Abstract

Microimaging techniques with synchrotron radiation demand fast, on-line x-ray detectors with a spatial resolution in the micrometer or submicrometer range. For this task an x-ray detector based on a transparent, i.e., nonscattering, luminescent screen has been developed. Its performance is described experimentally and theoretically. The detector consists of an Y3Al5O12:Ce screen, microscope optics, and a low-noise CCD camera, operated at x-ray energies between 10 and 50 keV. Good image quality is achieved if the depth of focus of the optical system is matched to the x-ray absorption length or thickness of the scintillator. A spatial resolution of 0.8 µm fwhm (1000 line pairs/mm with 10% contrast) was measured by recording the interferogram of a boron fiber. First applications in phase contrast imaging and microtomography are shown.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lindaas, M. Howells, C. Jacobsen, A. Kalinovsky, “X-ray holographic microscopy by means of photoresist recording and atomic-force microscopic readout,” J. Opt. Soc. Am. A 13, 1788–1800 (1996).
    [CrossRef]
  2. K. Kinoshita, T. Matsumura, Y. Inagaki, N. Hirai, M. Sugiyama, H. Kihara, N. Watanabe, Y. Shimanuki, A. Yagashita, in X-Ray Microscopy III, Vol. 67 of Springer Series in Optical Sciences, A. Michette, G. Morrison, C. Buckley, eds. (Springer-Verlag, Berlin, 1992), pp. 335–337.
  3. Y. Okamoto, T. Oguro, I. Kashima, D. Kanishi, T. Sakurai, T. Matsuki, “Development of the computed electroradiography: trial manufacture of digital imaging system,” Radiology 185, 395 (1992).
  4. M. D. Silver, “Towards a micrometer resolution x-ray tomographic microscope,” in X-Ray Microbeam Technology and Applications, W. Yun, ed., Proc. SPIE2516, 135–147 (1995).
    [CrossRef]
  5. R. Kodama, N. Ikeda, Y. Kato, Y. Katori, T. Iwai, K. Takeshi, “Development of an advanced Kirkpatrick–Baez microscope,” Opt. Lett. 21, 1321–1323 (1996).
    [CrossRef] [PubMed]
  6. B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
    [CrossRef]
  7. W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray topography,” Science 266, 1213–1215 (1994).
    [CrossRef] [PubMed]
  8. R. K. Swank, “Calculation of modulation transfer functions of x-ray fluorescent screens,” Appl. Opt. 12, 1865–1870 (1973).
    [CrossRef] [PubMed]
  9. A. Koch, C. Riekel, “X-ray video camera with 10 µm spatial resolution,” Rev. Sci. Instrum. 67, 1737–1740 (1996).
    [CrossRef]
  10. H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, H. J. Tanke, “Preparation and microscopic visualization of multicolor luminescent immunophosphors,” Cytometry 13, 561–570 (1992).
    [CrossRef] [PubMed]
  11. K. Oba, M. Ito, M. Yamaguchi, M. Tanaka, “A CsI(Na) scintillation plate with high spatial resolution,” Adv. Electron. Electron Phys. 74, 247–255 (1988).
    [CrossRef]
  12. B. P. Flannery, H. W. Deckman, W. G. Roberge, K. L. d’Amico, “Three dimensional x-ray microtomography,” Science 237, 1439–1444 (1987).
    [CrossRef] [PubMed]
  13. H. W. Deckman, J. H. Dunsmuir, S. M. Gruner, “Microfabrication of cellular phosphors,” J. Vac. Sci. Technol. B 7, 1832–1835 (1989).
    [CrossRef]
  14. U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan, M. C. Nichols, “X-ray tomographic microscopy of fibre-reinforced materials,” J. Mater. Sci. 26, 4076–4085 (1991).
    [CrossRef]
  15. F. Busch, “Auflösungsvermögen einer Mikrotomographie-Kamera für Röntgen-Synchrotronstrahlung,” Ph.D. dissertation (University of Dortmund, Dortmund, Germany, 1994).
  16. H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London, Ser. A 231, 91–103 (1955).
    [CrossRef]
  17. M. Born, E. Wolf, Principle of Optics, 6th ed. (Pergamon, Oxford, 1986).
  18. J. L. Halbleib, R. F. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, M. J. Berger, “ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes,” (Sandia National Laboratories, Albuquerque, N.M., 1988).
  19. J. L. Halbleib, “Structure and operation of the ITS code system,” in Monte Carlo Transport of Electrons and Photons, T. M. Jenkins, W. R. Nelson, A. Rindi, eds. (Plenum, New York, 1987), pp. 249–262.
  20. International Commission on Radiation Units and Measurements (ICRU), “Radiation quantities and units,” (ICRU, Washington, D.C., 1980).
  21. J. C. Dainty, R. Shaw, eds. Image Science, 5th ed. (Academic, London, 1992).
  22. U. W. Arndt, D. J. Gilmore, “X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources,” J. Appl. Crystallogr. 12, 1–9 (1979).
    [CrossRef]
  23. A. Koch, M. Hagelstein, A. San Miguel, A. Fontaine, T. Ressler, “Scintillating screen-CCD camera using analog on chip storage for time-resolved x-ray absorption spectroscopy,” in Cameras and Systems for Electronic Photography and Scientific Imaging, C. N. Anagnostopoulos, M. P. Lesser, eds., Proc. SPIE2416, 85–93 (1995).
    [CrossRef]
  24. E. Breitenberger, “Scintillation spectrometer statistics,” in Progress in Nuclear Physics, O. R. Frisch, ed. (Pergamon, New York, 1955), Vol. 4, pp. 56–94.
  25. E. Dufresne, R. Brüning, M. Sutton, B. Rodricks, G. B. Stephenson, “A statistical technique for characterizing x-ray position-sensitive detectors,” Nucl. Instrum. Methods Phys. Res. A 364, 380–393 (1995).
    [CrossRef]
  26. A. Snigirev, “The recent development of Bragg–Fresnel crystal optics: experiments and applications at the ESRF,” Rev. Sci. Instrum. 66, 2053–2058 (1995).
    [CrossRef]
  27. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
    [CrossRef]
  28. C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, V. Kohn, “Phase-contrast microtomography with coherent high-energy synchrotron x-rays,” Appl. Phys. Lett. 69, 1826–1828 (1996).
    [CrossRef]
  29. P. Cloetens, R. Barrett, J. Baruchel, J. Guigney, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
    [CrossRef]
  30. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetzov, “On the requirements to the instrumentation for the new generation of the synchrotron radiation sources: beryllium windows,” Nucl. Instrum. Methods Phys. Res. A 370, 634–640 (1996).
    [CrossRef]
  31. R. W. Young, B. J. Green, G. H. Camp, I. G. Gibb, M. S. Waite, “A transparent thin-film CRT screen of Y2O2:Eu with contrast-enhancement layer,” Proc. Soc. Inf. Disp. 27, 139–143 (1986).
  32. W. B. Gilboy, “Microtomography with ionizing radiations,” Appl. Radiat. Isot. 46, 689–699 (1995).
    [CrossRef]
  33. H. Chrétien, Calcul des combinaison optiques, 5th ed. (Masson, Paris, 1980).
  34. G. Black, E. H. Linfoot, “Spherical aberration and information content of optical images,” Proc. R. Soc. London, Ser. A 239, 522–540 (1957).
    [CrossRef]
  35. Photometrics, “Spherical aberration in the photometrics system caused by the camera window,” Application Note (Photometrics, Tucson, Ariz., 1990).

1996 (6)

R. Kodama, N. Ikeda, Y. Kato, Y. Katori, T. Iwai, K. Takeshi, “Development of an advanced Kirkpatrick–Baez microscope,” Opt. Lett. 21, 1321–1323 (1996).
[CrossRef] [PubMed]

A. Koch, C. Riekel, “X-ray video camera with 10 µm spatial resolution,” Rev. Sci. Instrum. 67, 1737–1740 (1996).
[CrossRef]

S. Lindaas, M. Howells, C. Jacobsen, A. Kalinovsky, “X-ray holographic microscopy by means of photoresist recording and atomic-force microscopic readout,” J. Opt. Soc. Am. A 13, 1788–1800 (1996).
[CrossRef]

C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, V. Kohn, “Phase-contrast microtomography with coherent high-energy synchrotron x-rays,” Appl. Phys. Lett. 69, 1826–1828 (1996).
[CrossRef]

P. Cloetens, R. Barrett, J. Baruchel, J. Guigney, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetzov, “On the requirements to the instrumentation for the new generation of the synchrotron radiation sources: beryllium windows,” Nucl. Instrum. Methods Phys. Res. A 370, 634–640 (1996).
[CrossRef]

1995 (5)

W. B. Gilboy, “Microtomography with ionizing radiations,” Appl. Radiat. Isot. 46, 689–699 (1995).
[CrossRef]

E. Dufresne, R. Brüning, M. Sutton, B. Rodricks, G. B. Stephenson, “A statistical technique for characterizing x-ray position-sensitive detectors,” Nucl. Instrum. Methods Phys. Res. A 364, 380–393 (1995).
[CrossRef]

A. Snigirev, “The recent development of Bragg–Fresnel crystal optics: experiments and applications at the ESRF,” Rev. Sci. Instrum. 66, 2053–2058 (1995).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
[CrossRef]

1994 (1)

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray topography,” Science 266, 1213–1215 (1994).
[CrossRef] [PubMed]

1992 (2)

H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, H. J. Tanke, “Preparation and microscopic visualization of multicolor luminescent immunophosphors,” Cytometry 13, 561–570 (1992).
[CrossRef] [PubMed]

Y. Okamoto, T. Oguro, I. Kashima, D. Kanishi, T. Sakurai, T. Matsuki, “Development of the computed electroradiography: trial manufacture of digital imaging system,” Radiology 185, 395 (1992).

1991 (1)

U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan, M. C. Nichols, “X-ray tomographic microscopy of fibre-reinforced materials,” J. Mater. Sci. 26, 4076–4085 (1991).
[CrossRef]

1989 (1)

H. W. Deckman, J. H. Dunsmuir, S. M. Gruner, “Microfabrication of cellular phosphors,” J. Vac. Sci. Technol. B 7, 1832–1835 (1989).
[CrossRef]

1988 (1)

K. Oba, M. Ito, M. Yamaguchi, M. Tanaka, “A CsI(Na) scintillation plate with high spatial resolution,” Adv. Electron. Electron Phys. 74, 247–255 (1988).
[CrossRef]

1987 (1)

B. P. Flannery, H. W. Deckman, W. G. Roberge, K. L. d’Amico, “Three dimensional x-ray microtomography,” Science 237, 1439–1444 (1987).
[CrossRef] [PubMed]

1986 (1)

R. W. Young, B. J. Green, G. H. Camp, I. G. Gibb, M. S. Waite, “A transparent thin-film CRT screen of Y2O2:Eu with contrast-enhancement layer,” Proc. Soc. Inf. Disp. 27, 139–143 (1986).

1979 (1)

U. W. Arndt, D. J. Gilmore, “X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources,” J. Appl. Crystallogr. 12, 1–9 (1979).
[CrossRef]

1973 (1)

1957 (1)

G. Black, E. H. Linfoot, “Spherical aberration and information content of optical images,” Proc. R. Soc. London, Ser. A 239, 522–540 (1957).
[CrossRef]

1955 (1)

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London, Ser. A 231, 91–103 (1955).
[CrossRef]

Anderson, E. H.

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray topography,” Science 266, 1213–1215 (1994).
[CrossRef] [PubMed]

Arndt, U. W.

U. W. Arndt, D. J. Gilmore, “X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources,” J. Appl. Crystallogr. 12, 1–9 (1979).
[CrossRef]

Barrett, R.

P. Cloetens, R. Barrett, J. Baruchel, J. Guigney, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

Baruchel, J.

P. Cloetens, R. Barrett, J. Baruchel, J. Guigney, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

Berger, M. J.

J. L. Halbleib, R. F. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, M. J. Berger, “ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes,” (Sandia National Laboratories, Albuquerque, N.M., 1988).

Beverloo, H. B.

H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, H. J. Tanke, “Preparation and microscopic visualization of multicolor luminescent immunophosphors,” Cytometry 13, 561–570 (1992).
[CrossRef] [PubMed]

Black, G.

G. Black, E. H. Linfoot, “Spherical aberration and information content of optical images,” Proc. R. Soc. London, Ser. A 239, 522–540 (1957).
[CrossRef]

Bonnet, J.

H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, H. J. Tanke, “Preparation and microscopic visualization of multicolor luminescent immunophosphors,” Cytometry 13, 561–570 (1992).
[CrossRef] [PubMed]

Bonse, U.

U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan, M. C. Nichols, “X-ray tomographic microscopy of fibre-reinforced materials,” J. Mater. Sci. 26, 4076–4085 (1991).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principle of Optics, 6th ed. (Pergamon, Oxford, 1986).

Breitenberger, E.

E. Breitenberger, “Scintillation spectrometer statistics,” in Progress in Nuclear Physics, O. R. Frisch, ed. (Pergamon, New York, 1955), Vol. 4, pp. 56–94.

Brüning, R.

E. Dufresne, R. Brüning, M. Sutton, B. Rodricks, G. B. Stephenson, “A statistical technique for characterizing x-ray position-sensitive detectors,” Nucl. Instrum. Methods Phys. Res. A 364, 380–393 (1995).
[CrossRef]

Busch, F.

U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan, M. C. Nichols, “X-ray tomographic microscopy of fibre-reinforced materials,” J. Mater. Sci. 26, 4076–4085 (1991).
[CrossRef]

F. Busch, “Auflösungsvermögen einer Mikrotomographie-Kamera für Röntgen-Synchrotronstrahlung,” Ph.D. dissertation (University of Dortmund, Dortmund, Germany, 1994).

Cai, Z.

B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
[CrossRef]

Camp, G. H.

R. W. Young, B. J. Green, G. H. Camp, I. G. Gibb, M. S. Waite, “A transparent thin-film CRT screen of Y2O2:Eu with contrast-enhancement layer,” Proc. Soc. Inf. Disp. 27, 139–143 (1986).

Cerrina, F.

B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
[CrossRef]

Chrétien, H.

H. Chrétien, Calcul des combinaison optiques, 5th ed. (Masson, Paris, 1980).

Cloetens, P.

P. Cloetens, R. Barrett, J. Baruchel, J. Guigney, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

d’Amico, K. L.

B. P. Flannery, H. W. Deckman, W. G. Roberge, K. L. d’Amico, “Three dimensional x-ray microtomography,” Science 237, 1439–1444 (1987).
[CrossRef] [PubMed]

Deckman, H. W.

H. W. Deckman, J. H. Dunsmuir, S. M. Gruner, “Microfabrication of cellular phosphors,” J. Vac. Sci. Technol. B 7, 1832–1835 (1989).
[CrossRef]

B. P. Flannery, H. W. Deckman, W. G. Roberge, K. L. d’Amico, “Three dimensional x-ray microtomography,” Science 237, 1439–1444 (1987).
[CrossRef] [PubMed]

DiFabrizio, E.

B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
[CrossRef]

Dufresne, E.

E. Dufresne, R. Brüning, M. Sutton, B. Rodricks, G. B. Stephenson, “A statistical technique for characterizing x-ray position-sensitive detectors,” Nucl. Instrum. Methods Phys. Res. A 364, 380–393 (1995).
[CrossRef]

Dunsmuir, J. H.

H. W. Deckman, J. H. Dunsmuir, S. M. Gruner, “Microfabrication of cellular phosphors,” J. Vac. Sci. Technol. B 7, 1832–1835 (1989).
[CrossRef]

Flannery, B. P.

B. P. Flannery, H. W. Deckman, W. G. Roberge, K. L. d’Amico, “Three dimensional x-ray microtomography,” Science 237, 1439–1444 (1987).
[CrossRef] [PubMed]

Fontaine, A.

A. Koch, M. Hagelstein, A. San Miguel, A. Fontaine, T. Ressler, “Scintillating screen-CCD camera using analog on chip storage for time-resolved x-ray absorption spectroscopy,” in Cameras and Systems for Electronic Photography and Scientific Imaging, C. N. Anagnostopoulos, M. P. Lesser, eds., Proc. SPIE2416, 85–93 (1995).
[CrossRef]

Gentili, M.

B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
[CrossRef]

Gibb, I. G.

R. W. Young, B. J. Green, G. H. Camp, I. G. Gibb, M. S. Waite, “A transparent thin-film CRT screen of Y2O2:Eu with contrast-enhancement layer,” Proc. Soc. Inf. Disp. 27, 139–143 (1986).

Gilboy, W. B.

W. B. Gilboy, “Microtomography with ionizing radiations,” Appl. Radiat. Isot. 46, 689–699 (1995).
[CrossRef]

Gilmore, D. J.

U. W. Arndt, D. J. Gilmore, “X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources,” J. Appl. Crystallogr. 12, 1–9 (1979).
[CrossRef]

Green, B. J.

R. W. Young, B. J. Green, G. H. Camp, I. G. Gibb, M. S. Waite, “A transparent thin-film CRT screen of Y2O2:Eu with contrast-enhancement layer,” Proc. Soc. Inf. Disp. 27, 139–143 (1986).

Grella, L.

B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
[CrossRef]

Gruner, S. M.

H. W. Deckman, J. H. Dunsmuir, S. M. Gruner, “Microfabrication of cellular phosphors,” J. Vac. Sci. Technol. B 7, 1832–1835 (1989).
[CrossRef]

Guigney, J.

P. Cloetens, R. Barrett, J. Baruchel, J. Guigney, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

Haddad, W. S.

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray topography,” Science 266, 1213–1215 (1994).
[CrossRef] [PubMed]

Hagelstein, M.

A. Koch, M. Hagelstein, A. San Miguel, A. Fontaine, T. Ressler, “Scintillating screen-CCD camera using analog on chip storage for time-resolved x-ray absorption spectroscopy,” in Cameras and Systems for Electronic Photography and Scientific Imaging, C. N. Anagnostopoulos, M. P. Lesser, eds., Proc. SPIE2416, 85–93 (1995).
[CrossRef]

Halbleib, J. L.

J. L. Halbleib, “Structure and operation of the ITS code system,” in Monte Carlo Transport of Electrons and Photons, T. M. Jenkins, W. R. Nelson, A. Rindi, eds. (Plenum, New York, 1987), pp. 249–262.

J. L. Halbleib, R. F. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, M. J. Berger, “ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes,” (Sandia National Laboratories, Albuquerque, N.M., 1988).

Hirai, N.

K. Kinoshita, T. Matsumura, Y. Inagaki, N. Hirai, M. Sugiyama, H. Kihara, N. Watanabe, Y. Shimanuki, A. Yagashita, in X-Ray Microscopy III, Vol. 67 of Springer Series in Optical Sciences, A. Michette, G. Morrison, C. Buckley, eds. (Springer-Verlag, Berlin, 1992), pp. 335–337.

Hopkins, H. H.

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London, Ser. A 231, 91–103 (1955).
[CrossRef]

Howells, M.

Ikeda, N.

Inagaki, Y.

K. Kinoshita, T. Matsumura, Y. Inagaki, N. Hirai, M. Sugiyama, H. Kihara, N. Watanabe, Y. Shimanuki, A. Yagashita, in X-Ray Microscopy III, Vol. 67 of Springer Series in Optical Sciences, A. Michette, G. Morrison, C. Buckley, eds. (Springer-Verlag, Berlin, 1992), pp. 335–337.

Ito, M.

K. Oba, M. Ito, M. Yamaguchi, M. Tanaka, “A CsI(Na) scintillation plate with high spatial resolution,” Adv. Electron. Electron Phys. 74, 247–255 (1988).
[CrossRef]

Iwai, T.

Jacobsen, C.

Johnson, Q. C.

U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan, M. C. Nichols, “X-ray tomographic microscopy of fibre-reinforced materials,” J. Mater. Sci. 26, 4076–4085 (1991).
[CrossRef]

Kalinovsky, A.

Kanishi, D.

Y. Okamoto, T. Oguro, I. Kashima, D. Kanishi, T. Sakurai, T. Matsuki, “Development of the computed electroradiography: trial manufacture of digital imaging system,” Radiology 185, 395 (1992).

Kashima, I.

Y. Okamoto, T. Oguro, I. Kashima, D. Kanishi, T. Sakurai, T. Matsuki, “Development of the computed electroradiography: trial manufacture of digital imaging system,” Radiology 185, 395 (1992).

Kato, Y.

Katori, Y.

Kensek, R. F.

J. L. Halbleib, R. F. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, M. J. Berger, “ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes,” (Sandia National Laboratories, Albuquerque, N.M., 1988).

Kihara, H.

K. Kinoshita, T. Matsumura, Y. Inagaki, N. Hirai, M. Sugiyama, H. Kihara, N. Watanabe, Y. Shimanuki, A. Yagashita, in X-Ray Microscopy III, Vol. 67 of Springer Series in Optical Sciences, A. Michette, G. Morrison, C. Buckley, eds. (Springer-Verlag, Berlin, 1992), pp. 335–337.

Kinney, J. H.

U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan, M. C. Nichols, “X-ray tomographic microscopy of fibre-reinforced materials,” J. Mater. Sci. 26, 4076–4085 (1991).
[CrossRef]

Kinoshita, K.

K. Kinoshita, T. Matsumura, Y. Inagaki, N. Hirai, M. Sugiyama, H. Kihara, N. Watanabe, Y. Shimanuki, A. Yagashita, in X-Ray Microscopy III, Vol. 67 of Springer Series in Optical Sciences, A. Michette, G. Morrison, C. Buckley, eds. (Springer-Verlag, Berlin, 1992), pp. 335–337.

Koch, A.

A. Koch, C. Riekel, “X-ray video camera with 10 µm spatial resolution,” Rev. Sci. Instrum. 67, 1737–1740 (1996).
[CrossRef]

A. Koch, M. Hagelstein, A. San Miguel, A. Fontaine, T. Ressler, “Scintillating screen-CCD camera using analog on chip storage for time-resolved x-ray absorption spectroscopy,” in Cameras and Systems for Electronic Photography and Scientific Imaging, C. N. Anagnostopoulos, M. P. Lesser, eds., Proc. SPIE2416, 85–93 (1995).
[CrossRef]

Kodama, R.

Kohn, V.

C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, V. Kohn, “Phase-contrast microtomography with coherent high-energy synchrotron x-rays,” Appl. Phys. Lett. 69, 1826–1828 (1996).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetzov, “On the requirements to the instrumentation for the new generation of the synchrotron radiation sources: beryllium windows,” Nucl. Instrum. Methods Phys. Res. A 370, 634–640 (1996).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Krasnoperova, A.

B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
[CrossRef]

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Kuznetzov, S.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetzov, “On the requirements to the instrumentation for the new generation of the synchrotron radiation sources: beryllium windows,” Nucl. Instrum. Methods Phys. Res. A 370, 634–640 (1996).
[CrossRef]

Lai, B.

B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
[CrossRef]

Legnini, D.

B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
[CrossRef]

Levesque, R. A.

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray topography,” Science 266, 1213–1215 (1994).
[CrossRef] [PubMed]

Lindaas, S.

Linfoot, E. H.

G. Black, E. H. Linfoot, “Spherical aberration and information content of optical images,” Proc. R. Soc. London, Ser. A 239, 522–540 (1957).
[CrossRef]

Matsuki, T.

Y. Okamoto, T. Oguro, I. Kashima, D. Kanishi, T. Sakurai, T. Matsuki, “Development of the computed electroradiography: trial manufacture of digital imaging system,” Radiology 185, 395 (1992).

Matsumura, T.

K. Kinoshita, T. Matsumura, Y. Inagaki, N. Hirai, M. Sugiyama, H. Kihara, N. Watanabe, Y. Shimanuki, A. Yagashita, in X-Ray Microscopy III, Vol. 67 of Springer Series in Optical Sciences, A. Michette, G. Morrison, C. Buckley, eds. (Springer-Verlag, Berlin, 1992), pp. 335–337.

McNulty, I.

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray topography,” Science 266, 1213–1215 (1994).
[CrossRef] [PubMed]

Mehlhorn, T. A.

J. L. Halbleib, R. F. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, M. J. Berger, “ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes,” (Sandia National Laboratories, Albuquerque, N.M., 1988).

Nichols, M. C.

U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan, M. C. Nichols, “X-ray tomographic microscopy of fibre-reinforced materials,” J. Mater. Sci. 26, 4076–4085 (1991).
[CrossRef]

Nusshardt, R.

U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan, M. C. Nichols, “X-ray tomographic microscopy of fibre-reinforced materials,” J. Mater. Sci. 26, 4076–4085 (1991).
[CrossRef]

Oba, K.

K. Oba, M. Ito, M. Yamaguchi, M. Tanaka, “A CsI(Na) scintillation plate with high spatial resolution,” Adv. Electron. Electron Phys. 74, 247–255 (1988).
[CrossRef]

Oguro, T.

Y. Okamoto, T. Oguro, I. Kashima, D. Kanishi, T. Sakurai, T. Matsuki, “Development of the computed electroradiography: trial manufacture of digital imaging system,” Radiology 185, 395 (1992).

Okamoto, Y.

Y. Okamoto, T. Oguro, I. Kashima, D. Kanishi, T. Sakurai, T. Matsuki, “Development of the computed electroradiography: trial manufacture of digital imaging system,” Radiology 185, 395 (1992).

Pahl, R.

U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan, M. C. Nichols, “X-ray tomographic microscopy of fibre-reinforced materials,” J. Mater. Sci. 26, 4076–4085 (1991).
[CrossRef]

Ploem, J. S.

H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, H. J. Tanke, “Preparation and microscopic visualization of multicolor luminescent immunophosphors,” Cytometry 13, 561–570 (1992).
[CrossRef] [PubMed]

Raven, C.

C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, V. Kohn, “Phase-contrast microtomography with coherent high-energy synchrotron x-rays,” Appl. Phys. Lett. 69, 1826–1828 (1996).
[CrossRef]

Ressler, T.

A. Koch, M. Hagelstein, A. San Miguel, A. Fontaine, T. Ressler, “Scintillating screen-CCD camera using analog on chip storage for time-resolved x-ray absorption spectroscopy,” in Cameras and Systems for Electronic Photography and Scientific Imaging, C. N. Anagnostopoulos, M. P. Lesser, eds., Proc. SPIE2416, 85–93 (1995).
[CrossRef]

Riekel, C.

A. Koch, C. Riekel, “X-ray video camera with 10 µm spatial resolution,” Rev. Sci. Instrum. 67, 1737–1740 (1996).
[CrossRef]

Roberge, W. G.

B. P. Flannery, H. W. Deckman, W. G. Roberge, K. L. d’Amico, “Three dimensional x-ray microtomography,” Science 237, 1439–1444 (1987).
[CrossRef] [PubMed]

Rodricks, B.

E. Dufresne, R. Brüning, M. Sutton, B. Rodricks, G. B. Stephenson, “A statistical technique for characterizing x-ray position-sensitive detectors,” Nucl. Instrum. Methods Phys. Res. A 364, 380–393 (1995).
[CrossRef]

Runia, R.

H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, H. J. Tanke, “Preparation and microscopic visualization of multicolor luminescent immunophosphors,” Cytometry 13, 561–570 (1992).
[CrossRef] [PubMed]

Sakurai, T.

Y. Okamoto, T. Oguro, I. Kashima, D. Kanishi, T. Sakurai, T. Matsuki, “Development of the computed electroradiography: trial manufacture of digital imaging system,” Radiology 185, 395 (1992).

San Miguel, A.

A. Koch, M. Hagelstein, A. San Miguel, A. Fontaine, T. Ressler, “Scintillating screen-CCD camera using analog on chip storage for time-resolved x-ray absorption spectroscopy,” in Cameras and Systems for Electronic Photography and Scientific Imaging, C. N. Anagnostopoulos, M. P. Lesser, eds., Proc. SPIE2416, 85–93 (1995).
[CrossRef]

Saroyan, R. A.

U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan, M. C. Nichols, “X-ray tomographic microscopy of fibre-reinforced materials,” J. Mater. Sci. 26, 4076–4085 (1991).
[CrossRef]

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Schlenker, M.

P. Cloetens, R. Barrett, J. Baruchel, J. Guigney, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

Seltzer, S. M.

J. L. Halbleib, R. F. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, M. J. Berger, “ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes,” (Sandia National Laboratories, Albuquerque, N.M., 1988).

Shimanuki, Y.

K. Kinoshita, T. Matsumura, Y. Inagaki, N. Hirai, M. Sugiyama, H. Kihara, N. Watanabe, Y. Shimanuki, A. Yagashita, in X-Ray Microscopy III, Vol. 67 of Springer Series in Optical Sciences, A. Michette, G. Morrison, C. Buckley, eds. (Springer-Verlag, Berlin, 1992), pp. 335–337.

Silver, M. D.

M. D. Silver, “Towards a micrometer resolution x-ray tomographic microscope,” in X-Ray Microbeam Technology and Applications, W. Yun, ed., Proc. SPIE2516, 135–147 (1995).
[CrossRef]

Snigirev, A.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetzov, “On the requirements to the instrumentation for the new generation of the synchrotron radiation sources: beryllium windows,” Nucl. Instrum. Methods Phys. Res. A 370, 634–640 (1996).
[CrossRef]

C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, V. Kohn, “Phase-contrast microtomography with coherent high-energy synchrotron x-rays,” Appl. Phys. Lett. 69, 1826–1828 (1996).
[CrossRef]

A. Snigirev, “The recent development of Bragg–Fresnel crystal optics: experiments and applications at the ESRF,” Rev. Sci. Instrum. 66, 2053–2058 (1995).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Snigireva, I.

C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, V. Kohn, “Phase-contrast microtomography with coherent high-energy synchrotron x-rays,” Appl. Phys. Lett. 69, 1826–1828 (1996).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetzov, “On the requirements to the instrumentation for the new generation of the synchrotron radiation sources: beryllium windows,” Nucl. Instrum. Methods Phys. Res. A 370, 634–640 (1996).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Souvorov, A.

C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, V. Kohn, “Phase-contrast microtomography with coherent high-energy synchrotron x-rays,” Appl. Phys. Lett. 69, 1826–1828 (1996).
[CrossRef]

Spanne, P.

C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, V. Kohn, “Phase-contrast microtomography with coherent high-energy synchrotron x-rays,” Appl. Phys. Lett. 69, 1826–1828 (1996).
[CrossRef]

Stephenson, G. B.

E. Dufresne, R. Brüning, M. Sutton, B. Rodricks, G. B. Stephenson, “A statistical technique for characterizing x-ray position-sensitive detectors,” Nucl. Instrum. Methods Phys. Res. A 364, 380–393 (1995).
[CrossRef]

Sugiyama, M.

K. Kinoshita, T. Matsumura, Y. Inagaki, N. Hirai, M. Sugiyama, H. Kihara, N. Watanabe, Y. Shimanuki, A. Yagashita, in X-Ray Microscopy III, Vol. 67 of Springer Series in Optical Sciences, A. Michette, G. Morrison, C. Buckley, eds. (Springer-Verlag, Berlin, 1992), pp. 335–337.

Sutton, M.

E. Dufresne, R. Brüning, M. Sutton, B. Rodricks, G. B. Stephenson, “A statistical technique for characterizing x-ray position-sensitive detectors,” Nucl. Instrum. Methods Phys. Res. A 364, 380–393 (1995).
[CrossRef]

Swank, R. K.

Takeshi, K.

Tanaka, M.

K. Oba, M. Ito, M. Yamaguchi, M. Tanaka, “A CsI(Na) scintillation plate with high spatial resolution,” Adv. Electron. Electron Phys. 74, 247–255 (1988).
[CrossRef]

Tanke, H. J.

H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, H. J. Tanke, “Preparation and microscopic visualization of multicolor luminescent immunophosphors,” Cytometry 13, 561–570 (1992).
[CrossRef] [PubMed]

Trebes, J. E.

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray topography,” Science 266, 1213–1215 (1994).
[CrossRef] [PubMed]

Valdez, G. D.

J. L. Halbleib, R. F. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, M. J. Berger, “ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes,” (Sandia National Laboratories, Albuquerque, N.M., 1988).

van der Geest, R.

H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, H. J. Tanke, “Preparation and microscopic visualization of multicolor luminescent immunophosphors,” Cytometry 13, 561–570 (1992).
[CrossRef] [PubMed]

van Schadewijk, A.

H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, H. J. Tanke, “Preparation and microscopic visualization of multicolor luminescent immunophosphors,” Cytometry 13, 561–570 (1992).
[CrossRef] [PubMed]

Verwoerd, N. P.

H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, H. J. Tanke, “Preparation and microscopic visualization of multicolor luminescent immunophosphors,” Cytometry 13, 561–570 (1992).
[CrossRef] [PubMed]

Vrolijk, J.

H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, H. J. Tanke, “Preparation and microscopic visualization of multicolor luminescent immunophosphors,” Cytometry 13, 561–570 (1992).
[CrossRef] [PubMed]

Waite, M. S.

R. W. Young, B. J. Green, G. H. Camp, I. G. Gibb, M. S. Waite, “A transparent thin-film CRT screen of Y2O2:Eu with contrast-enhancement layer,” Proc. Soc. Inf. Disp. 27, 139–143 (1986).

Watanabe, N.

K. Kinoshita, T. Matsumura, Y. Inagaki, N. Hirai, M. Sugiyama, H. Kihara, N. Watanabe, Y. Shimanuki, A. Yagashita, in X-Ray Microscopy III, Vol. 67 of Springer Series in Optical Sciences, A. Michette, G. Morrison, C. Buckley, eds. (Springer-Verlag, Berlin, 1992), pp. 335–337.

Wolf, E.

M. Born, E. Wolf, Principle of Optics, 6th ed. (Pergamon, Oxford, 1986).

Xiao, Y.

B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
[CrossRef]

Yag, L.

B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
[CrossRef]

Yagashita, A.

K. Kinoshita, T. Matsumura, Y. Inagaki, N. Hirai, M. Sugiyama, H. Kihara, N. Watanabe, Y. Shimanuki, A. Yagashita, in X-Ray Microscopy III, Vol. 67 of Springer Series in Optical Sciences, A. Michette, G. Morrison, C. Buckley, eds. (Springer-Verlag, Berlin, 1992), pp. 335–337.

Yamaguchi, M.

K. Oba, M. Ito, M. Yamaguchi, M. Tanaka, “A CsI(Na) scintillation plate with high spatial resolution,” Adv. Electron. Electron Phys. 74, 247–255 (1988).
[CrossRef]

Yang, L.

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray topography,” Science 266, 1213–1215 (1994).
[CrossRef] [PubMed]

Young, R. W.

R. W. Young, B. J. Green, G. H. Camp, I. G. Gibb, M. S. Waite, “A transparent thin-film CRT screen of Y2O2:Eu with contrast-enhancement layer,” Proc. Soc. Inf. Disp. 27, 139–143 (1986).

Yun, W.

B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
[CrossRef]

Adv. Electron. Electron Phys. (1)

K. Oba, M. Ito, M. Yamaguchi, M. Tanaka, “A CsI(Na) scintillation plate with high spatial resolution,” Adv. Electron. Electron Phys. 74, 247–255 (1988).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, V. Kohn, “Phase-contrast microtomography with coherent high-energy synchrotron x-rays,” Appl. Phys. Lett. 69, 1826–1828 (1996).
[CrossRef]

Appl. Radiat. Isot. (1)

W. B. Gilboy, “Microtomography with ionizing radiations,” Appl. Radiat. Isot. 46, 689–699 (1995).
[CrossRef]

Cytometry (1)

H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, H. J. Tanke, “Preparation and microscopic visualization of multicolor luminescent immunophosphors,” Cytometry 13, 561–570 (1992).
[CrossRef] [PubMed]

J. Appl. Crystallogr. (1)

U. W. Arndt, D. J. Gilmore, “X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources,” J. Appl. Crystallogr. 12, 1–9 (1979).
[CrossRef]

J. Mater. Sci. (1)

U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan, M. C. Nichols, “X-ray tomographic microscopy of fibre-reinforced materials,” J. Mater. Sci. 26, 4076–4085 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

P. Cloetens, R. Barrett, J. Baruchel, J. Guigney, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996).
[CrossRef]

J. Vac. Sci. Technol. B (1)

H. W. Deckman, J. H. Dunsmuir, S. M. Gruner, “Microfabrication of cellular phosphors,” J. Vac. Sci. Technol. B 7, 1832–1835 (1989).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (2)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetzov, “On the requirements to the instrumentation for the new generation of the synchrotron radiation sources: beryllium windows,” Nucl. Instrum. Methods Phys. Res. A 370, 634–640 (1996).
[CrossRef]

E. Dufresne, R. Brüning, M. Sutton, B. Rodricks, G. B. Stephenson, “A statistical technique for characterizing x-ray position-sensitive detectors,” Nucl. Instrum. Methods Phys. Res. A 364, 380–393 (1995).
[CrossRef]

Opt. Lett. (1)

Proc. R. Soc. London, Ser. A (2)

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London, Ser. A 231, 91–103 (1955).
[CrossRef]

G. Black, E. H. Linfoot, “Spherical aberration and information content of optical images,” Proc. R. Soc. London, Ser. A 239, 522–540 (1957).
[CrossRef]

Proc. Soc. Inf. Disp. (1)

R. W. Young, B. J. Green, G. H. Camp, I. G. Gibb, M. S. Waite, “A transparent thin-film CRT screen of Y2O2:Eu with contrast-enhancement layer,” Proc. Soc. Inf. Disp. 27, 139–143 (1986).

Radiology (1)

Y. Okamoto, T. Oguro, I. Kashima, D. Kanishi, T. Sakurai, T. Matsuki, “Development of the computed electroradiography: trial manufacture of digital imaging system,” Radiology 185, 395 (1992).

Rev. Sci. Instrum. (4)

B. Lai, W. Yun, Y. Xiao, L. Yag, D. Legnini, Z. Cai, A. Krasnoperova, F. Cerrina, E. DiFabrizio, L. Grella, M. Gentili, “Development of a hard x-ray microscope,” Rev. Sci. Instrum. 66, 2287–2289 (1995).
[CrossRef]

A. Koch, C. Riekel, “X-ray video camera with 10 µm spatial resolution,” Rev. Sci. Instrum. 67, 1737–1740 (1996).
[CrossRef]

A. Snigirev, “The recent development of Bragg–Fresnel crystal optics: experiments and applications at the ESRF,” Rev. Sci. Instrum. 66, 2053–2058 (1995).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Science (2)

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray topography,” Science 266, 1213–1215 (1994).
[CrossRef] [PubMed]

B. P. Flannery, H. W. Deckman, W. G. Roberge, K. L. d’Amico, “Three dimensional x-ray microtomography,” Science 237, 1439–1444 (1987).
[CrossRef] [PubMed]

Other (12)

M. Born, E. Wolf, Principle of Optics, 6th ed. (Pergamon, Oxford, 1986).

J. L. Halbleib, R. F. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, M. J. Berger, “ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes,” (Sandia National Laboratories, Albuquerque, N.M., 1988).

J. L. Halbleib, “Structure and operation of the ITS code system,” in Monte Carlo Transport of Electrons and Photons, T. M. Jenkins, W. R. Nelson, A. Rindi, eds. (Plenum, New York, 1987), pp. 249–262.

International Commission on Radiation Units and Measurements (ICRU), “Radiation quantities and units,” (ICRU, Washington, D.C., 1980).

J. C. Dainty, R. Shaw, eds. Image Science, 5th ed. (Academic, London, 1992).

M. D. Silver, “Towards a micrometer resolution x-ray tomographic microscope,” in X-Ray Microbeam Technology and Applications, W. Yun, ed., Proc. SPIE2516, 135–147 (1995).
[CrossRef]

K. Kinoshita, T. Matsumura, Y. Inagaki, N. Hirai, M. Sugiyama, H. Kihara, N. Watanabe, Y. Shimanuki, A. Yagashita, in X-Ray Microscopy III, Vol. 67 of Springer Series in Optical Sciences, A. Michette, G. Morrison, C. Buckley, eds. (Springer-Verlag, Berlin, 1992), pp. 335–337.

H. Chrétien, Calcul des combinaison optiques, 5th ed. (Masson, Paris, 1980).

Photometrics, “Spherical aberration in the photometrics system caused by the camera window,” Application Note (Photometrics, Tucson, Ariz., 1990).

F. Busch, “Auflösungsvermögen einer Mikrotomographie-Kamera für Röntgen-Synchrotronstrahlung,” Ph.D. dissertation (University of Dortmund, Dortmund, Germany, 1994).

A. Koch, M. Hagelstein, A. San Miguel, A. Fontaine, T. Ressler, “Scintillating screen-CCD camera using analog on chip storage for time-resolved x-ray absorption spectroscopy,” in Cameras and Systems for Electronic Photography and Scientific Imaging, C. N. Anagnostopoulos, M. P. Lesser, eds., Proc. SPIE2416, 85–93 (1995).
[CrossRef]

E. Breitenberger, “Scintillation spectrometer statistics,” in Progress in Nuclear Physics, O. R. Frisch, ed. (Pergamon, New York, 1955), Vol. 4, pp. 56–94.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) X-ray imaging with transparent luminescent screens (scintillators). Identical visible-light images are created by the x-ray beam in different planes of the scintillator. An image in plane z0 is focused onto the CCD (solid curves). An image in plane z0+δz is out of focus at the CCD (dashed curves). (b) Optical setup of the camera. The characteristics of the microscope objective determine the resolution. The photo eyepiece corrects for field curvature.

Fig. 2
Fig. 2

Monte Carlo simulations of radial absorbed-dose distributions at x-ray energies of 14, 30, and 100 keV in a 5-µm-thick YAG:Ce scintillator on a 100-µm-thick undoped YAG substrate.

Fig. 3
Fig. 3

Spatial resolution (R) versus numerical aperture (NA) of an optical system for different thicknesses (z) of a scintillator according to Eq. (2). The left wing is degraded by diffraction, the right one by defect of focus. Parameters used for computation are n=1.95, z0=z/2=δzmax, and λ=550 nm; R is in units of fw90% int.

Fig. 4
Fig. 4

Principle of the resolution measurement. (a) With an x-ray generator: to measure the line spread function (LSF) of the detector directly, the x-ray beam is collimated to 1.2 µm. The 1.2-µm slit is positioned in contact with the scintillator of the camera. The measured detector response is corrected for the slit width (W-slit) to obtain the LSF. (b) With synchrotron radiation: a wideband interference pattern is created for the direct measurement of the modulation transfer function (MTF) of the detector system. The fringe pattern is produced by interference of the unscattered plane wave with the scattered wave of a calibrated fiber. The spatial-frequency spectrum of the recorded pattern is normalized to the theoretically calculated interferogram to obtain the MTF.

Fig. 5
Fig. 5

Measurement of the detector response to x rays from a 1.2-µm slit. The LSF is calculated by deconvolving the measured values by the slit widths.

Fig. 6
Fig. 6

Cross section through the holographic image of a boron (B) fiber cross with a 15-µm-thick tungsten (W) core. The absorption of the W core is clearly visible (center). Fringe spacing is decreasing for increasing distance from the edge. The cross sections were taken over the B edge to measure directly the MTF of the detector.

Fig. 7
Fig. 7

MTF’s for the detector with a 5-µm-thick YAG scintillator and an optical system with NA=0.55. The simulated curve was convolved with the pixel size defined by the CCD camera.

Fig. 8
Fig. 8

LSF’s for x-ray imaging with scintillators of different thicknesses (5 and 1 µm) and different NA’s. The measured values are fitted with a Lorentzian curve.

Fig. 9
Fig. 9

Imaging of a Foraminifera shell at 25 keV in phase contrast (distance to the detector: 10 cm).

Fig. 10
Fig. 10

Four tomographic reconstructed cross sections through an insect’s knee (crane fly). For the tomogram 500 phase contrast images were recorded at 20 keV. Details of sizes down to 2 µm, such as tendons, are clearly visible.

Fig. 11
Fig. 11

Point spread functions (PSF’s) of the optical system and profiles for the energy deposition in the scintillator. The measured and simulated PSF’s are calculated from the LSF’s of Fig. 8, and the energy deposition profiles are curves from Fig. 2. The parameters of the optical system for both measured and simulated PSF’s are NA=0.55 and a 5-µm-thick scintillator.

Tables (2)

Tables Icon

Table 1 Detector Characteristics

Tables Icon

Table 2 DQE for Three Detector Designs, Calculated According to Eq. (8) with Computational Parameters from Table 1

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

RδzNA,
Rλ/NA,
Rt(NA)3(iftδz).
MTF(f)=|OTF(f)|=-z0z-z0 OTF(f, δz)exp[-μ(δz+z0)]dδz,
R=pNA2+(qzNA)21/2,
p=0.70µmatfw90%int0.18µmatfw50%int,
q=0.28atfw90%int0.075atfw50%int,
zopt=12pqR2,NAopt=2p1R.
Rfw90%int=2.6RfwhmLSF=2.1Rmicroscope.
12(NA)4tn2-12n3<0.94λ.
ta<0.94λ2(NA)42n3n2-1,
ta<60 µm(NA=0.55),ta<6 µm(NA=1),
tb<0.94λ2(NA)42n3n2-1-2n3n2-1,
tb<3 mm(NA=0.55),tb<300 µm(NA=1),
t=n2-1n3n3n2-1t,
t=1.02t.
DQE=SNRout2SNRin2ηabs1+1+1/ηv/eηcol(Ex/Ev)ηx/v-1
(realizedcamera)ηabsZ4Ex3ρscint,
ηx/v>1+1ηv/eηcolExEv=system(a)4%at14keVsystem(b)0.9%at14keVsystem(c)1%at14keV.
Δz(ρ)tn-1n+tn2-12n3sin2 β(ρ)withtan β(ρ)=aρr,
Φ(ρ)=12ar2Δzρ2withar=sin α=NA.
Φ(ρ)=12(NA)2tn-1nρ2+Aρ4withA=12(NA)4tn2-12n3.
Rtn2-12n3(NA)3.

Metrics