Abstract

The spatial variation of the backscattering cross section is the primary source of contrast in present applications of optical coherence tomography (OCT). We introduce and analyze a technique for obtaining OCT images of the local concentration of an absorbing compound in biological tissues and other highly scattering media. A pair of light-emitting diodes, one emitting in a vibrational absorption band of the chemical compound of interest and the other emitting just outside this band, are used as sources at the input of the interferometer. The differential absorption of the probe beam is determined by Fourier transformation and ratiometric processing of the measured interference signals. The ability of the technique to distinguish lipid and water inclusions in a scattering material is demonstrated with an OCT system that uses a pair of light-emitting-diode sources with center wavelengths of 1.3 µm and 1.46 µm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. C. K. Hitzenberger, W. Drexler, A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Visual Sci. 33, 98–103 (1992).
  3. J. M. Schmitt, A. Knüttel, R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
    [CrossRef] [PubMed]
  4. J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1997).
    [CrossRef]
  5. M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. A 9, 903–908 (1992).
    [CrossRef]
  6. J. F. De Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [CrossRef] [PubMed]
  7. M. J. Everett, K. Schoenenberger, B. W. Colston, L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
    [CrossRef]
  8. Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1–3 (1997).
  9. J. M. Schmitt, A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
    [CrossRef]
  10. Y. Sasano, “Simultaneous determination of aerosol and gas distribution by DIAL measurements,” Appl. Opt. 27, 2640–2641 (1988).
    [CrossRef] [PubMed]
  11. A. Papayannis, G. Ancellet, J. Pelon, G. Meggie, “Multiwavelength lidar for ozone measurement in the troposphere and lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
    [CrossRef]
  12. T. Fuji, M. Miyata, S. Kawato, T. Hattori, H. Nakatsuka, “Linear propagation of light investigated with a white-light interferometer,” J. Opt. Soc. Am. B 14, 1074–1078 (1997).
    [CrossRef]
  13. K. M. Yung, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” submitted to J. Biomed. Opt.
  14. J. M. Schmitt, S. L. Lee, K. M. Yung, “An optical coherence microscope with enhanced resolving power,” Opt. Commun. 142, 203–207 (1997).
    [CrossRef]
  15. J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427–1439 (1997).
    [CrossRef] [PubMed]
  16. A. M. Bruckstein, T. Kailath, “Inverse scattering for discrete transmission-line models,” SIAM Rev. 29, 359–389 (1987).
    [CrossRef]
  17. J. M. Schmitt, G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998).
    [CrossRef]
  18. J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography,” submitted to J. Biomed. Opt.

1998

1997

1993

1992

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. A 9, 903–908 (1992).
[CrossRef]

C. K. Hitzenberger, W. Drexler, A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Visual Sci. 33, 98–103 (1992).

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1990

1988

1987

A. M. Bruckstein, T. Kailath, “Inverse scattering for discrete transmission-line models,” SIAM Rev. 29, 359–389 (1987).
[CrossRef]

Ancellet, G.

Bonner, R. F.

Bruckstein, A. M.

A. M. Bruckstein, T. Kailath, “Inverse scattering for discrete transmission-line models,” SIAM Rev. 29, 359–389 (1987).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z. P.

Colston, B. W.

Da Silva, L. B.

De Boer, J. F.

Drexler, W.

C. K. Hitzenberger, W. Drexler, A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Visual Sci. 33, 98–103 (1992).

Everett, M. J.

Fercher, A. F.

C. K. Hitzenberger, W. Drexler, A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Visual Sci. 33, 98–103 (1992).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fuji, T.

Fujimoto, J. G.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hattori, T.

Hee, M. R.

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. A 9, 903–908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

C. K. Hitzenberger, W. Drexler, A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Visual Sci. 33, 98–103 (1992).

Huang, D.

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. A 9, 903–908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1997).
[CrossRef]

Kailath, T.

A. M. Bruckstein, T. Kailath, “Inverse scattering for discrete transmission-line models,” SIAM Rev. 29, 359–389 (1987).
[CrossRef]

Kawato, S.

Knüttel, A.

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1997).
[CrossRef]

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1997).
[CrossRef]

Kumar, G.

Lee, S. L.

J. M. Schmitt, S. L. Lee, K. M. Yung, “An optical coherence microscope with enhanced resolving power,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Malekafzali, A.

Meggie, G.

Milner, T. E.

Miyata, M.

Nakatsuka, H.

Nelson, J. S.

Papayannis, A.

Pelon, J.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Puliafito, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sasano, Y.

Schmitt, J. M.

J. M. Schmitt, G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998).
[CrossRef]

J. M. Schmitt, S. L. Lee, K. M. Yung, “An optical coherence microscope with enhanced resolving power,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427–1439 (1997).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[CrossRef]

J. M. Schmitt, A. Knüttel, R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
[CrossRef] [PubMed]

K. M. Yung, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” submitted to J. Biomed. Opt.

J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography,” submitted to J. Biomed. Opt.

Schoenenberger, K.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1997).
[CrossRef]

Srinivas, S.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. A 9, 903–908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

van Gemert, M. J. C.

Wang, H. W.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1997).
[CrossRef]

Wang, X. J.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography,” submitted to J. Biomed. Opt.

Yung, K. M.

J. M. Schmitt, S. L. Lee, K. M. Yung, “An optical coherence microscope with enhanced resolving power,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography,” submitted to J. Biomed. Opt.

K. M. Yung, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” submitted to J. Biomed. Opt.

Appl. Opt.

IEEE J. Sel. Topics Quantum Electron.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1997).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

C. K. Hitzenberger, W. Drexler, A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Invest. Ophthalmol. Visual Sci. 33, 98–103 (1992).

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

J. M. Schmitt, S. L. Lee, K. M. Yung, “An optical coherence microscope with enhanced resolving power,” Opt. Commun. 142, 203–207 (1997).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427–1439 (1997).
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

SIAM Rev.

A. M. Bruckstein, T. Kailath, “Inverse scattering for discrete transmission-line models,” SIAM Rev. 29, 359–389 (1987).
[CrossRef]

Other

J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography,” submitted to J. Biomed. Opt.

K. M. Yung, J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” submitted to J. Biomed. Opt.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Michelson interferometer illuminated by two light sources with emission spectra S˜1(ω) and S˜2(ω). A diffusely scattering sample characterized by a complex transfer function H˜(ω) is situated in the focal zone of a lens in the sample arm. Multiple scattering in the sample is neglected, and the real part of the refractive index of the sample n is treated as a constant within a range of wavelengths encompassing the emissions of both sources. Under these conditions, light backscattered from a region centered on z=Δl/n, the depth at which the optical path lengths in the reference and sample arms match, mixes with the reference beam to generate an interference signal at the detector.

Fig. 2
Fig. 2

Configuration of the OCT system with which the experiments in the study were carried out. The components of the system above the dashed line generate a reference signal for accurate measurement of the axial position of the stage. The boxes on the right half of the figure perform the electronic processing required to demodulate the interference signals detected by each element of the quadrant detector.

Fig. 3
Fig. 3

Solid curves, emission spectra of the two LED’s used in the experiments. The spectrum shown for the 1.46-µm LED was measured with the LED cooled to ∼5 °C. Dashed curves, transmission spectra of oil and distilled water measured with a conventional grating spectrophotometer (pathlength=0.5 mm).

Fig. 4
Fig. 4

Predicted changes in the relative magnitudes of the source spectra after transmission through water layers of increasing thickness (the labels on the curves are the depths in millimeters). These curves were obtained by using Eq. (3), with S˜1(ω) and S˜2(ω) given by the measured emission spectra of the LED’s and |H˜(ω)|=exp[-μa(ω)z], where z is the layer thickness and μa(ω) is the measured absorption spectrum of water. (a) Emission peaks of sources at 1.3 µm and 1.46 µm, (b) emission peaks of sources at 1.3 µm and 1.475 µm. Note the distortion of the spectrum evident for z=0.8 mm.

Fig. 5
Fig. 5

Power spectral densities of the quadrature-demodulated interference signals produced by reflection of the focused sample beam from the upper and lower glass–sample interfaces of a 0.4-mm layer of (a) D2O and (b) H2O. To show the relative signal strengths, the ratio of the signal powers measured from the segment of the interference signal produced by reflection from the upper interface between the glass and the D2O was normalized to unity. The interference signals were recorded using the OCT system configured as shown in Fig. 2. The peaks centered on 2.5 KHz were produced by light emitted by the 1.3-µm LED; those centered on 12.6 KHz were produced by the 1.46-µm LED.

Fig. 6
Fig. 6

Top left, drawing of the the arterial-wall phantom showing its composition and dimensions. Top right, image of the measured difference between absorption coefficients of the water and oil in the V groove, shown superimposed on the 1.3-µm backscatter image. The numbers on the gray scale give the magnitudes of the differential absorption Δμa in units of mm-1. Bottom, backscatter images of the phantom obtained in each of the two wavelength bands.

Tables (1)

Tables Icon

Table 1 Fractional Contribution of Scattering Losses fs to Measurements of Δμa in Biological Tissue

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Id(τ)=Re[E1*(t)E1(t+τ)+E2*(t)E2(t+τ)],
Id(τ)=|Γ1(τ)|cos4πΔlλ¯1+|Γ2(τ)|cos4πΔlλ¯2h(τ),
I˜d(ω)=[S˜1(ω)+S˜2(ω)]H˜(ω),
|R(ω)|2=σb(ω, z)z2exp-20zα(ω, z)dz,
I1(z)=ωl1ωh1|I˜d(ω)|2dω=Ii1σb1(z)z2exp-20zα1(z)dz,
I2(z)=ωl2ωh2|I˜d(ω)|2dω=Ii2σb2(z)z2exp-20zα2(z)dz.
σb1(z)=1ωh1-ωl1ωl1ωh1σb(ω, z)dω
σb2(z)=1ωh2-ωl2ωl2ωh2σb(ω, z)dω;
α1(z)=1ωh1-ωl1ωl1ωh1α(ω, z)dω
α2(z)=1ωh2-ωl2ωl2ωh2α(ω, z)dω.
2z0zα2(z)-α1(z)dz=lnI1(z)σb2(z)I2(z)σb1(z)-lnI1(z0)σb2(z0)I2(z0)σb1(z0)
forIi1/Ii2=1.
2z0zα2(z)-α1(z)dz=lnI1(z)I1(z0)I2(z0)I2(z)
forσb1(z)=σb1(z0),σb2(z)=σb2(z0).
α2(z)-α1(z)=12ddzlnI1(z)I2(z).
α2-α1=12(z-z0)lnI1(z)I2(z),
Δμa=μa2-μa1=12(z-z0)lnI1(z)I2(z)-(μs2-μs1).
Δμa12ΔzlnI1(z)I2(z).
fs=μs1-μs2Δμa=μs01+Δλλ¯0m-1
fsmμs0ΔλΔμaλ¯0forΔλλ¯0.

Metrics