Abstract

Changes generated by lenslike birefringent elements on the beam-quality parameter of partially polarized beams are investigated. Analytical expressions for the beam-quality gain at the output of such systems are given in terms of the second-order intensity moments of the field. Explicit conditions to improve and optimize the beam-quality parameter after propagation through these birefringent transmittances are also shown.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lavi, R. Prochaska, E. Keren, “Generalized beam parameters and transformation law for partially coherent light,” Appl. Opt. 27, 3696–3703 (1988).
    [CrossRef] [PubMed]
  2. M. J. Bastiaans, “Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems,” Optik (Stuttgart) 82, 173–181 (1989).
  3. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990).
    [CrossRef]
  4. J. Serna, R. Martı́nez-Herrero, P. M. Mejı́as, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094–1098 (1991).
    [CrossRef]
  5. H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24, 1027–1049 (1992).
    [CrossRef]
  6. A. E. Siegman, “Binary phase plates cannot improve laser beam quality,” Opt. Lett. 18, 675–677 (1993).
    [CrossRef] [PubMed]
  7. R. Martı́nez-Herrero, P. M. Mejı́as, G. Piquero, “Quality improvement of partially coherent symmetric-intensity beams caused by quartic phase distortions,” Opt. Lett. 17, 1650–1651 (1992).
    [CrossRef] [PubMed]
  8. B. J. Feldman, S. J. Gitomer, “Anular lens soft aperture for high power laser systems,” Appl. Opt. 15, 1379–1380 (1976).
    [CrossRef] [PubMed]
  9. G. Giuliani, Y. K. Park, R. L. Byer, “Radial birefringent element and its application to laser resonator design,” Opt. Lett. 5, 491–493 (1980).
    [CrossRef] [PubMed]
  10. J. M. Eggleston, G. Giuliani, R. L. Byer, “Radial intensity filters using radial birefringent elements,” J. Opt. Soc. Am. 71, 1264–1272 (1981).
    [CrossRef]
  11. R. Martı́nez-Herrero, P. M. Mejı́as, J. M. Movilla, “Spatial characterization of general partially polarized beams,” Opt. Lett. 22, 206–208 (1997).
    [CrossRef] [PubMed]
  12. Q. Lü, S. Dong, H. Weber, “Analysis of TEM00 laser beam degradation caused by a birefringent Nd:YAG rod,” Opt. Quantum Electron. 27, 777–783 (1995).
    [CrossRef]
  13. P. A. Bélanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16, 196–198 (1991).
    [CrossRef] [PubMed]

1997 (1)

1995 (1)

Q. Lü, S. Dong, H. Weber, “Analysis of TEM00 laser beam degradation caused by a birefringent Nd:YAG rod,” Opt. Quantum Electron. 27, 777–783 (1995).
[CrossRef]

1993 (1)

1992 (2)

1991 (2)

1989 (1)

M. J. Bastiaans, “Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems,” Optik (Stuttgart) 82, 173–181 (1989).

1988 (1)

1981 (1)

1980 (1)

1976 (1)

Bastiaans, M. J.

M. J. Bastiaans, “Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems,” Optik (Stuttgart) 82, 173–181 (1989).

Bélanger, P. A.

Byer, R. L.

Dong, S.

Q. Lü, S. Dong, H. Weber, “Analysis of TEM00 laser beam degradation caused by a birefringent Nd:YAG rod,” Opt. Quantum Electron. 27, 777–783 (1995).
[CrossRef]

Eggleston, J. M.

Feldman, B. J.

Gitomer, S. J.

Giuliani, G.

Keren, E.

Lavi, S.

Lü, Q.

Q. Lü, S. Dong, H. Weber, “Analysis of TEM00 laser beam degradation caused by a birefringent Nd:YAG rod,” Opt. Quantum Electron. 27, 777–783 (1995).
[CrossRef]

Marti´nez-Herrero, R.

Meji´as, P. M.

Movilla, J. M.

Park, Y. K.

Piquero, G.

Prochaska, R.

Serna, J.

Siegman, A. E.

A. E. Siegman, “Binary phase plates cannot improve laser beam quality,” Opt. Lett. 18, 675–677 (1993).
[CrossRef] [PubMed]

A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990).
[CrossRef]

Weber, H.

Q. Lü, S. Dong, H. Weber, “Analysis of TEM00 laser beam degradation caused by a birefringent Nd:YAG rod,” Opt. Quantum Electron. 27, 777–783 (1995).
[CrossRef]

H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24, 1027–1049 (1992).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Lett. (5)

Opt. Quantum Electron. (2)

Q. Lü, S. Dong, H. Weber, “Analysis of TEM00 laser beam degradation caused by a birefringent Nd:YAG rod,” Opt. Quantum Electron. 27, 777–783 (1995).
[CrossRef]

H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24, 1027–1049 (1992).
[CrossRef]

Optik (Stuttgart) (1)

M. J. Bastiaans, “Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems,” Optik (Stuttgart) 82, 173–181 (1989).

Other (1)

A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (24)

Equations on this page are rendered with MathJax. Learn more.

E(r; z)=[Es(r; z), Ep(r; z)],
αβj=1Pj αβEj(r+s/2, z)Ej(r-s/2, z)¯×exp(iksη)dsdrdη,
Qr=Ps2P2 Qs+Pp2P2 Qp+PsPpP2 Qsp,
Qr=r2η2-rη2,
Qs=r2sη2s-rηs2,
Qp=r2pη2p-rηp2,
Qsp=r2sη2p+r2pη2s-2rηs2rηp2,
Es(o)(x, y)=exp[ikϕs(x, y)]Es(i)(x, y),
Ep(o)(x, y)=exp[ikϕp(x, y)]Ep(i)(x, y),
ϕs(x, y)=c(x2+y2),
ϕp(x, y)=d(x2+y2),
Qr(o)=Qr(i)+4PsPpP2 (K+M),
K=(d-c)2r2s(i)r2p(i),
M=(d-c)[r2s(i)rηp(i)-r2p(i)rηs(i)].
ΔQr=Qr(o)-Qr(i)=4PsPpP2 (d-c)2r2s(i)r2p(i).
ΔQr=4 cos2 α sin2 αno-neRL2[r2(i)]2,
M(z)=M(0)+z(d-c)[r2s(i)η2p(i)-r2p(i)η2s(i)]+z2(d-c)[rηs(i)η2p(i)-r2p(i)η2s(i)],
r2s(i)η2p(i)=r2p(i)η2s(i),
rηs(i)η2p(i)-rηp(i)η2s(i)=0.
M(0)=0,
M(z)=0.
|(d-c)|=(no-ne)RL<1Rs(i)-1Rp(i),
2(d-c)=1Rs(i)-1Rp(i).
(ΔQr)opt=-PsPpP2 r2s(i)r2p(i)1Rs(i)-1Rp(i)2,

Metrics