig. 5

Monte Carlo simulation results for the ideal observer model with and without phase cuing. The SNR on the x axis is the prediction from a signal and phase known exactly (ideal observer calculation). The theoretical d values on the y axis compare phase known (solid curve) with phase unknown (dashed curve). See Subsection 3.D for details of the simulation.

Fig. 6
Fig. 6

Effect of eye pursuit on the detection of a 1-pixel-diameter cylinder. Individual and averaged normalized contrast sensitivities (1/C) are plotted in (a) and (b), respectively. Eye pursuit significantly improves detection (p<0.05). In (b), the solid curve is the normalized SNR for the human observer model with eye pursuit, and the dashed curve is the human observer model prediction without eye pursuit. Standard errors are plotted. Data are from three subjects (□, RM; △, AC; ○, CR).

Fig. 7
Fig. 7

Effect of fixation markers on detection. In (a), contrast sensitivities are plotted for a 1-pixel-diameter stationary cylinder with and without the fixation marker. All three subjects consistently show improved detection in the presence of the marker, and a paired t-test shows a significant effect (p <0.05). In (b), to reduce the effect of localization, motion data from Fig. 6 are normalized by the 1/C value at zero velocity without a fixation marker (crosshatched circles). The lower, unshaded circles contain data points from Fig. 6. Data are from three subjects (□, RM; △, AC; ○, CR).

Fig. 8
Fig. 8

Effect of eye pursuit on the detection of a 21-pixel-diameter cylinder. Eye pursuit significantly decreases the enhancement in detection with motion (p<0.05). As in Fig. 6, (a) individual and (b) normalized averages are plotted.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

SNR=Ay|S(fx, ft)Vst(fx, ft)|2dfxdft|S(fx, ft)|2|Vst(fx, ft)|4Pn(fx, ft)dfxdft1/2,
|S(fx, ft)|2=|S(fx)|2δ(vrfx+ft).
SNR=Ay|S(fx)V(fx, vr)|2Δfx|S(fx)V(fx, vr)|2|V(fx, vr)|2σe2Δfx1/2.
vr=vtargetgazefixation(1-gsp)×vtargeteyepursuit.
V(fx, vr)=[6.1+7.3|log(vr/3)|3]×4π2vrfx2 exp[-4πfx(vr+2)/45.9].
C=gb-gt,
Li=Hj=1Kexp1σ2xtSj(x, t)Di(x, t),

Metrics