Abstract

Current models of motion perception typically describe mechanisms that operate locally to extract direction and speed information. To deal with the movement of self or objects with respect to the environment, higher-level receptive fields are presumably assembled from the outputs of such local analyzers. We find that the apparent speed of gratings viewed through four spatial apertures depends on the interaction of motion directions among the apertures, even when the motion within each aperture is identical except for direction. Specifically, local motion consistent with a global pattern of radial motion appears 32% faster than that consistent with translational or rotational motion. The enhancement of speed is not reflected in detection thresholds and persists in spite of instructions to fixate a single local aperture and ignore the global configuration. We also find that a two-dimensional pattern of motion is necessary to elicit the effect and that motion contrast alone does not produce the enhancement. These results implicate at least two serial stages of motion-information processing: a mechanism to code the local direction and speed of motion, followed by a global mechanism that integrates such signals to represent meaningful patterns of movement, depending on the configuration of the local motions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. H. Adelson, J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [CrossRef]
  2. J. P. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
    [CrossRef] [PubMed]
  3. A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
    [CrossRef] [PubMed]
  4. K. Zhang, M. I. Sereno, M. E. Sereno, “Emergence of position-independent detectors of sense of rotation and dilation with Hebbian learning: an analysis,” Neural Comput. 5, 597–612 (1993).
    [CrossRef]
  5. M. Lappe, J. P. Rauschecker, “Heading detection from optic flow,” Nature (London) 369, 712–713 (1994).
    [CrossRef]
  6. M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
    [CrossRef]
  7. D. Regan, K. I. Beverly, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–412 (1978).
    [CrossRef] [PubMed]
  8. D. Regan, K. I. Beverly, “Visual responses to vorticity and the neural analysis of optic flow,” J. Opt. Soc. Am. A 2, 280–283 (1985).
    [CrossRef] [PubMed]
  9. N. J. Wade, “A selective history of the study of visual motion aftereffects,” Perception 23, 1111–1134 (1994).
    [CrossRef] [PubMed]
  10. P. Cavanagh, O. E. Favreau, “Motion aftereffect: a global mechanism for the perception of rotation,” Perception 9, 175–182 (1980).
    [CrossRef] [PubMed]
  11. R. J. Snowden, A. B. Milne, “The effects of adapting to complex motions: Position invariance and tuning to spiral motions,” J. Cogn. Neurosci. 8, 435–452 (1996).
  12. T. C. A. Freeman, M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992).
    [CrossRef] [PubMed]
  13. A. B. Sekuler, “Simple-pooling of unidirectional motion predicts speed discrimination for looming stimuli,” Vision Res. 32, 2277–2288 (1992).
    [CrossRef] [PubMed]
  14. P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 15, 2811–2823 (1995).
    [CrossRef]
  15. P. Verghese, L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature (London) 381, 161–163 (1996).
    [CrossRef]
  16. B. J. Geesaman, N. Qian, “A novel speed illusion involving expansion and rotation patterns,” Vision Res. 36, 3281–3292 (1996).
    [CrossRef] [PubMed]
  17. P. J. Bex, W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997).
    [CrossRef]
  18. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
    [CrossRef] [PubMed]
  19. A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
    [CrossRef] [PubMed]
  20. W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 292–297 (1951).
  21. S. P. McKee, “A local mechanism for differential velocity detection,” Vision Res. 21, 491–500 (1981).
    [CrossRef] [PubMed]
  22. L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
    [CrossRef] [PubMed]
  23. J. Allman, F. Miezin, E. McGuinness, “Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local–global comparisons in visual neurons,” Annu. Rev. Neurosci. 8, 407–430 (1985).
    [CrossRef]
  24. D. C. Van Essen, C. H. Anderson, D. J. Felleman, “Information processing in the primate visual system: an integrated systems perspective,” Science 255, 419–423 (1992).
    [CrossRef] [PubMed]
  25. H. A. Saito, M. Yukei, K. Tanaka, K. Hikosaka, Y. Fukada, E. Iwai, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 6, 145–157 (1986).
    [PubMed]
  26. J. H. R. Maunsell, D. C. Van Essen, “The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey,” J. Neurosci. 3, 2563–2586 (1983).
    [PubMed]
  27. T. Pasternak, W. H. Merigan, “Motion perception following lesions of the superior temporal sulcus in the monkey,” Cereb. Cortex 4, 247–259 (1994).
    [PubMed]
  28. K. Tanaka, H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophysiol. 62, 626–641 (1989).
    [PubMed]
  29. C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophysiol. 65, 1329–1345 (1991).
    [PubMed]
  30. G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
    [CrossRef] [PubMed]
  31. M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
    [PubMed]
  32. J. Kim, K. Mulligan, H. Sherk, “Stimulated optic flow and extrastriate cortex. I. Optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997).
    [PubMed]
  33. K. Mulligan, J. Kim, H. Sherk, “Stimulated optic flow and extrastriate cortex. II. Responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997).
    [PubMed]
  34. H. G. Krapp, R. Hengstenberg, “Estimation of self motion by optic flow processing in single visual interneurons,” Nature (London) 384, 463–466 (1996).
    [CrossRef]

1997 (3)

P. J. Bex, W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997).
[CrossRef]

J. Kim, K. Mulligan, H. Sherk, “Stimulated optic flow and extrastriate cortex. I. Optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997).
[PubMed]

K. Mulligan, J. Kim, H. Sherk, “Stimulated optic flow and extrastriate cortex. II. Responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997).
[PubMed]

1996 (4)

H. G. Krapp, R. Hengstenberg, “Estimation of self motion by optic flow processing in single visual interneurons,” Nature (London) 384, 463–466 (1996).
[CrossRef]

R. J. Snowden, A. B. Milne, “The effects of adapting to complex motions: Position invariance and tuning to spiral motions,” J. Cogn. Neurosci. 8, 435–452 (1996).

P. Verghese, L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature (London) 381, 161–163 (1996).
[CrossRef]

B. J. Geesaman, N. Qian, “A novel speed illusion involving expansion and rotation patterns,” Vision Res. 36, 3281–3292 (1996).
[CrossRef] [PubMed]

1995 (2)

P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 15, 2811–2823 (1995).
[CrossRef]

M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

1994 (4)

M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
[PubMed]

M. Lappe, J. P. Rauschecker, “Heading detection from optic flow,” Nature (London) 369, 712–713 (1994).
[CrossRef]

T. Pasternak, W. H. Merigan, “Motion perception following lesions of the superior temporal sulcus in the monkey,” Cereb. Cortex 4, 247–259 (1994).
[PubMed]

N. J. Wade, “A selective history of the study of visual motion aftereffects,” Perception 23, 1111–1134 (1994).
[CrossRef] [PubMed]

1993 (1)

K. Zhang, M. I. Sereno, M. E. Sereno, “Emergence of position-independent detectors of sense of rotation and dilation with Hebbian learning: an analysis,” Neural Comput. 5, 597–612 (1993).
[CrossRef]

1992 (5)

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

T. C. A. Freeman, M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992).
[CrossRef] [PubMed]

A. B. Sekuler, “Simple-pooling of unidirectional motion predicts speed discrimination for looming stimuli,” Vision Res. 32, 2277–2288 (1992).
[CrossRef] [PubMed]

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

D. C. Van Essen, C. H. Anderson, D. J. Felleman, “Information processing in the primate visual system: an integrated systems perspective,” Science 255, 419–423 (1992).
[CrossRef] [PubMed]

1991 (2)

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophysiol. 65, 1329–1345 (1991).
[PubMed]

1989 (1)

K. Tanaka, H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophysiol. 62, 626–641 (1989).
[PubMed]

1986 (1)

H. A. Saito, M. Yukei, K. Tanaka, K. Hikosaka, Y. Fukada, E. Iwai, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 6, 145–157 (1986).
[PubMed]

1985 (5)

1983 (2)

J. H. R. Maunsell, D. C. Van Essen, “The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey,” J. Neurosci. 3, 2563–2586 (1983).
[PubMed]

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

1981 (1)

S. P. McKee, “A local mechanism for differential velocity detection,” Vision Res. 21, 491–500 (1981).
[CrossRef] [PubMed]

1980 (1)

P. Cavanagh, O. E. Favreau, “Motion aftereffect: a global mechanism for the perception of rotation,” Perception 9, 175–182 (1980).
[CrossRef] [PubMed]

1978 (1)

D. Regan, K. I. Beverly, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–412 (1978).
[CrossRef] [PubMed]

1951 (1)

W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 292–297 (1951).

Adelson, E. H.

Ahumada, A. J.

Allman, J.

J. Allman, F. Miezin, E. McGuinness, “Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local–global comparisons in visual neurons,” Annu. Rev. Neurosci. 8, 407–430 (1985).
[CrossRef]

Andersen, R. A.

M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
[PubMed]

Anderson, C. H.

D. C. Van Essen, C. H. Anderson, D. J. Felleman, “Information processing in the primate visual system: an integrated systems perspective,” Science 255, 419–423 (1992).
[CrossRef] [PubMed]

Bergen, J. R.

Beverly, K. I.

Bex, P. J.

P. J. Bex, W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997).
[CrossRef]

Burr, D. C.

M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

Cavanagh, P.

P. Cavanagh, O. E. Favreau, “Motion aftereffect: a global mechanism for the perception of rotation,” Perception 9, 175–182 (1980).
[CrossRef] [PubMed]

Duffy, C. J.

C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophysiol. 65, 1329–1345 (1991).
[PubMed]

Favreau, O. E.

P. Cavanagh, O. E. Favreau, “Motion aftereffect: a global mechanism for the perception of rotation,” Perception 9, 175–182 (1980).
[CrossRef] [PubMed]

Felleman, D. J.

D. C. Van Essen, C. H. Anderson, D. J. Felleman, “Information processing in the primate visual system: an integrated systems perspective,” Science 255, 419–423 (1992).
[CrossRef] [PubMed]

Freeman, T. C. A.

T. C. A. Freeman, M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992).
[CrossRef] [PubMed]

Fukada, Y.

H. A. Saito, M. Yukei, K. Tanaka, K. Hikosaka, Y. Fukada, E. Iwai, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 6, 145–157 (1986).
[PubMed]

Geesaman, B. J.

B. J. Geesaman, N. Qian, “A novel speed illusion involving expansion and rotation patterns,” Vision Res. 36, 3281–3292 (1996).
[CrossRef] [PubMed]

Graziano, M. S.

M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
[PubMed]

Harris, M. G.

T. C. A. Freeman, M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992).
[CrossRef] [PubMed]

Hengstenberg, R.

H. G. Krapp, R. Hengstenberg, “Estimation of self motion by optic flow processing in single visual interneurons,” Nature (London) 384, 463–466 (1996).
[CrossRef]

Hikosaka, K.

H. A. Saito, M. Yukei, K. Tanaka, K. Hikosaka, Y. Fukada, E. Iwai, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 6, 145–157 (1986).
[PubMed]

Iwai, E.

H. A. Saito, M. Yukei, K. Tanaka, K. Hikosaka, Y. Fukada, E. Iwai, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 6, 145–157 (1986).
[PubMed]

Kim, J.

J. Kim, K. Mulligan, H. Sherk, “Stimulated optic flow and extrastriate cortex. I. Optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997).
[PubMed]

K. Mulligan, J. Kim, H. Sherk, “Stimulated optic flow and extrastriate cortex. II. Responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997).
[PubMed]

Krapp, H. G.

H. G. Krapp, R. Hengstenberg, “Estimation of self motion by optic flow processing in single visual interneurons,” Nature (London) 384, 463–466 (1996).
[CrossRef]

Lagae, L.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Lappe, M.

M. Lappe, J. P. Rauschecker, “Heading detection from optic flow,” Nature (London) 369, 712–713 (1994).
[CrossRef]

Maes, H.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Makous, W.

P. J. Bex, W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997).
[CrossRef]

Maunsell, J. H. R.

J. H. R. Maunsell, D. C. Van Essen, “The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey,” J. Neurosci. 3, 2563–2586 (1983).
[PubMed]

McGuinness, E.

J. Allman, F. Miezin, E. McGuinness, “Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local–global comparisons in visual neurons,” Annu. Rev. Neurosci. 8, 407–430 (1985).
[CrossRef]

McKee, S. P.

S. P. McKee, “A local mechanism for differential velocity detection,” Vision Res. 21, 491–500 (1981).
[CrossRef] [PubMed]

Merigan, W. H.

T. Pasternak, W. H. Merigan, “Motion perception following lesions of the superior temporal sulcus in the monkey,” Cereb. Cortex 4, 247–259 (1994).
[PubMed]

Miezin, F.

J. Allman, F. Miezin, E. McGuinness, “Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local–global comparisons in visual neurons,” Annu. Rev. Neurosci. 8, 407–430 (1985).
[CrossRef]

Milne, A. B.

R. J. Snowden, A. B. Milne, “The effects of adapting to complex motions: Position invariance and tuning to spiral motions,” J. Cogn. Neurosci. 8, 435–452 (1996).

Morrone, M. C.

M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

Mulligan, K.

K. Mulligan, J. Kim, H. Sherk, “Stimulated optic flow and extrastriate cortex. II. Responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997).
[PubMed]

J. Kim, K. Mulligan, H. Sherk, “Stimulated optic flow and extrastriate cortex. I. Optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997).
[PubMed]

Orban, G. A.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Pasternak, T.

T. Pasternak, W. H. Merigan, “Motion perception following lesions of the superior temporal sulcus in the monkey,” Cereb. Cortex 4, 247–259 (1994).
[PubMed]

Pelli, D. G.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Qian, N.

B. J. Geesaman, N. Qian, “A novel speed illusion involving expansion and rotation patterns,” Vision Res. 36, 3281–3292 (1996).
[CrossRef] [PubMed]

Raiguel, S.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Rauschecker, J. P.

M. Lappe, J. P. Rauschecker, “Heading detection from optic flow,” Nature (London) 369, 712–713 (1994).
[CrossRef]

Regan, D.

Saito, H.

K. Tanaka, H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophysiol. 62, 626–641 (1989).
[PubMed]

Saito, H. A.

H. A. Saito, M. Yukei, K. Tanaka, K. Hikosaka, Y. Fukada, E. Iwai, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 6, 145–157 (1986).
[PubMed]

Sekuler, A. B.

A. B. Sekuler, “Simple-pooling of unidirectional motion predicts speed discrimination for looming stimuli,” Vision Res. 32, 2277–2288 (1992).
[CrossRef] [PubMed]

Sereno, M. E.

K. Zhang, M. I. Sereno, M. E. Sereno, “Emergence of position-independent detectors of sense of rotation and dilation with Hebbian learning: an analysis,” Neural Comput. 5, 597–612 (1993).
[CrossRef]

Sereno, M. I.

K. Zhang, M. I. Sereno, M. E. Sereno, “Emergence of position-independent detectors of sense of rotation and dilation with Hebbian learning: an analysis,” Neural Comput. 5, 597–612 (1993).
[CrossRef]

Sherk, H.

J. Kim, K. Mulligan, H. Sherk, “Stimulated optic flow and extrastriate cortex. I. Optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997).
[PubMed]

K. Mulligan, J. Kim, H. Sherk, “Stimulated optic flow and extrastriate cortex. II. Responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997).
[PubMed]

Snowden, R. J.

R. J. Snowden, A. B. Milne, “The effects of adapting to complex motions: Position invariance and tuning to spiral motions,” J. Cogn. Neurosci. 8, 435–452 (1996).

M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
[PubMed]

Sperling, G.

Stone, L. S.

P. Verghese, L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature (London) 381, 161–163 (1996).
[CrossRef]

P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 15, 2811–2823 (1995).
[CrossRef]

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

Tanaka, K.

K. Tanaka, H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophysiol. 62, 626–641 (1989).
[PubMed]

H. A. Saito, M. Yukei, K. Tanaka, K. Hikosaka, Y. Fukada, E. Iwai, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 6, 145–157 (1986).
[PubMed]

Thompson, P.

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

Torre, V.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Vaina, L. M.

M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

Van Essen, D. C.

D. C. Van Essen, C. H. Anderson, D. J. Felleman, “Information processing in the primate visual system: an integrated systems perspective,” Science 255, 419–423 (1992).
[CrossRef] [PubMed]

J. H. R. Maunsell, D. C. Van Essen, “The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey,” J. Neurosci. 3, 2563–2586 (1983).
[PubMed]

van Santen, J. P.

Verghese, P.

P. Verghese, L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature (London) 381, 161–163 (1996).
[CrossRef]

P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 15, 2811–2823 (1995).
[CrossRef]

Verri, A.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Wade, N. J.

N. J. Wade, “A selective history of the study of visual motion aftereffects,” Perception 23, 1111–1134 (1994).
[CrossRef] [PubMed]

Watson, A. B.

A. B. Watson, A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
[CrossRef] [PubMed]

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Weibull, W.

W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 292–297 (1951).

Wurtz, R. H.

C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophysiol. 65, 1329–1345 (1991).
[PubMed]

Xiao, D.

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Yukei, M.

H. A. Saito, M. Yukei, K. Tanaka, K. Hikosaka, Y. Fukada, E. Iwai, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 6, 145–157 (1986).
[PubMed]

Zhang, K.

K. Zhang, M. I. Sereno, M. E. Sereno, “Emergence of position-independent detectors of sense of rotation and dilation with Hebbian learning: an analysis,” Neural Comput. 5, 597–612 (1993).
[CrossRef]

Zhang, L.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Annu. Rev. Neurosci. (1)

J. Allman, F. Miezin, E. McGuinness, “Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local–global comparisons in visual neurons,” Annu. Rev. Neurosci. 8, 407–430 (1985).
[CrossRef]

Cereb. Cortex (1)

T. Pasternak, W. H. Merigan, “Motion perception following lesions of the superior temporal sulcus in the monkey,” Cereb. Cortex 4, 247–259 (1994).
[PubMed]

J. Appl. Mech. (1)

W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 292–297 (1951).

J. Cogn. Neurosci. (1)

R. J. Snowden, A. B. Milne, “The effects of adapting to complex motions: Position invariance and tuning to spiral motions,” J. Cogn. Neurosci. 8, 435–452 (1996).

J. Neurophysiol. (4)

K. Tanaka, H. Saito, “Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey,” J. Neurophysiol. 62, 626–641 (1989).
[PubMed]

C. J. Duffy, R. H. Wurtz, “Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,” J. Neurophysiol. 65, 1329–1345 (1991).
[PubMed]

J. Kim, K. Mulligan, H. Sherk, “Stimulated optic flow and extrastriate cortex. I. Optic flow versus texture,” J. Neurophysiol. 77, 554–561 (1997).
[PubMed]

K. Mulligan, J. Kim, H. Sherk, “Stimulated optic flow and extrastriate cortex. II. Responses to bar versus large-field stimuli,” J. Neurophysiol. 77, 562–570 (1997).
[PubMed]

J. Neurosci. (3)

M. S. Graziano, R. A. Andersen, R. J. Snowden, “Tuning of MST neurons to spiral motions,” J. Neurosci. 14, 54–67 (1994).
[PubMed]

H. A. Saito, M. Yukei, K. Tanaka, K. Hikosaka, Y. Fukada, E. Iwai, “Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey,” J. Neurosci. 6, 145–157 (1986).
[PubMed]

J. H. R. Maunsell, D. C. Van Essen, “The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey,” J. Neurosci. 3, 2563–2586 (1983).
[PubMed]

J. Opt. Soc. Am. A (4)

Nature (London) (4)

M. Lappe, J. P. Rauschecker, “Heading detection from optic flow,” Nature (London) 369, 712–713 (1994).
[CrossRef]

M. C. Morrone, D. C. Burr, L. M. Vaina, “Two stages of visual processing for radial and circular motion,” Nature (London) 376, 507–509 (1995).
[CrossRef]

H. G. Krapp, R. Hengstenberg, “Estimation of self motion by optic flow processing in single visual interneurons,” Nature (London) 384, 463–466 (1996).
[CrossRef]

P. Verghese, L. S. Stone, “Perceived visual speed constrained by image segmentation,” Nature (London) 381, 161–163 (1996).
[CrossRef]

Neural Comput. (1)

K. Zhang, M. I. Sereno, M. E. Sereno, “Emergence of position-independent detectors of sense of rotation and dilation with Hebbian learning: an analysis,” Neural Comput. 5, 597–612 (1993).
[CrossRef]

Percept. Psychophys. (1)

A. B. Watson, D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983).
[CrossRef] [PubMed]

Perception (2)

N. J. Wade, “A selective history of the study of visual motion aftereffects,” Perception 23, 1111–1134 (1994).
[CrossRef] [PubMed]

P. Cavanagh, O. E. Favreau, “Motion aftereffect: a global mechanism for the perception of rotation,” Perception 9, 175–182 (1980).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

G. A. Orban, L. Lagae, A. Verri, S. Raiguel, D. Xiao, H. Maes, V. Torre, “First-order analysis of optical flow in monkey brain,” Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).
[CrossRef] [PubMed]

Science (1)

D. C. Van Essen, C. H. Anderson, D. J. Felleman, “Information processing in the primate visual system: an integrated systems perspective,” Science 255, 419–423 (1992).
[CrossRef] [PubMed]

Vision Res. (9)

S. P. McKee, “A local mechanism for differential velocity detection,” Vision Res. 21, 491–500 (1981).
[CrossRef] [PubMed]

L. S. Stone, P. Thompson, “Human speed perception is contrast dependent,” Vision Res. 32, 1535–1549 (1992).
[CrossRef] [PubMed]

B. J. Geesaman, N. Qian, “A novel speed illusion involving expansion and rotation patterns,” Vision Res. 36, 3281–3292 (1996).
[CrossRef] [PubMed]

P. J. Bex, W. Makous, “Radial motion looks faster,” Vision Res. 37, 3399–3405 (1997).
[CrossRef]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

T. C. A. Freeman, M. G. Harris, “Human sensitivity to expanding and rotating motion: effects of complementary masking and directional structure,” Vision Res. 32, 81–87 (1992).
[CrossRef] [PubMed]

A. B. Sekuler, “Simple-pooling of unidirectional motion predicts speed discrimination for looming stimuli,” Vision Res. 32, 2277–2288 (1992).
[CrossRef] [PubMed]

P. Verghese, L. S. Stone, “Combining speed information across space,” Vision Res. 15, 2811–2823 (1995).
[CrossRef]

D. Regan, K. I. Beverly, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–412 (1978).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Examples of the stimuli. Observers compared the speed of three stimulus configurations, each consisting of four windows containing a moving grating with a 2-cycle/deg sinusoidal luminance profile. The locations of the windows were fixed, but the orientation of the gratings was varied to form three compound patterns forming (a) rotational, (b) radial, and (c) rotational motion. The arrows beneath each illustration show the directions of motion within the windows. The crosses are for fixation.

Fig. 2
Fig. 2

(a) Typical psychometric functions for naı̈ve observer JB, showing the proportion of trials on which the translational motion at the speed shown on the x axis was judged faster than rotational (open symbols) or radial (filled symbols) motion at 4 cycles/s (c/sec). The data are fitted by Weibull functions with a least-χ2 algorithm. Error bars represent the standard deviation of each point according to the binomial distribution. (b) Apparent/physical speed ratios for three observers at two physical speeds (2 and 4 cycles/s) for rotational (open bars) and radial (filled bars) patterns of motion. A value of 1 indicates equal apparent speed; values above 1 indicate that the pattern appeared to move faster than a translating pattern. Error bars show 95% confidence limits.

Fig. 3
Fig. 3

Speed-discrimination thresholds: speed increment and 95% confidence intervals at which observers correctly identified the interval containing the faster pattern on 75% of trials. The corresponding Weber fractions on the mean threshold for each speed are as follows:

Standard Speed
Fraction for Observer AM
Fraction for Observer PB
20.1060.147
40.0370.043
60.0320.095
Fig. 4
Fig. 4

Motion contrast control and test of configuration of Gaussian windows: Apparent/physical speed ratios of radial motion at 2 and 4 cycles/s were measured (for two observers) in a more-linear array of windows, as illustrated in the inset. Data are plotted as in Fig. 2(b).

Fig. 5
Fig. 5

(a) Contrast thresholds: contrasts and 95% confidence intervals at which two observers correctly identified the interval containing a stimulus on 75% of the trials. (b) Contrast matches: contrast of a translating grating that matched the apparent contrast of radiating or rotating patterns of 40% contrast. The match contrast is the contrast at which observers reported that the translating grating was of higher contrast on 50% of trials, inferred from the psychometric function.

Fig. 6
Fig. 6

Examples of the stimuli used in Experiment 4.The apparent speed within a single centrally fixated window containing a vertical grating moving left or right was compared in two intervals. In one interval the single patch formed either part of (a) a rotational or (b) a radial pattern; in the other interval, it formed part of (c), (d) a translating pattern. Cross-hairs were provided around the target pattern to facilitate steady fixation. The sequence and direction of motion were randomized from trial to trial. The four windows were at the same location on a given trial, but on different trials the paracentral windows were presented above or below fixation (for rotation) or left or right of fixation (for radial motion). Only one example of each configuration is illustrated here.

Fig. 7
Fig. 7

Relative apparent speed of grating elements within centrally fixated windows (two observers), plotted as in Fig. 2(b). Open bars, elements that constituted part of rotational motion configurations; filled bars, radial configurations. Error bars show 95% confidence limits.

Metrics