Abstract

An experimental investigation was performed into the effect of simple shear on the light-scattering properties of undiluted human blood. Undiluted human blood was enclosed between two glass plates with an adjustable separation between 30 and 120 μm and with one plate moving parallel to the other. For various shear rates and layer thicknesses, the angular light distribution and the collimated transmission were measured for 633-nm light. For shear rates above 150 s-1, the transmission results directly yielded a total attenuation coefficient of 120 mm-1. At lower shear rates the total attenuation followed an irregular pattern. From the angular intensity distributions, the anisotropy for single scattering was deduced by inverse Monte Carlo simulations. A continuous increase of the average cosine g with the shear rate was observed, with g in the range 0.95–0.975.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Nilsson, T. Tenland, P. Å. Öberg, “A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. BME-27, 12–19 (1980).
    [CrossRef]
  2. R. Bonner, R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
    [CrossRef] [PubMed]
  3. G. Streekstra, “Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction,” Appl. Opt. 32, 2266–2272 (1993).
    [CrossRef] [PubMed]
  4. H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinrich, H. Schmid-Schönbein, “Microrheology and light transmission of blood,” Pflügers Arch. 333, 126–139 (1972).
    [CrossRef]
  5. L. G. Lindberg, P. Å. Öberg, “Optical properties of blood in motion,” Opt. Eng. 32, 253–257 (1993).
    [CrossRef]
  6. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
    [CrossRef] [PubMed]
  7. A. H. Gandjbakhche, P. Mills, P. Snabre, “Light-scattering technique for the study of orientation and deformation of red blood cells in a concentrated suspension,” Appl. Opt. 33, 1070–1078 (1994).
    [CrossRef] [PubMed]
  8. W. S. J. Uijttewaal, E. J. Nijhoff, P. J. H. Bronkhorst, E. den Hartog, R. M. Heethaar, “Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood,” Am. J. Physiol. 264, H1239–H1244 (1993).
    [PubMed]
  9. A. M. K. Nilsson, P. Alsholm, A. Karlsson, S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2748 (1998).
    [CrossRef]
  10. S. E. Charm, G. S. Kurland, Blood Flow and Microcirculation (Wiley, New York, 1974).
  11. S. Jacques, C. Alter, S. Prahl, “Angular dependency of HeNe-laser light scattering by human dermis,” Lasers Life Sci. 11, 309–333 (1987).
  12. V. Twersky, “Absorption and multiple scattering by biological suspensions,” J. Opt. Soc. Am. 60, 1084–1093 (1970).
    [CrossRef] [PubMed]
  13. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, A. Kolb, “Single scattering by red blood cells,” Appl. Opt. 37, 7410–7418 (1998).
    [CrossRef]
  14. J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027–4033 (1988).
    [CrossRef] [PubMed]
  15. F. F. M. de Mul, M. H. Koelink, M. L. Kok, P. J. Harmsma, J. Greve, R. Graaff, J. G. Aarnoudse, “Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue,” Appl. Opt. 34, 6595–6611 (1995).
    [CrossRef] [PubMed]
  16. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, “The optical properties of blood in the near infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, B. J. Tromberg, eds., Proc. SPIE2678, 314–324 (1996).
    [CrossRef]

1999 (1)

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

1998 (2)

1995 (1)

1994 (1)

1993 (3)

W. S. J. Uijttewaal, E. J. Nijhoff, P. J. H. Bronkhorst, E. den Hartog, R. M. Heethaar, “Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood,” Am. J. Physiol. 264, H1239–H1244 (1993).
[PubMed]

G. Streekstra, “Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction,” Appl. Opt. 32, 2266–2272 (1993).
[CrossRef] [PubMed]

L. G. Lindberg, P. Å. Öberg, “Optical properties of blood in motion,” Opt. Eng. 32, 253–257 (1993).
[CrossRef]

1988 (1)

1987 (1)

S. Jacques, C. Alter, S. Prahl, “Angular dependency of HeNe-laser light scattering by human dermis,” Lasers Life Sci. 11, 309–333 (1987).

1981 (1)

1980 (1)

G. E. Nilsson, T. Tenland, P. Å. Öberg, “A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. BME-27, 12–19 (1980).
[CrossRef]

1972 (1)

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinrich, H. Schmid-Schönbein, “Microrheology and light transmission of blood,” Pflügers Arch. 333, 126–139 (1972).
[CrossRef]

1970 (1)

Aarnoudse, J. G.

Alsholm, P.

Alter, C.

S. Jacques, C. Alter, S. Prahl, “Angular dependency of HeNe-laser light scattering by human dermis,” Lasers Life Sci. 11, 309–333 (1987).

Andersson-Engels, S.

Bonner, R.

Brechtelsbauer, H.

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinrich, H. Schmid-Schönbein, “Microrheology and light transmission of blood,” Pflügers Arch. 333, 126–139 (1972).
[CrossRef]

Bronkhorst, P. J. H.

W. S. J. Uijttewaal, E. J. Nijhoff, P. J. H. Bronkhorst, E. den Hartog, R. M. Heethaar, “Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood,” Am. J. Physiol. 264, H1239–H1244 (1993).
[PubMed]

Charm, S. E.

S. E. Charm, G. S. Kurland, Blood Flow and Microcirculation (Wiley, New York, 1974).

de Mul, F. F. M.

den Hartog, E.

W. S. J. Uijttewaal, E. J. Nijhoff, P. J. H. Bronkhorst, E. den Hartog, R. M. Heethaar, “Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood,” Am. J. Physiol. 264, H1239–H1244 (1993).
[PubMed]

Dörschel, K.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

Goldbach, T.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, “The optical properties of blood in the near infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, B. J. Tromberg, eds., Proc. SPIE2678, 314–324 (1996).
[CrossRef]

Graaff, R.

Greve, J.

Hahn, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Hammer, M.

Harmsma, P. J.

Heethaar, R. M.

W. S. J. Uijttewaal, E. J. Nijhoff, P. J. H. Bronkhorst, E. den Hartog, R. M. Heethaar, “Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood,” Am. J. Physiol. 264, H1239–H1244 (1993).
[PubMed]

Heinrich, L.

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinrich, H. Schmid-Schönbein, “Microrheology and light transmission of blood,” Pflügers Arch. 333, 126–139 (1972).
[CrossRef]

Jacques, S.

S. Jacques, C. Alter, S. Prahl, “Angular dependency of HeNe-laser light scattering by human dermis,” Lasers Life Sci. 11, 309–333 (1987).

Karlsson, A.

Klose, H. J.

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinrich, H. Schmid-Schönbein, “Microrheology and light transmission of blood,” Pflügers Arch. 333, 126–139 (1972).
[CrossRef]

Koelink, M. H.

Kok, M. L.

Kolb, A.

Kurland, G. S.

S. E. Charm, G. S. Kurland, Blood Flow and Microcirculation (Wiley, New York, 1974).

Lindberg, L. G.

L. G. Lindberg, P. Å. Öberg, “Optical properties of blood in motion,” Opt. Eng. 32, 253–257 (1993).
[CrossRef]

Michel, B.

Mills, P.

Müller, G.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Nijhoff, E. J.

W. S. J. Uijttewaal, E. J. Nijhoff, P. J. H. Bronkhorst, E. den Hartog, R. M. Heethaar, “Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood,” Am. J. Physiol. 264, H1239–H1244 (1993).
[PubMed]

Nilsson, A. M. K.

Nilsson, G. E.

G. E. Nilsson, T. Tenland, P. Å. Öberg, “A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. BME-27, 12–19 (1980).
[CrossRef]

Nossal, R.

Öberg, P. Å.

L. G. Lindberg, P. Å. Öberg, “Optical properties of blood in motion,” Opt. Eng. 32, 253–257 (1993).
[CrossRef]

G. E. Nilsson, T. Tenland, P. Å. Öberg, “A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. BME-27, 12–19 (1980).
[CrossRef]

Prahl, S.

S. Jacques, C. Alter, S. Prahl, “Angular dependency of HeNe-laser light scattering by human dermis,” Lasers Life Sci. 11, 309–333 (1987).

Roggan, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Schmid-Schönbein, H.

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinrich, H. Schmid-Schönbein, “Microrheology and light transmission of blood,” Pflügers Arch. 333, 126–139 (1972).
[CrossRef]

Schwarzmaier, H.-J.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, “The optical properties of blood in the near infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, B. J. Tromberg, eds., Proc. SPIE2678, 314–324 (1996).
[CrossRef]

Schweitzer, D.

Shepherd, A. P.

Snabre, P.

Steinke, J. M.

Streekstra, G.

Tenland, T.

G. E. Nilsson, T. Tenland, P. Å. Öberg, “A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. BME-27, 12–19 (1980).
[CrossRef]

Thamm, E.

Twersky, V.

Uijttewaal, W. S. J.

W. S. J. Uijttewaal, E. J. Nijhoff, P. J. H. Bronkhorst, E. den Hartog, R. M. Heethaar, “Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood,” Am. J. Physiol. 264, H1239–H1244 (1993).
[PubMed]

Volger, E.

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinrich, H. Schmid-Schönbein, “Microrheology and light transmission of blood,” Pflügers Arch. 333, 126–139 (1972).
[CrossRef]

Yaroslavsky, A. N.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, “The optical properties of blood in the near infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, B. J. Tromberg, eds., Proc. SPIE2678, 314–324 (1996).
[CrossRef]

Yaroslavsky, I. V.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, “The optical properties of blood in the near infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, B. J. Tromberg, eds., Proc. SPIE2678, 314–324 (1996).
[CrossRef]

Am. J. Physiol. (1)

W. S. J. Uijttewaal, E. J. Nijhoff, P. J. H. Bronkhorst, E. den Hartog, R. M. Heethaar, “Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood,” Am. J. Physiol. 264, H1239–H1244 (1993).
[PubMed]

Appl. Opt. (7)

IEEE Trans. Biomed. Eng. (1)

G. E. Nilsson, T. Tenland, P. Å. Öberg, “A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy,” IEEE Trans. Biomed. Eng. BME-27, 12–19 (1980).
[CrossRef]

J. Biomed. Opt. (1)

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Lasers Life Sci. (1)

S. Jacques, C. Alter, S. Prahl, “Angular dependency of HeNe-laser light scattering by human dermis,” Lasers Life Sci. 11, 309–333 (1987).

Opt. Eng. (1)

L. G. Lindberg, P. Å. Öberg, “Optical properties of blood in motion,” Opt. Eng. 32, 253–257 (1993).
[CrossRef]

Pflügers Arch. (1)

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinrich, H. Schmid-Schönbein, “Microrheology and light transmission of blood,” Pflügers Arch. 333, 126–139 (1972).
[CrossRef]

Other (2)

S. E. Charm, G. S. Kurland, Blood Flow and Microcirculation (Wiley, New York, 1974).

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, “The optical properties of blood in the near infrared spectral range,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, B. J. Tromberg, eds., Proc. SPIE2678, 314–324 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Cross section of experimental setup: (1) micrometer screw, (2) upper glass plate (static), (3) lower glass plate (rotatable), (4) deep groove ball thrust bearing, (5) DC motor, (6) flexible coupler.

Fig. 2
Fig. 2

Degrees of freedom of the detection fiber relative to the rotating glass plate. The system allows for a horizontal translation and a rotation of the fiber about a local axis pointing out of the paper. Furthermore, a rotation is possible out of the paper plane, about axis AO situated on the upper glass surface. The glass plate rotates about a vertical axis in the plane of the paper, indicated on the right.

Fig. 3
Fig. 3

Definition of angles of the light rays and the detection fiber.

Fig. 4
Fig. 4

Various correction factors as a function of the scattering angle in air (detection angle).

Fig. 5
Fig. 5

Light intensity distributions for scans through the collimated beam for three values of the layer thickness and a shear rate of 300 s-1.

Fig. 6
Fig. 6

Collimated intensity as a function of layer thickness for shear rates of 125 and 300 s-1.

Fig. 7
Fig. 7

Total attenuation coefficient as a function of shear rate.

Fig. 8
Fig. 8

Measured angular light distributions in planes parallel and perpendicular to the direction of shear, with layer thickness of 50 μm and rate of shear of 400 s-1. The distributions have been corrected for single reflection and refraction. Solid curves are best-fitting Henyey–Greenstein functions.

Fig. 9
Fig. 9

Measured angular intensity distributions for layer thickness of 60 μm. The scan was made parallel to the shear direction.

Fig. 10
Fig. 10

Measured anisotropy values for layers of various thicknesses and for a range of shear rates for scans both (a) perpendicular and (b) parallel to the direction of shear. All measurements were performed with the same blood sample in one experimental run. Maximum standard deviation is 0.002.

Fig. 11
Fig. 11

Values of g versus rate of shear for layers with thicknesses 60, 80, and 100 μm for both scan directions relative to the shear orientation.

Fig. 12
Fig. 12

Simulation results: anisotropy g for light transmitted through layers of thicknesses 60, 80, and 100 μm as a function of g of the phase function defined for the individual scattering events. Results are shown for absorption levels μa=0.7 and 1.2 mm-1 and a scattering coefficient μs=120 mm-1. The shown fits are growing exponential functions with an offset.

Fig. 13
Fig. 13

Anisotropy levels for single scattering by whole blood, determined by inverse Monte Carlo simulations with use of the experimental data shown in Fig. 11. A scattering coefficient μs=120 mm-1 and an absorption coefficient μa=0.7 mm-1 were assumed.

Fig. 14
Fig. 14

Values of scattering anisotropy g measured for diluted human blood, with a hematocrit of 6%.

Tables (1)

Tables Icon

Table 1 Overview of g Values for 633 nm Obtained by Various Authors

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

C1(θd)=1Ω,
Ω=AdetR2(θd),
R(θd)=R cos θdcos θa+dgcos θg.
C2(θd)=nb2 cos θbna2 cos θa,
C3(θd)=1t(θd),
t(θ)=(1-R1)(1-R2),
Ri=12 tan2(θi-θi+1)tan2(θi+θi+1)+sin2(θi-θi+1)sin2(θi+θi+1)
C4(θ)=1cos(θd,rot-θa,rot)cos θa,trans,

Metrics